Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Vellasamy S, Sandrasaigaran P, Vidyadaran S, George E, Ramasamy R
    World J Stem Cells, 2012 Jun 26;4(6):53-61.
    PMID: 22993662
    To explore the feasibility of placenta tissue as a reliable and efficient source for generating mesenchymal stem cells (MSC).
  2. Ooi YY, Rahmat Z, Jose S, Ramasamy R, Vidyadaran S
    World J Stem Cells, 2013 Jan 26;5(1):34-42.
    PMID: 23362438 DOI: 10.4252/wjsc.v5.i1.34
    To assess the capacity to isolate and expand mesenchymal stem cells (MSC) from bone marrow of CBA/Ca, ICR and Balb/c mice.
  3. Sarmadi VH, Tong CK, Vidyadaran S, Abdullah M, Seow HF, Ramasamy R
    Med J Malaysia, 2010 Sep;65(3):209-14.
    PMID: 21939170
    We have previously shown that mesenchymal stem cells (MSC) inhibit tumour cell proliferation, thus promising a novel therapy for treating cancers. In this study, MSC were generated from human bone marrow samples and characterised based on standard immunophenotyping. When MSC were co-cultured with BV173 and Jurkat tumour cells, the proliferation of tumour cells were profoundly inhibited in a dose dependent manner mainly via cell to cell contact interaction. Further cell cycle analysis reveals that MSC arrest tumour cell proliferation in G0/G1 phase of cell cycle thus preventing the entry of tumour cells into S phase of cell cycle.
  4. Maqbool M, Vidyadaran S, George E, Ramasamy R
    Med J Malaysia, 2011 Oct;66(4):296-9.
    PMID: 22299545 MyJurnal
    Functional analysis of neutrophils requires isolation of these cells in the laboratory. Current isolation procedures are time consuming and can potentially activate the resting neutrophils. Thus, in this present study, we have optimised an existing laboratory protocol for human neutrophil isolation from peripheral blood. Twenty ml of blood samples were subjected to optimised density gradient separation and dextran sedimentation to obtain a pure population of neutrophils. The efficacy of the optimised manual post isolation of neutrophils was compared with pre isolation count performed by an automated haematology analyzer. The recovery of neutrophils via our optimised methods was 65.5% in comparison with neutrophils counts at pre-isolation. The morphological analysis of isolated neutrophils indicated the purity level more than 95% using Leishman staining. Our optimised laboratory procedures for neutrophils isolation successfully harvested neutrophils with good viability, purity and post recovery yield. This procedure provides an ideal platform to separate neutrophils for in vitro studies.
  5. Au LF, Othman F, Mustaffa R, Vidyadaran S, Rahmat A, Besar I, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:16-7.
    PMID: 19024962
    Biofilms are adherent, multi-layered colonies of bacteria that are typically more resistant to the host immune response and routine antibiotic therapy. HA biomaterial comprises of a single-phased hydroxyapatite scaffold with interconnected pore structure. The device is designed as osteoconductive space filler to be gently packed into bony voids or gaps following tooth extraction or any surgical procedure. Gentamycin-coated biomaterial (locally made hydroxyapatite) was evaluated to reduce or eradicate the biofilm on the implant materials. The results indicated that the HA coated with gentamycin was biocompatible to human osteoblast cell line and the biofilm has been reduced after being treated with different concentrations of gentamycin-coated hydroxyapatite (HA).
  6. Ooi YY, Ramasamy R, Vidyadaran S
    Med J Malaysia, 2008 Jul;63 Suppl A:65-6.
    PMID: 19024986
    Classically, MSC are identified by a CD45-CD106+ phenotype. In this study, we found that mouse MSC achieve this characteristic phenotype only at later passages. With increasing passages, CD45 (hematopoietic marker) expression shifts to negativity, whereas CD106 (vascular cell adhesion molecule-1) expression becomes increasingly positive. These results demonstrate that MSC cells cultured from mouse bone marrow acquire a classical MSC immunophenotype (CD45-CD106+) in later passages.
  7. Musa NH, Mani V, Lim SM, Vidyadaran S, Abdul Majeed AB, Ramasamy K
    J Dairy Res, 2017 Nov;84(4):488-495.
    PMID: 29154736 DOI: 10.1017/S0022029917000620
    Nutritional interventions are now recommended as strategies to delay Alzheimer's disease (AD) progression. The present study evaluated the neuroprotective effect (anti-inflammation) of lactic acid bacteria (either Lactobacillus fermentum LAB9 or L. casei LABPC) fermented cow's milk (CM) against lipopolysaccharide (LPS)-activated microglial BV2 cells in vitro. The ability of CM-LAB in attenuating memory deficit in LPS-induced mice was also investigated. ICR mice were orally administered with CM-LAB for 28 d before induction of neuroinflammation by LPS. Learning and memory behaviour were assessed using the Morris Water Maze Test. Brain tissues were homogenised for measurement of acetylcholinesterase (AChE), antioxidative, lipid peroxidation (malondialdehyde (MDA)) and nitrosative stress (NO) parameters. Serum was collected for cytokine analysis. CM-LAB9 and CM-LABPC significantly (P < 0·05) decreased NO level but did not affect CD40 expression in vitro. CM-LAB attenuated LPS-induced memory deficit in mice. This was accompanied by significant (P < 0·05) increment of antioxidants (SOD, GSH, GPx) and reduction of MDA, AChE and also pro-inflammatory cytokines. Unfermented cow's milk (UCM) yielded greater cytokine lowering effect than CM-LAB. The present findings suggest that attenuation of LPS-induced neuroinflamation and memory deficit by CM-LAB could be mediated via anti-inflammation through inhibition of AChE and antioxidative activities.
  8. Lee HC, Md Yusof HH, Leong MP, Zainal Abidin S, Seth EA, Hewitt CA, et al.
    Int J Neurosci, 2019 Sep;129(9):871-881.
    PMID: 30775947 DOI: 10.1080/00207454.2019.1580280
    Aims: The JAK-STAT signalling pathway is one of the key regulators of pro-gliogenesis process during brain development. Down syndrome (DS) individuals, as well as DS mouse models, exhibit an increased number of astrocytes, suggesting an imbalance of neurogenic-to-gliogenic shift attributed to dysregulated JAK-STAT signalling pathway. The gene and protein expression profiles of JAK-STAT pathway members have not been characterised in the DS models. Therefore, we aimed to profile the expression of Jak1, Jak2, Stat1, Stat3 and Stat6 at different stages of brain development in the Ts1Cje mouse model of DS. Methods: Whole brain samples from Ts1Cje and wild-type mice at embryonic day (E)10.5, E15, postnatal day (P)1.5; and embryonic cortex-derived neurospheres were collected for gene and protein expression analysis. Gene expression profiles of three brain regions (cerebral cortex, cerebellum and hippocampus) from Ts1Cje and wild-type mice across four time-points (P1.5, P15, P30 and P84) were also analysed. Results: In the developing mouse brain, none of the Jak/Stat genes were differentially expressed in the Ts1Cje model compared to wild-type mice. However, Western blot analyses indicated that phosphorylated (p)-Jak2, p-Stat3 and p-Stat6 were downregulated in the Ts1Cje model. During the postnatal brain development, Jak/Stat genes showed complex expression patterns, as most of the members were downregulated at different selected time-points. Notably, embryonic cortex-derived neurospheres from Ts1Cje mouse brain expressed lower Stat3 and Stat6 protein compared to the wild-type group. Conclusion: The comprehensive expression profiling of Jak/Stat candidates provides insights on the potential role of the JAK-STAT signalling pathway during abnormal development of the Ts1Cje mouse brains.
  9. Lee HC, Hamzah H, Leong MP, Md Yusof H, Habib O, Zainal Abidin S, et al.
    Sci Rep, 2021 Feb 15;11(1):3847.
    PMID: 33589712 DOI: 10.1038/s41598-021-83222-z
    Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0-30 mg/kg/day between E7.5-E20.5) on the brain of the developing mouse embryos. While the pregnant mice did not show any apparent adverse effects, the Gfap protein marker for glial cells and S100β mRNA marker for astrocytes were reduced in the postnatal day (P) 1.5 pups' brains. Gfap expression and Gfap+ cells were also suppressed in the differentiating neurospheres culture treated with ruxolitinib. Compared to the control group, adult mice treated with ruxolitinib prenatally showed no changes in motor coordination, locomotor function, and recognition memory. However, increased explorative behaviour within an open field and improved spatial learning and long-term memory retention were observed in the treated group. We demonstrated transplacental effects of ruxolitinib on astrogenesis, suggesting the potential use of ruxolitinib to revert pathological conditions caused by gliogenic-shift in early brain development such as Down and Noonan syndromes.
  10. Abdullah M, Chai PS, Loh CY, Chong MY, Quay HW, Vidyadaran S, et al.
    Mol Nutr Food Res, 2011 May;55(5):803-6.
    PMID: 21520494 DOI: 10.1002/mnfr.201100087
    Fruit and vegetables have therapeutic potential as they dampen inflammation, have no known side-effects and as whole foods have prospective additive and synergistic benefits. Th1 (IFN-γ(+) CD4(+))/Th2 (IL-4(+)CD4(+)) T cells play a vital role in mediating inflammatory responses and may be regulated by regulatory T cells (Tregs). Effects of Carica papaya on cells of healthy individuals were determined using flow cytometry methods. Significant down-regulation of IFN-γ(+) CD4(+) (p=0.03, n=13), up-regulation of IL-4(+) CD4(+) (p=0.04, n=13) T cells and up-regulation of CD3(+) CD4(+) CD25(+) CD127(-) (p=0.001, n=15) Tregs were observed after papaya consumption. In vitro cultures showed up-regulation of Tregs in male subjects and was significantly associated with levels of IL-1β in culture supernatants (R(2) =0.608, p=0.04, n=12). Other inflammatory cytokines were significantly suppressed. Papaya consumption may exert an anti-inflammatory response mediated through Tregs and have potential in alleviating inflammatory conditions.
  11. Koh RY, Lim CL, Uhal BD, Abdullah M, Vidyadaran S, Ho CC, et al.
    Mol Med Rep, 2015 May;11(5):3808-13.
    PMID: 25585520 DOI: 10.3892/mmr.2015.3193
    Idiopathic pulmonary fibrosis is a chronic pulmonary disease that is characterized by formation of scar tissue in lungs. Transforming growth factor-β (TGF-β) is considered an important cytokine in the pathogenesis of this disease. Hence, the antifibrotic effect of an inhibitor of the TGF-β type I receptor, namely, SB 431542, was investigated in our study. SB 431542 was used to treat TGF-β-treated IMR-90 cells; the expression of α-smooth muscle actin (α-SMA) was detected at the protein level by using an anti-α-SMA antibody, and at the gene level by reverse transcription-quantitative PCR. The effect of the inhibitor on cell proliferation was determined by a cell growth assay. The inhibitor was also administered into bleomycin-treated mice. Histopathological assessment and determination of total collagen levels were carried out to evaluate the severity of lung fibrosis in these mice. Our results demonstrated that treatment with SB 431542 inhibits TGF-β‑induced α-SMA expression in lung fibroblasts, at both the protein and the mRNA levels (P<0.05). However, the inhibitor did not significantly reduce lung fibroblast proliferation. In the bleomycin-induced pulmonary fibrosis mouse model, bleomycin treatment caused important morphological changes, accompanied by an increase in the collagen level of the lungs. Early treatment with SB 431542 prevented the manifestation of histopathological alterations, whereas delayed treatment significantly decreased the collagen level (P<0.05). These results suggest that inhibition of TGF-β signaling, via inhibition of the activin receptor-like kinase-5 (ALK-5) by SB 431542, may attenuate pulmonary fibrosis.
  12. Nasim Karim Hosseini, Jose, Shinsmon, Vidyadaran, S., Syafinaz Amin Nordin
    MyJurnal
    Introduction: Production of nitric oxide (NO) is one of the main responses elicited by a variety of
    immune cells such as macrophages (e.g. microglia, resident macrophages of brain), during inflammation. Evaluation of NO levels in the inflammatory milieu is considered important to the understanding of the intensity of an immune response; and has been performed using different methods including the Griess assay. To assay NO in culture, an appropriate number of cells are stimulated into an inflammatory phenotype. Common stimuli include lipopolysaccharide (LPS), IFN-γ and TNF-α. However, overt stimulation could cause cell cytotoxicity therefore an ideal concentration of LPS should be used. Objective: To set-up a model of BV-2 cell activation that allows the assay of detectable levels of NO. Optimization of BV-2 microglia cell density and LPS concentrations after stimulation by bacterial lipopolysaccharide (LPS) for the Griess assay is demonstrated in this study. Methods: BV-2 microglia were cultured at different cell densities, and treated with LPS at three concentrations (1, 5, 10 μg/ml). NO production in culture supernatants were then measured at 18, 24, 48 and 72 hours. Moreover, methyl tetrazolium assay (MTT) was also performed to ensure that NO measurement is performed at no-cytotoxic concentrations of LPS. Results and Conclusions: NO production follows a temporal pattern. The density of 25000 cells/ well was the ideal seeding density for NO evaluation in BV-2 cells. BV-2 stimulation by LPS is dose dependent, and NO levels are increased proportional to the LPS concentration up to 1.0μg/ml, whereas the higher LPS concentrations are associated with decreased cell viability may be caused by the high toxic levels of LPS or NO. Although Griess assay has been commonly used by the scientists, however, optimization of its parameters on BV-2 cells will be useful for the experiments which will be performed on this particular cell line. The optimized pattern of Griess assay on BV-2 cells was achieved in this study, hence easier and more practical for the future scientists to perform Griess assay on BV-2 cells.
  13. Ramasamy, R., Krishna, K., Maqbool, M., Vellasamy, S., Sarmadi, V. H., Abdullah, M., et al.
    MyJurnal
    Objective: Mesenchymal stem cells (MSC) are multipotent, non-haematopoietic stem cells that are
    capable of differentiating into different varieties of mature cell types such as osteoblasts, chondrocytes, adipocytes, and myoblasts. There is abundant evidence showing that MSC not only affect the differentiation of haematopoietic progenitors, but also the function of mature cells like lymphocytes and neutrophils. However the effect of MSC on neutrophil function and its responses is not well studied. Therefore, this study was conducted to assess the effect of MSC on neutrophil nitric oxide production. Method: Neutrophils from heparanised venous blood were isolated using Ficoll-Hypaque density gradient centrifugation followed by Dextran sedimentation and red blood cell (RBC) lysis. Isolated neutrophils were on average of 97% purity as determined by morphologic analysis. MSC were generated from human bone marrow and characterised by immunophenotyping (monoclonal antibodies CD105, CD73 and CD34) using a flowcytometer. In order to test the effects of MSC on neutrophil function, isolated neutrophils were co-cultured in the presence or absence of MSC at different ratios for 24 and 48 hours. The amount of nitric oxide released was used as an indication of oxidative burst and measured using the Griess assay. Result: The results indicate that MSC neither elevate the NO level when cocultured with resting neutrophils nor alone. However MSC profoundly inhibit the secretion of nitric oxide in PMA stimulated neutrophils after 24hr of incubation. Conclusion: MSC exert an immunomodulatory effect on neutrophil by suppressing neutrophil oxidative burst in vitro.
  14. Jose S, Tan SW, Ooi YY, Ramasamy R, Vidyadaran S
    J Neuroinflammation, 2014;11:149.
    PMID: 25182840 DOI: 10.1186/s12974-014-0149-8
    Progression of neurodegenerative diseases occurs when microglia, upon persistent activation, perpetuate a cycle of damage in the central nervous system. Use of mesenchymal stem cells (MSC) has been suggested as an approach to manage microglia activation based on their immunomodulatory functions. In the present study, we describe the mechanism through which bone marrow-derived MSC modulate the proliferative responses of lipopolysaccharide-stimulated BV2 microglia.
  15. Haw RT, Tong CK, Yew A, Lee HC, Phillips JB, Vidyadaran S
    J Neuroinflammation, 2014 Jul 30;11:134.
    PMID: 25074682 DOI: 10.1186/1742-2094-11-134
    BACKGROUND: We report a novel method of culturing microglia in three dimension (3D) using collagen as a substrate. By culturing microglia within a matrix, we aim to emulate the physical state of microglia embedded within parenchyma.

    METHODS: BV2 microglia cell suspensions were prepared with type I collagen and cast into culture plates. To characterise the BV2 microglia cultured in 3D, the cultures were evaluated for their viability, cell morphology and response to lipopolysaccharide (LPS) activation. Conventional monolayer cultures (grown on uncoated and collagen-coated polystyrene) were set up concurrently for comparison.

    RESULTS: BV2 microglia in 3D collagen matrices were viable at 48 hrs of culture and exhibit a ramified morphology with multiplanar cytoplasmic projections. Following stimulation with 1 μg/ml LPS, microglia cultured in 3D collagen gels increase their expression of nitric oxide (NO) and CD40, indicating their capacity to become activated within the matrix. Up to 97.8% of BV2 microglia grown in 3D cultures gained CD40 positivity in response to LPS, compared to approximately 60% of cells grown in a monolayer (P

  16. Kushairi N, Phan CW, Sabaratnam V, Vidyadaran S, Naidu M, David P
    Int J Med Mushrooms, 2020;22(12):1171-1181.
    PMID: 33463934 DOI: 10.1615/IntJMedMushrooms.2020036938
    Pleurotus eryngii (king oyster mushroom) is a renowned culinary mushroom with various medicinal properties that may be beneficial for health maintenance and disease prevention. However, its effect on the nervous system remains elusive. In this study, hot water (PE-HWA) and ethanol (PE-ETH) extracts of P. eryngii were investigated and compared for their neuroprotective, anti-inflammatory, and neurite outgrowth activities in vitro. Based on the results, both extracts up to 400 μg/mL were nontoxic to PC12 cells and BV2 microglia (p > 0.05). Treatment with 250 μM hydrogen peroxide (H2O2) markedly (p < 0.0001) reduced the PC12 cell viability to 67.74 ± 6.47%. Coincubation with 200 μg/mL and 400 μg/mL of PE-ETH dose-dependently increased the cell viability to 85.34 ± 1.91% (p < 0.001) and 98.37 ± 6.42% (p < 0.0001) respectively, while PE-HWA showed no activity. Nitric oxide (NO) released by BV2 microglia was notably (p < 0.0001) increased by 1 μg/mL lipopolysaccharides (LPS) from 7.46 ± 0.73 μM to 80.00 ± 3.78 μM indicating an inflammatory reaction. However, coincubation with 200 and 400 μg/mL of PE-ETH significantly (p < 0.0001) reduced the NO level to 58.57 ± 6.19 μM and 52.86 ± 3.43 μM respectively, while PE-HWA was noneffective. PE-ETH and PE-HWA at 40 μg/mL significantly increased the neurite-bearing cells from 4.70 ± 3.36% to 13.12 ± 2.82% (p < 0.01) and 20.93 ± 5.37% (p < 0.0001) respectively. Pleurotus eryngii, particularly the ethanol extract (PE-ETH) and its potentially bioactive compounds, could be explored as a neurohealth promoting agent, due to its collective neuroprotective, anti-inflammatory, and neurite outgrowth activities.
  17. Nallathamby N, Malek SNA, Vidyadaran S, Phan CW, Sabaratnam V
    Int J Med Mushrooms, 2020;22(12):1215-1223.
    PMID: 33463938 DOI: 10.1615/IntJMedMushrooms.2020037001
    Cordyceps militaris is known for its curative properties. The present study was undertaken to evaluate the reduction of nitric oxide production by BV2 cells by the bioactive fraction of stroma powder of C. militaris, and to deduce the potential chemical components and pathways that may be responsible. The CE2 fraction from ethyl acetate extract did not exert any cytotoxic effects toward the BV2 cells at concentrations 0.1 to 100 μg/mL. The CE2 fraction also showed a significant (p < 0.05) reduction in nitric oxide production at 1-100 μg/mL. At 10 μg/mL, the CE2 fraction attenuated 85% of the NO production in BV2 cells. Further, the CE2 fraction (10 μg/mL) downregulated inflammatory genes, iNOS and COX-2, and upregulated anti-inflammatory genes, HO-1 and NQO-1. The CE2 fraction reduced NO production via activation of NRF2 and NF-κB transcriptions. The chemical constituents of the bioactive CE2 fraction were identified via GCMS. Eleven lipid components were identified including fatty acids, fatty acid esters, and sterols.
  18. Seow SL, Naidu M, Sabaratnam V, Vidyadaran S, Wong KH
    Int J Med Mushrooms, 2017;19(5):405-418.
    PMID: 28845770 DOI: 10.1615/IntJMedMushrooms.v19.i5.30
    In Malaysia and China, the sclerotium of Lignosus rhinocerotis is used by local communities and traditional medicine practitioners as a general tonic and remedy to treat a variety of ailments, including inflammation-associated disorders. In this study, 10 samples from different preparations of L. rhinocerotis sclerotium, including a hot aqueous extract (HAE), an ethanol extract (EE), fractions from the HAE and EE, and crude polysaccharides, were tested for their in vitro cytotoxic and nitric oxide (NO) inhibitory activities in lipopolysaccharide (LPS)--stimulated BV2 microglia. Of the 10 samples tested, HAE was the least cytotoxic toward BV2 microglia, with a half-maximal inhibitory concentration of 176.23 ± 2.64 mg/mL at 24 hours of incubation and 20.01 ± 1.69 mg/ mL at 48 hours of incubation. The inhibition of NO production was explored by pretreatment of BV2 microglia with samples at 2 incubation time points (4 and 24 hours) before the stimulation by LPS for 24 hours. After 24 hours of pretreatment, 8 of the 10 samples inhibited NO production by 50% or more, and cytotoxic effects were not observed. Among the 8 active samples, 500 µg/mL of HAE, 250 µg/mL of an n-butanol fraction of the HAE, and 250 µg/mL of an ethyl acetate fraction of HAE showed maximum inhibition of NO production by 88.95%, 86.50%, and 85.93%, respectively. These results suggest that the L. rhinocerotis sclerotium may contain secondary metabolites that have the potential to inhibit NO production.
  19. Rati Selvaraju T, Khaza'ai H, Vidyadaran S, Sokhini Abd Mutalib M, Ramachandran V, Hamdan Y
    Int J Vitam Nutr Res, 2014;84(3-4):140-51.
    PMID: 26098478 DOI: 10.1024/0300-9831/a000201
    Glutamate is the major mediator of excitatory signals in the mammalian central nervous system. Extreme amounts of glutamate in the extracellular spaces can lead to numerous neurodegenerative diseases. We aimed to clarify the potential of the following vitamin E isomers, tocotrienol-rich fraction (TRF) and α-tocopherol (α-TCP), as potent neuroprotective agents against glutamate-induced injury in neuronal SK-N-SH cells. Cells were treated before and after glutamate injury (pre- and post-treatment, respectively) with 100-300 ng/ml TRF/α-TCP. Exposure to 120 mM glutamate significantly reduced cell viability to 76% and 79% in the pre- and post-treatment studies, respectively; however, pre- and post-treatment with TRF/α-TCP attenuated the cytotoxic effect of glutamate. Compared to the positive control (glutamate-injured cells not treated with TRF/α-TCP), pre-treatment with 100, 200, and 300 ng/ml TRF significantly improved cell viability following glutamate injury to 95.2%, 95.0%, and 95.6%, respectively (p<0.05).The isomers not only conferred neuroprotection by enhancing mitochondrial activity and depleting free radical production, but also increased cell viability and recovery upon glutamate insult. Our results suggest that vitamin E has potent antioxidant potential for protecting against glutamate injury and recovering glutamate-injured neuronal cells. Our findings also indicate that both TRF and α-TCP could play key roles as anti-apoptotic agents with neuroprotective properties.
  20. Chow YL, Lee KH, Vidyadaran S, Lajis NH, Akhtar MN, Israf DA, et al.
    Int Immunopharmacol, 2012 Apr;12(4):657-65.
    PMID: 22306767 DOI: 10.1016/j.intimp.2012.01.009
    The increasing prevalence of neurodegenerative diseases has prompted investigation into innovative therapeutics over the last two decades. Non-steroidal anti-inflammatory drugs (NSAIDs) are among the therapeutic choices to control and suppress the symptoms of neurodegenerative diseases. However, NSAIDs-associated gastropathy has hampered their long term usage despite their clinical advancement. On the natural end of the treatment spectrum, our group has shown that cardamonin (2',4'-dihydroxy-6'-methoxychalcone) isolated from Alpinia rafflesiana exerts potential anti-inflammatory activity in activated macrophages. Therefore, we further explored the anti-inflammatory property of cardamonin as well as its underlying mechanism of action in IFN-γ/LPS-stimulated microglial cells. In this investigation, cardamonin shows promising anti-inflammatory activity in microglial cell line BV2 by inhibiting the secretion of pro-inflammatory mediators including nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). The inhibition of NO and PGE(2) by cardamonin are resulted from the reduced expression of inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2), respectively. Meanwhile the suppressive effects of cardamonin on TNF-α, IL-1β and IL-6 were demonstrated at both protein and mRNA levels, thus indicating the interference of upstream signal transduction pathway. Our results also validate that cardamonin interrupts nuclear factor-kappa B (NF-κB) signalling pathway via attenuation of NF-κB DNA binding activity. Interestingly, cardamonin also showed a consistent suppressive effect on the cell surface expression of CD14. Taken together, our experimental data provide mechanistic insights for the anti-inflammatory actions of cardamonin in BV2 and thus suggest a possible therapeutic application of cardamonin for targeting neuroinflammatory disorders.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links