Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Yip CH, Yarkoni O, Ajioka J, Wan KL, Nathan S
    Appl Microbiol Biotechnol, 2019 Feb;103(4):1667-1680.
    PMID: 30637495 DOI: 10.1007/s00253-018-09611-z
    Prodigiosin, a red linear tripyrrole pigment and a member of the prodiginine family, is normally secreted by the human pathogen Serratia marcescens as a secondary metabolite. Studies on prodigiosin have received renewed attention as a result of reported immunosuppressive, antimicrobial and anticancer properties. High-level synthesis of prodigiosin and the bioengineering of strains to synthesise useful prodiginine derivatives have also been a subject of investigation. To exploit the potential use of prodigiosin as a clinical drug targeting bacteria or as a dye for textiles, high-level synthesis of prodigiosin is a prerequisite. This review presents an overview on the biosynthesis of prodigiosin from its natural host Serratia marcescens and through recombinant approaches as well as highlighting the beneficial properties of prodigiosin. We also discuss the prospect of adopting a synthetic biology approach for safe and cost-effective production of prodigiosin in a more industrially compliant surrogate host.
  2. Yip CH, Mahalingam S, Wan KL, Nathan S
    PLoS One, 2021;16(6):e0253445.
    PMID: 34161391 DOI: 10.1371/journal.pone.0253445
    Prodigiosin, a red linear tripyrrole pigment, has long been recognised for its antimicrobial property. However, the physiological contribution of prodigiosin to the survival of its producing hosts still remains undefined. Hence, the aim of this study was to investigate the biological role of prodigiosin from Serratia marcescens, particularly in microbial competition through its antimicrobial activity, towards the growth and secreted virulence factors of four clinical pathogenic bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa) as well as Staphylococcus aureus and Escherichia coli. Prodigiosin was first extracted from S. marcescens and its purity confirmed by absorption spectrum, high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrophotometry (LC-MS/MS). The extracted prodigiosin was antagonistic towards all the tested bacteria. A disc-diffusion assay showed that prodigiosin is more selective towards Gram-positive bacteria and inhibited the growth of MRSA, S. aureus and E. faecalis and Gram-negative E. coli. A minimum inhibitory concentration of 10 μg/μL of prodigiosin was required to inhibit the growth of S. aureus, E. coli and E. faecalis whereas > 10 μg/μL was required to inhibit MRSA growth. We further assessed the effect of prodigiosin towards bacterial virulence factors such as haemolysin and production of protease as well as on biofilm formation. Prodigiosin did not inhibit haemolysis activity of clinically associated bacteria but was able to reduce protease activity for MRSA, E. coli and E. faecalis as well as decrease E. faecalis, Salmonella Typhimurium and E. coli biofilm formation. Results of this study show that in addition to its role in inhibiting bacterial growth, prodigiosin also inhibits the bacterial virulence factor protease production and biofilm formation, two strategies employed by bacteria in response to microbial competition. As clinical pathogens were more resistant to prodigiosin, we propose that prodigiosin is physiologically important for S. marcescens to compete against other bacteria in its natural soil and surface water environments.
  3. Wan KL, Chang TL, Ajioka JW
    J. Biochem. Mol. Biol., 2004 Jul 31;37(4):474-9.
    PMID: 15469736
    The expressed sequence tag (EST) effort in Toxoplasma gondii has generated a substantial amount of gene information. To exploit this valuable resource, we chose to study tgd057, a novel gene identified by a large number of ESTs that otherwise show no significant match to known sequences in the database. Northern analysis showed that tgd057 is transcribed in this tachyzoite. The complete cDNA sequence of tgd057 is 1169 bp in length. Sequence analysis revealed that tgd057 possibly adopts two polyadenylation sites, utilizes the fourth in-frame ATG for translation initiation, and codes for a secretory protein. The longest open reading frame for the tgd057 gene was cloned and expressed as a recombinant protein (rd57) in Escherichia coli. Western analysis revealed that serum against rd57 recognized a molecule of ~21 kDa in the tachyzoite protein extract. This suggests that the tgd057 gene is expressed in vivo in the parasite.
  4. Wan KL, Chong SP, Ng ST, Shirley MW, Tomley FM, Jangi MS
    Int J Parasitol, 1999 Dec;29(12):1885-92.
    PMID: 10961844
    A study of about 500 expressed sequence tags (ESTs), derived from a merozoite cDNA library, was initiated as an approach to generate a larger pool of gene information on Eimeria tenella. Of the ESTs, 47.7% had matches with entries in the databases, including ribosomal proteins, metabolic enzymes and proteins with other functions, of which 14.3% represented previously known E. tenella genes. Thus over 50% of the ESTs had no significant database matches. The E. tenella EST dataset contained a range of highly abundant genes comparable with that found in the EST dataset of T. gondii and may thus reflect the importance of such molecules in the biology of the apicomplexan organisms. However, comparison of the two datasets revealed very few homologies between sequences of apical organelle molecules, and provides evidence for sequence divergence between these closely-related parasites. The data presented underpin the potential value of the EST strategy for the discovery of novel genes and may allow for a more rapid increase in the knowledge and understanding of gene expression in the merozoite life cycle stage of Eimeria spp.
  5. Wan KL, Azlan MS, Syed-Azmi AS, Lattish R, Faisham WI
    Malays Orthop J, 2021 Nov;15(3):143-146.
    PMID: 34966511 DOI: 10.5704/MOJ.2111.024
    The management of a patient with traumatic hemipelvectomy is complex. We report the acute management and rehabilitation of a 21-year-old patient as well as her prosthesis modification. She was able to return to society as a K3 level ambulator.
  6. Wan KL, Shanmugam R, Lee KY, Saw A
    J Child Orthop, 2016 Oct;10(5):387-94.
    PMID: 27614766 DOI: 10.1007/s11832-016-0770-4
    The current technique of hip spica application is mostly based on a publication by Kumar (J Pediatr Orthop 1(1):97-99, 1981). We modified the technique of hip spica application in order to reduce the rate of breakage across the hip joint and designed this study to compare the strength between hip spica applied according to Kumar's technique and the new technique.
  7. Thuraikumar K, Wan KL, Ong KL, Lim SW
    Malays Orthop J, 2020 Jul;14(2):141-144.
    PMID: 32983391 DOI: 10.5704/MOJ.2007.024
    Gouty arthritis commonly affects peripheral joints and is associated with hyperuricaemia. Spinal manifestations of gouty arthritis are not common, and majority of published articles worldwide were case reports. This is a case report of spinal gouty arthritis that presented with spinal vertebrae destruction and cauda equina syndrome. The magnetic resonance imaging (MRI) showed destruction of L5/S1end plates with cystic collection mimicking infective changes. The tissue histological examination confirmed presence of urate crystal needles that displayed negative double refraction on light microscopy. Spinal gouty arthritis is part of the differential diagnoses in gouty arthritis patients.
  8. Tan SL, Mohd-Adnan A, Mohd-Yusof NY, Forstner MR, Wan KL
    Gene, 2008 Mar 31;411(1-2):77-86.
    PMID: 18280674 DOI: 10.1016/j.gene.2008.01.008
    Using a novel library of 5637 expressed sequence tags (ESTs) from the brain tissue of the Asian seabass (Lates calcarifer), we first characterized the brain transcriptome for this economically important species. The ESTs generated from the brain of L. calcarifer yielded 2410 unique transcripts (UTs) which comprise of 982 consensi and 1428 singletons. Based on database similarity, 1005 UTs (41.7%) can be assigned putative functions and were grouped into 12 functional categories related to the brain function. Amongst others, we have identified genes that are putatively involved in energy metabolism, ion pumps and channels, synapse related genes, neurotransmitter and its receptors, stress induced genes and hormone related genes. Subsequently we selected a putative preprocGnRH-II precursor for further characterization. The complete cDNA sequence of the gene obtained was found to code for an 85-amino acid polypeptide that significantly matched preprocGnRH-II precursor sequences from other vertebrates, and possesses structural characteristics that are similar to that of other species, consisting of a signal peptide (23 residues), a GnRH decapeptide (10 residues), an amidation/proteolytic-processing signal (glycine-lysine-argine) and a GnRH associated peptide (GAP) (49 residues). Phylogenetic analysis showed that this putative L. calcarifer preprocGnRH-II sequence is a member of the subcohort Euteleostei and divergent from the sequences of the subcohort Otocephalan. These findings provide compelling evidence that the putative L. calcarifer preprocGnRH-II precursor obtained in this study is orthologous to that of other vertebrates. The functional prediction of this preprocGnRH-II precursor sequence through in silico analyses emphasizes the effectiveness of the EST approach in gene identification in L. calcarifer.
  9. Su YC, Wan KL, Mohamed R, Nathan S
    Vaccine, 2010 Jul 12;28(31):5005-11.
    PMID: 20546831 DOI: 10.1016/j.vaccine.2010.05.022
    Burkholderia pseudomallei is resistant to a wide range of antibiotics, leading to relapse and recrudescence of melioidosis after cessation of antibiotic therapy. More effective immunotherapies are needed for better management of melioidosis. We evaluated the prophylactic potential of the immunogenic outer membrane protein Omp85 as a vaccine against murine melioidosis. Immunization of BALB/c mice with recombinant Omp85 (rOmp85) triggered a Th2-type immune response. Up to 70% of the immunized animals were protected against infectious challenge of B. pseudomallei with reduced bacterial load in extrapulmonary organs. Mouse anti-rOmp85 promoted complement-mediated killing and opsonophagocytosis of B. pseudomallei by human polymorphonuclear cells. In conclusion, we demonstrated that B. pseudomallei Omp85 is potentially able to induce protective immunity against melioidosis.
  10. Su YC, Wan KL, Mohamed R, Nathan S
    Microbes Infect., 2008 Oct;10(12-13):1335-45.
    PMID: 18761419 DOI: 10.1016/j.micinf.2008.07.034
    Burkholderia pseudomallei is the etiological agent of melioidosis, a severe infectious disease of humans and animals. The role of the bacterium's proteins expressed in vivo during human melioidosis continues to remain an enigma. This study's aim was to identify B. pseudomallei target proteins that elicit the humoral immune response in infected humans. A small insert genomic expression library was constructed and immunoscreened to identify peptides that reacted exclusively with melioidosis patients' sera. Sero-positive clones expressing immunogenic peptides were sequenced and annotated, and shown to represent 109 proteins involved in bacterial cell envelope biogenesis, cell motility and secretion, transcription, amino acid, ion and protein metabolism, energy production, DNA repair and unknown hypothetical proteins. Western blot analysis of three randomly selected full-length immunogenic polypeptides with patients' sera verified the findings of the immunome screening. The patients' humoral immune response to the 109 proteins suggests the induction or significant upregulation of these proteins in vivo during human infection and thus may play a role in the pathogenesis of B. pseudomallei. Identification of B. pseudomallei immunogens has shed new light on the elucidation of the bacterium's pathogenesis mechanism and disease severity. These immunogens can be further evaluated as prophylactic and serodiagnostic candidates as well as drug targets.
  11. Song BK, Pan MZ, Lau YL, Wan KL
    Genet. Mol. Res., 2014;13(3):5803-14.
    PMID: 25117339 DOI: 10.4238/2014.July.29.8
    Commercial flocks infected by Eimeria species parasites, including Eimeria maxima, have an increased risk of developing clinical or subclinical coccidiosis; an intestinal enteritis associated with increased mortality rates in poultry. Currently, infection control is largely based on chemotherapy or live vaccines; however, drug resistance is common and vaccines are relatively expensive. The development of new cost-effective intervention measures will benefit from unraveling the complex genetic mechanisms that underlie host-parasite interactions, including the identification and characterization of genes encoding proteins such as phosphatidylinositol 4-phosphate 5-kinase (PIP5K). We previously identified a PIP5K coding sequence within the E. maxima genome. In this study, we analyzed two bacterial artificial chromosome clones presenting a ~145-kb E. maxima (Weybridge strain) genomic region spanning the PIP5K gene locus. Sequence analysis revealed that ~95% of the simple sequence repeats detected were located within regions comparable to the previously described feature-rich segments of the Eimeria tenella genome. Comparative sequence analysis with the orthologous E. maxima (Houghton strain) region revealed a moderate level of conserved synteny. Unique segmental organizations and telomere-like repeats were also observed in both genomes. A number of incomplete transposable elements were detected and further scrutiny of these elements in both orthologous segments revealed interesting nesting events, which may play a role in facilitating genome plasticity in E. maxima. The current analysis provides more detailed information about the genome organization of E. maxima and may help to reveal genotypic differences that are important for expression of traits related to pathogenicity and virulence.
  12. Siti-Futri FF, Rosilawati R, Wan KL, Cheong YL, Nazni WA, Lee HL
    Trop Biomed, 2020 Mar 01;37(1):201-209.
    PMID: 33612731
    The continued absence of an effective and safe tetravalent dengue vaccine and the lack of specific anti-viral treatment have made mosquito vector control using chemical insecticides as the mainstream for dengue prevention and control. However, the long-term use of chemical insecticides may induce resistance. Hence detection of insecticide resistance in dengue vectors is crucially important in ensuring the insecticide-based intervention in dengue control program is still effective and reliable. In this study, the susceptibility status of Aedes aegypti from five selected dengue hotspots in Klang Valley, Malaysia against pyrethroids was determined by employing the World Health Organization (WHO) protocol of adult bioassay. Four types of pyrethroids were tested against adult female Aedes aegypti to determine the knockdown rate, post 24-h adult mortality and resistance ratio. All field-collected Aedes aegypti strains were resistant to the four pyrethroids tested, except for the Taman Sungai Jelok (TSJ) strain. Permethrin exhibited the lowest knockdown rate against Aedes aegypti, followed by deltamethrin, cyfluthrin and lambda-cyhalothrin. This present study indicated the widespread of pyrethroid resistance in Aedes aegypti in Klang Valley, indicating the needs of implementing alternative measures in vector control program. The data in this study can be utilised as an input for insecticide resistance management of Aedes aegypti in Malaysia.
  13. Runtuwene LR, Sathirapongsasuti N, Srisawat R, Komalamisra N, Tuda JSB, Mongan AE, et al.
    BMC Res Notes, 2022 Feb 12;15(1):44.
    PMID: 35151353 DOI: 10.1186/s13104-022-05927-2
    OBJECTIVE: To disseminate the portable sequencer MinION in developing countries for the main purpose of battling infectious diseases, we found a consortium called Global Research Alliance in Infectious Diseases (GRAID). By holding and inviting researchers both from developed and developing countries, we aim to train the participants with MinION's operations and foster a collaboration in infectious diseases researches. As a real-life example in which resources are limited, we describe here a result from a training course, a metagenomics analysis from two blood samples collected from a routine cattle surveillance in Kulan Progo District, Yogyakarta Province, Indonesia in 2019.

    RESULTS: One of the samples was successfully sequenced with enough sequencing yield for further analysis. After depleting the reads mapped to host DNA, the remaining reads were shown to map to Theileria orientalis using BLAST and OneCodex. Although the reads were also mapped to Clostridium botulinum, those were found to be artifacts derived from the cow genome. An effort to construct a consensus sequence was successful using a reference-based approach with Pomoxis. Hence, we concluded that the asymptomatic cow might be infected with T. orientalis and showed the usefulness of sequencing technology, specifically the MinION platform, in a developing country.

  14. Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant J, et al.
    Genome Res, 2014 Oct;24(10):1676-85.
    PMID: 25015382 DOI: 10.1101/gr.168955.113
    Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.
  15. Ramly NZ, Dix SR, Ruzheinikov SN, Sedelnikova SE, Baker PJ, Chow YP, et al.
    Commun Biol, 2021 03 19;4(1):376.
    PMID: 33742128 DOI: 10.1038/s42003-021-01904-w
    In infections by apicomplexan parasites including Plasmodium, Toxoplasma gondii, and Eimeria, host interactions are mediated by proteins including families of membrane-anchored cysteine-rich surface antigens (SAGs) and SAG-related sequences (SRS). Eimeria tenella causes caecal coccidiosis in chickens and has a SAG family with over 80 members making up 1% of the proteome. We have solved the structure of a representative E. tenella SAG, EtSAG19, revealing that, despite a low level of sequence similarity, the entire Eimeria SAG family is unified by its three-layer αβα fold which is related to that of the CAP superfamily. Furthermore, sequence comparisons show that the Eimeria SAG fold is conserved in surface antigens of the human coccidial parasite Cyclospora cayetanensis but this fold is unrelated to that of the SAGs/SRS proteins expressed in other apicomplexans including Plasmodium species and the cyst-forming coccidia Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. However, despite having very different structures, Consurf analysis showed that Eimeria SAG and Toxoplasma SRS families each exhibit marked hotspots of sequence hypervariability that map to their surfaces distal to the membrane anchor. This suggests that the primary and convergent purpose of the different structures is to provide a platform onto which sequence variability can be imposed.
  16. Ng ST, Sanusi Jangi M, Shirley MW, Tomley FM, Wan KL
    Exp Parasitol, 2002 11 13;101(2-3):168-73.
    PMID: 12427472
    The protozoan parasite Eimeria tenella has a complex life cycle that includes two major asexual developmental stages, the merozoite and the sporozoite. The expressed sequence tag (EST) approach has been previously used to study gene expression of merozoites. We report here the generation and analysis of 556 ESTs from sporozoites. Comparative analyses of the two datasets reveal a number of transcripts that are preferentially expressed in a specific stage, including previously uncharacterised sequences. The data presented indicate the invaluable potential of the comparative EST analysis for providing information on gene expression patterns in the different developmental stages of E. tenella.
  17. Ng SM, Lee XW, Mat-Isa MN, Aizat-Juhari MA, Adam JH, Mohamed R, et al.
    Sci Rep, 2018 Nov 22;8(1):17258.
    PMID: 30467394 DOI: 10.1038/s41598-018-35173-1
    Parasitic plants are known to discard photosynthesis thus leading to the deletion or loss of the plastid genes. Despite plastid genome reduction in non-photosynthetic plants, some nucleus-encoded proteins are transported back to the plastid to carry out specific functions. In this work, we study such proteins in Rafflesia cantleyi, a member of the holoparasitic genus well-known for producing the largest single flower in the world. Our analyses of three transcriptome datasets, two holoparasites (R. cantleyi and Phelipanche aegyptiaca) and one photosynthetic plant (Arabidopsis thaliana), suggest that holoparasites, such as R. cantleyi, retain some common plastid associated processes such as biosynthesis of amino acids and lipids, but are missing photosynthesis components that can be extensions of these pathways. The reconstruction of two selected biosynthetic pathways involving plastids correlates the trend of plastid retention to pathway complexity - transcriptome evidence for R. cantleyi suggests alternate mechanisms in regulating the plastidial heme and terpenoid backbone biosynthesis pathways. The evolution to holoparasitism from autotrophy trends towards devolving the plastid genes to the nuclear genome despite the functional sites remaining in the plastid, or maintaining non-photosynthetic processes in the plastid, before the eventual loss of the plastid and any site dependent functions.
  18. Mursyidah AK, Hafizzudin-Fedeli M, Nor Muhammad NA, Latiff A, Firdaus-Raih M, Wan KL
    Plant Cell Physiol, 2023 Apr 17;64(4):368-377.
    PMID: 36611267 DOI: 10.1093/pcp/pcad004
    The angiosperm Rafflesia exhibits a unique biology, including a growth strategy that involves endophytic parasitism of a specific host, with only the gigantic flower externally visible. The Rafflesia possesses many unique evolutionary, developmental and morphological features that are rooted in yet-to-be-explained physiological processes. Although studies on the molecular biology of Rafflesia are limited by sampling difficulties due to its rarity in the wild and the short life span of its flower, current advances in high-throughput sequencing technology have allowed for the genome- and transcriptome-level dissection of the molecular mechanisms behind the unique characteristics of this parasitic plant. In this review, we summarize major findings on the cryptic biology of Rafflesia and provide insights into future research directions. The wealth of data obtained can improve our understanding of Rafflesia species and contribute toward the conservation strategy of this endangered plant.
  19. Mohd-Yusof NY, Monroig O, Mohd-Adnan A, Wan KL, Tocher DR
    Fish Physiol Biochem, 2010 Dec;36(4):827-43.
    PMID: 20532815 DOI: 10.1007/s10695-010-9409-4
    Lates calcarifer, commonly known as the Asian sea bass or barramundi, is an interesting species that has great aquaculture potential in Asia including Malaysia and also Australia. We have investigated essential fatty acid metabolism in this species, focusing on the endogenous highly unsaturated fatty acid (HUFA) synthesis pathway using both biochemical and molecular biological approaches. Fatty acyl desaturase (Fad) and elongase (Elovl) cDNAs were cloned and functional characterization identified them as ∆6 Fad and Elovl5 elongase enzymes, respectively. The ∆6 Fad was equally active toward 18:3n-3 and 18:2n-6, and Elovl5 exhibited elongation activity for C18-20 and C20-22 elongation and a trace of C22-24 activity. The tissue profile of gene expression for ∆6 fad and elovl5 genes, showed brain to have the highest expression of both genes compared to all other tissues. The results of tissue fatty acid analysis showed that the brain contained more docosahexaenoic acid (DHA, 22:6n-3) than flesh, liver and intestine. The HUFA synthesis activity in isolated hepatocytes and enterocytes using [1-(14)C]18:3n-3 as substrate was very low with the only desaturated product detected being 18:4n-3. These findings indicate that L. calcarifer display an essential fatty acid pattern similar to other marine fish in that they appear unable to synthesize HUFA from C18 substrates. High expression of ∆6 fad and elovl5 genes in brain may indicate a role for these enzymes in maintaining high DHA levels in neural tissues through conversion of 20:5n-3.
  20. Mohd-Elias NA, Rosli K, Alias H, Juhari MA, Abu-Bakar MF, Md-Isa N, et al.
    Sci Rep, 2021 Dec 08;11(1):23661.
    PMID: 34880337 DOI: 10.1038/s41598-021-03028-x
    Rafflesia is a unique plant species existing as a single flower and produces the largest flower in the world. While Rafflesia buds take up to 21 months to develop, its flowers bloom and wither within about a week. In this study, transcriptome analysis was carried out to shed light on the molecular mechanism of senescence in Rafflesia. A total of 53.3 million high quality reads were obtained from two Rafflesia cantleyi flower developmental stages and assembled to generate 64,152 unigenes. Analysis of this dataset showed that 5,166 unigenes were differentially expressed, in which 1,073 unigenes were identified as genes involved in flower senescence. Results revealed that as the flowers progress to senescence, more genes related to flower senescence were significantly over-represented compared to those related to plant growth and development. Senescence of the R. cantleyi flower activates senescence-associated genes in the transcription activity (members of the transcription factor families MYB, bHLH, NAC, and WRKY), nutrient remobilization (autophagy-related protein and transporter genes), and redox regulation (CATALASE). Most of the senescence-related genes were found to be differentially regulated, perhaps for the fine-tuning of various responses in the senescing R. cantleyi flower. Additionally, pathway analysis showed the activation of genes such as ETHYLENE RECEPTOR, ETHYLENE-INSENSITIVE 2, ETHYLENE-INSENSITIVE 3, and ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR, indicating the possible involvement of the ethylene hormone response pathway in the regulation of R. cantleyi senescence. Our results provide a model of the molecular mechanism underlying R. cantleyi flower senescence, and contribute essential information towards further understanding the biology of the Rafflesiaceae family.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links