Displaying publications 1 - 20 of 91 in total

Abstract:
Sort:
  1. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  2. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  3. Botto F, Alonso-Coello P, Chan MT, Villar JC, Xavier D, Srinathan S, et al.
    Anesthesiology, 2014 Mar;120(3):564-78.
    PMID: 24534856 DOI: 10.1097/ALN.0000000000000113
    BACKGROUND: Myocardial injury after noncardiac surgery (MINS) was defined as prognostically relevant myocardial injury due to ischemia that occurs during or within 30 days after noncardiac surgery. The study's four objectives were to determine the diagnostic criteria, characteristics, predictors, and 30-day outcomes of MINS.

    METHODS: In this international, prospective cohort study of 15,065 patients aged 45 yr or older who underwent in-patient noncardiac surgery, troponin T was measured during the first 3 postoperative days. Patients with a troponin T level of 0.04 ng/ml or greater (elevated "abnormal" laboratory threshold) were assessed for ischemic features (i.e., ischemic symptoms and electrocardiography findings). Patients adjudicated as having a nonischemic troponin elevation (e.g., sepsis) were excluded. To establish diagnostic criteria for MINS, the authors used Cox regression analyses in which the dependent variable was 30-day mortality (260 deaths) and independent variables included preoperative variables, perioperative complications, and potential MINS diagnostic criteria.

    RESULTS: An elevated troponin after noncardiac surgery, irrespective of the presence of an ischemic feature, independently predicted 30-day mortality. Therefore, the authors' diagnostic criterion for MINS was a peak troponin T level of 0.03 ng/ml or greater judged due to myocardial ischemia. MINS was an independent predictor of 30-day mortality (adjusted hazard ratio, 3.87; 95% CI, 2.96-5.08) and had the highest population-attributable risk (34.0%, 95% CI, 26.6-41.5) of the perioperative complications. Twelve hundred patients (8.0%) suffered MINS, and 58.2% of these patients would not have fulfilled the universal definition of myocardial infarction. Only 15.8% of patients with MINS experienced an ischemic symptom.

    CONCLUSION: Among adults undergoing noncardiac surgery, MINS is common and associated with substantial mortality.

  4. de Leon J, Schoretsanitis G, Smith RL, Molden E, Solismaa A, Seppälä N, et al.
    Pharmacopsychiatry, 2021 Dec 15.
    PMID: 34911124 DOI: 10.1055/a-1625-6388
    This international guideline proposes improving clozapine package inserts worldwide by using ancestry-based dosing and titration. Adverse drug reaction (ADR) databases suggest that clozapine is the third most toxic drug in the United States (US), and it produces four times higher worldwide pneumonia mortality than that by agranulocytosis or myocarditis. For trough steady-state clozapine serum concentrations, the therapeutic reference range is narrow, from 350 to 600 ng/mL with the potential for toxicity and ADRs as concentrations increase. Clozapine is mainly metabolized by CYP1A2 (female non-smokers, the lowest dose; male smokers, the highest dose). Poor metabolizer status through phenotypic conversion is associated with co-prescription of inhibitors (including oral contraceptives and valproate), obesity, or inflammation with C-reactive protein (CRP) elevations. The Asian population (Pakistan to Japan) or the Americas' original inhabitants have lower CYP1A2 activity and require lower clozapine doses to reach concentrations of 350 ng/mL. In the US, daily doses of 300-600 mg/day are recommended. Slow personalized titration may prevent early ADRs (including syncope, myocarditis, and pneumonia). This guideline defines six personalized titration schedules for inpatients: 1) ancestry from Asia or the original people from the Americas with lower metabolism (obesity or valproate) needing minimum therapeutic dosages of 75-150 mg/day, 2) ancestry from Asia or the original people from the Americas with average metabolism needing 175-300 mg/day, 3) European/Western Asian ancestry with lower metabolism (obesity or valproate) needing 100-200 mg/day, 4) European/Western Asian ancestry with average metabolism needing 250-400 mg/day, 5) in the US with ancestries other than from Asia or the original people from the Americas with lower clozapine metabolism (obesity or valproate) needing 150-300 mg/day, and 6) in the US with ancestries other than from Asia or the original people from the Americas with average clozapine metabolism needing 300-600 mg/day. Baseline and weekly CRP monitoring for at least four weeks is required to identify any inflammation, including inflammation secondary to clozapine rapid titration.
  5. Marcucci M, Painter TW, Conen D, Leslie K, Lomivorotov VV, Sessler D, et al.
    Trials, 2022 Jan 31;23(1):101.
    PMID: 35101083 DOI: 10.1186/s13063-021-05992-1
    BACKGROUND: For patients undergoing noncardiac surgery, bleeding and hypotension are frequent and associated with increased mortality and cardiovascular complications. Tranexamic acid (TXA) is an antifibrinolytic agent with the potential to reduce surgical bleeding; however, there is uncertainty about its efficacy and safety in noncardiac surgery. Although usual perioperative care is commonly consistent with a hypertension-avoidance strategy (i.e., most patients continue their antihypertensive medications throughout the perioperative period and intraoperative mean arterial pressures of 60 mmHg are commonly accepted), a hypotension-avoidance strategy may improve perioperative outcomes.

    METHODS: The PeriOperative Ischemic Evaluation (POISE)-3 Trial is a large international randomized controlled trial designed to determine if TXA is superior to placebo for the composite outcome of life-threatening, major, and critical organ bleeding, and non-inferior to placebo for the occurrence of major arterial and venous thrombotic events, at 30 days after randomization. Using a partial factorial design, POISE-3 will additionally determine the effect of a hypotension-avoidance strategy versus a hypertension-avoidance strategy on the risk of major cardiovascular events, at 30 days after randomization. The target sample size is 10,000 participants. Patients ≥45 years of age undergoing noncardiac surgery, with or at risk of cardiovascular and bleeding complications, are randomized to receive a TXA 1 g intravenous bolus or matching placebo at the start and at the end of surgery. Patients, health care providers, data collectors, outcome adjudicators, and investigators are blinded to the treatment allocation. Patients on ≥ 1 chronic antihypertensive medication are also randomized to either of the two blood pressure management strategies, which differ in the management of patient antihypertensive medications on the morning of surgery and on the first 2 days after surgery, and in the target mean arterial pressure during surgery. Outcome adjudicators are blinded to the blood pressure treatment allocation. Patients are followed up at 30 days and 1 year after randomization.

    DISCUSSION: Bleeding and hypotension in noncardiac surgery are common and have a substantial impact on patient prognosis. The POISE-3 trial will evaluate two interventions to determine their impact on bleeding, cardiovascular complications, and mortality.

    TRIAL REGISTRATION: ClinicalTrials.gov NCT03505723. Registered on 23 April 2018.

  6. Devereaux PJ, Marcucci M, Painter TW, Conen D, Lomivorotov V, Sessler DI, et al.
    N Engl J Med, 2022 May 26;386(21):1986-1997.
    PMID: 35363452 DOI: 10.1056/NEJMoa2201171
    BACKGROUND: Perioperative bleeding is common in patients undergoing noncardiac surgery. Tranexamic acid is an antifibrinolytic drug that may safely decrease such bleeding.

    METHODS: We conducted a trial involving patients undergoing noncardiac surgery. Patients were randomly assigned to receive tranexamic acid (1-g intravenous bolus) or placebo at the start and end of surgery (reported here) and, with the use of a partial factorial design, a hypotension-avoidance or hypertension-avoidance strategy (not reported here). The primary efficacy outcome was life-threatening bleeding, major bleeding, or bleeding into a critical organ (composite bleeding outcome) at 30 days. The primary safety outcome was myocardial injury after noncardiac surgery, nonhemorrhagic stroke, peripheral arterial thrombosis, or symptomatic proximal venous thromboembolism (composite cardiovascular outcome) at 30 days. To establish the noninferiority of tranexamic acid to placebo for the composite cardiovascular outcome, the upper boundary of the one-sided 97.5% confidence interval for the hazard ratio had to be below 1.125, and the one-sided P value had to be less than 0.025.

    RESULTS: A total of 9535 patients underwent randomization. A composite bleeding outcome event occurred in 433 of 4757 patients (9.1%) in the tranexamic acid group and in 561 of 4778 patients (11.7%) in the placebo group (hazard ratio, 0.76; 95% confidence interval [CI], 0.67 to 0.87; absolute difference, -2.6 percentage points; 95% CI, -3.8 to -1.4; two-sided P<0.001 for superiority). A composite cardiovascular outcome event occurred in 649 of 4581 patients (14.2%) in the tranexamic acid group and in 639 of 4601 patients (13.9%) in the placebo group (hazard ratio, 1.02; 95% CI, 0.92 to 1.14; upper boundary of the one-sided 97.5% CI, 1.14; absolute difference, 0.3 percentage points; 95% CI, -1.1 to 1.7; one-sided P = 0.04 for noninferiority).

    CONCLUSIONS: Among patients undergoing noncardiac surgery, the incidence of the composite bleeding outcome was significantly lower with tranexamic acid than with placebo. Although the between-group difference in the composite cardiovascular outcome was small, the noninferiority of tranexamic acid was not established. (Funded by the Canadian Institutes of Health Research and others; POISE-3 ClinicalTrials.gov number, NCT03505723.).

  7. Marcucci M, Painter TW, Conen D, Lomivorotov V, Sessler DI, Chan MTV, et al.
    Ann Intern Med, 2023 May;176(5):605-614.
    PMID: 37094336 DOI: 10.7326/M22-3157
    BACKGROUND: Among patients having noncardiac surgery, perioperative hemodynamic abnormalities are associated with vascular complications. Uncertainty remains about what intraoperative blood pressure to target and how to manage long-term antihypertensive medications perioperatively.

    OBJECTIVE: To compare the effects of a hypotension-avoidance and a hypertension-avoidance strategy on major vascular complications after noncardiac surgery.

    DESIGN: Partial factorial randomized trial of 2 perioperative blood pressure management strategies (reported here) and tranexamic acid versus placebo. (ClinicalTrials.gov: NCT03505723).

    SETTING: 110 hospitals in 22 countries.

    PATIENTS: 7490 patients having noncardiac surgery who were at risk for vascular complications and were receiving 1 or more long-term antihypertensive medications.

    INTERVENTION: In the hypotension-avoidance strategy group, the intraoperative mean arterial pressure target was 80 mm Hg or greater; before and for 2 days after surgery, renin-angiotensin-aldosterone system inhibitors were withheld and the other long-term antihypertensive medications were administered only for systolic blood pressures 130 mm Hg or greater, following an algorithm. In the hypertension-avoidance strategy group, the intraoperative mean arterial pressure target was 60 mm Hg or greater; all antihypertensive medications were continued before and after surgery.

    MEASUREMENTS: The primary outcome was a composite of vascular death and nonfatal myocardial injury after noncardiac surgery, stroke, and cardiac arrest at 30 days. Outcome adjudicators were masked to treatment assignment.

    RESULTS: The primary outcome occurred in 520 of 3742 patients (13.9%) in the hypotension-avoidance group and in 524 of 3748 patients (14.0%) in the hypertension-avoidance group (hazard ratio, 0.99 [95% CI, 0.88 to 1.12]; P = 0.92). Results were consistent for patients who used 1 or more than 1 antihypertensive medication in the long term.

    LIMITATION: Adherence to the assigned strategies was suboptimal; however, results were consistent across different adherence levels.

    CONCLUSION: In patients having noncardiac surgery, our hypotension-avoidance and hypertension-avoidance strategies resulted in a similar incidence of major vascular complications.

    PRIMARY FUNDING SOURCE: Canadian Institutes of Health Research, National Health and Medical Research Council (Australia), and Research Grant Council of Hong Kong.

  8. Writing Committee for the VISION Study Investigators, Devereaux PJ, Biccard BM, Sigamani A, Xavier D, Chan MTV, et al.
    JAMA, 2017 Apr 25;317(16):1642-1651.
    PMID: 28444280 DOI: 10.1001/jama.2017.4360
    Importance: Little is known about the relationship between perioperative high-sensitivity troponin T (hsTnT) measurements and 30-day mortality and myocardial injury after noncardiac surgery (MINS).

    Objective: To determine the association between perioperative hsTnT measurements and 30-day mortality and potential diagnostic criteria for MINS (ie, myocardial injury due to ischemia associated with 30-day mortality).

    Design, Setting, and Participants: Prospective cohort study of patients aged 45 years or older who underwent inpatient noncardiac surgery and had a postoperative hsTnT measurement. Starting in October 2008, participants were recruited at 23 centers in 13 countries; follow-up finished in December 2013.

    Exposures: Patients had hsTnT measurements 6 to 12 hours after surgery and daily for 3 days; 40.4% had a preoperative hsTnT measurement.

    Main Outcomes and Measures: A modified Mazumdar approach (an iterative process) was used to determine if there were hsTnT thresholds associated with risk of death and had an adjusted hazard ratio (HR) of 3.0 or higher and a risk of 30-day mortality of 3% or higher. To determine potential diagnostic criteria for MINS, regression analyses ascertained if postoperative hsTnT elevations required an ischemic feature (eg, ischemic symptom or electrocardiography finding) to be associated with 30-day mortality.

    Results: Among 21 842 participants, the mean age was 63.1 (SD, 10.7) years and 49.1% were female. Death within 30 days after surgery occurred in 266 patients (1.2%; 95% CI, 1.1%-1.4%). Multivariable analysis demonstrated that compared with the reference group (peak hsTnT <5 ng/L), peak postoperative hsTnT levels of 20 to less than 65 ng/L, 65 to less than 1000 ng/L, and 1000 ng/L or higher had 30-day mortality rates of 3.0% (123/4049; 95% CI, 2.6%-3.6%), 9.1% (102/1118; 95% CI, 7.6%-11.0%), and 29.6% (16/54; 95% CI, 19.1%-42.8%), with corresponding adjusted HRs of 23.63 (95% CI, 10.32-54.09), 70.34 (95% CI, 30.60-161.71), and 227.01 (95% CI, 87.35-589.92), respectively. An absolute hsTnT change of 5 ng/L or higher was associated with an increased risk of 30-day mortality (adjusted HR, 4.69; 95% CI, 3.52-6.25). An elevated postoperative hsTnT (ie, 20 to <65 ng/L with an absolute change ≥5 ng/L or hsTnT ≥65 ng/L) without an ischemic feature was associated with 30-day mortality (adjusted HR, 3.20; 95% CI, 2.37-4.32). Among the 3904 patients (17.9%; 95% CI, 17.4%-18.4%) with MINS, 3633 (93.1%; 95% CI, 92.2%-93.8%) did not experience an ischemic symptom.

    Conclusions and Relevance: Among patients undergoing noncardiac surgery, peak postoperative hsTnT during the first 3 days after surgery was significantly associated with 30-day mortality. Elevated postoperative hsTnT without an ischemic feature was also associated with 30-day mortality.

  9. Landoni G, Lomivorotov V, Pisano A, Nigro Neto C, Benedetto U, Biondi Zoccai G, et al.
    Contemp Clin Trials, 2017 08;59:38-43.
    PMID: 28533194 DOI: 10.1016/j.cct.2017.05.011
    OBJECTIVE: There is initial evidence that the use of volatile anesthetics can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalization following coronary artery bypass graft (CABG) surgery. Nevertheless, small randomized controlled trials have failed to demonstrate a survival advantage. Thus, whether volatile anesthetics improve the postoperative outcome of cardiac surgical patients remains uncertain. An adequately powered randomized controlled trial appears desirable.

    DESIGN: Single blinded, international, multicenter randomized controlled trial with 1:1 allocation ratio.

    SETTING: Tertiary and University hospitals.

    INTERVENTIONS: Patients (n=10,600) undergoing coronary artery bypass graft will be randomized to receive either volatile anesthetic as part of the anesthetic plan, or total intravenous anesthesia.

    MEASUREMENTS AND MAIN RESULTS: The primary end point of the study will be one-year mortality (any cause). Secondary endpoints will be 30-day mortality; 30-day death or non-fatal myocardial infarction (composite endpoint); cardiac mortality at 30day and at one year; incidence of hospital re-admission during the one year follow-up period and duration of intensive care unit, and hospital stay. The sample size is based on the hypothesis that volatile anesthetics will reduce 1-year unadjusted mortality from 3% to 2%, using a two-sided alpha error of 0.05, and a power of 0.9.

    CONCLUSIONS: The trial will determine whether the simple intervention of adding a volatile anesthetic, an intervention that can be implemented by all anesthesiologists, can improve one-year survival in patients undergoing coronary artery bypass graft surgery.

  10. Landoni G, Lomivorotov VV, Nigro Neto C, Monaco F, Pasyuga VV, Bradic N, et al.
    N Engl J Med, 2019 03 28;380(13):1214-1225.
    PMID: 30888743 DOI: 10.1056/NEJMoa1816476
    BACKGROUND: Volatile (inhaled) anesthetic agents have cardioprotective effects, which might improve clinical outcomes in patients undergoing coronary-artery bypass grafting (CABG).

    METHODS: We conducted a pragmatic, multicenter, single-blind, controlled trial at 36 centers in 13 countries. Patients scheduled to undergo elective CABG were randomly assigned to an intraoperative anesthetic regimen that included a volatile anesthetic (desflurane, isoflurane, or sevoflurane) or to total intravenous anesthesia. The primary outcome was death from any cause at 1 year.

    RESULTS: A total of 5400 patients were randomly assigned: 2709 to the volatile anesthetics group and 2691 to the total intravenous anesthesia group. On-pump CABG was performed in 64% of patients, with a mean duration of cardiopulmonary bypass of 79 minutes. The two groups were similar with respect to demographic and clinical characteristics at baseline, the duration of cardiopulmonary bypass, and the number of grafts. At the time of the second interim analysis, the data and safety monitoring board advised that the trial should be stopped for futility. No significant difference between the groups with respect to deaths from any cause was seen at 1 year (2.8% in the volatile anesthetics group and 3.0% in the total intravenous anesthesia group; relative risk, 0.94; 95% confidence interval [CI], 0.69 to 1.29; P = 0.71), with data available for 5353 patients (99.1%), or at 30 days (1.4% and 1.3%, respectively; relative risk, 1.11; 95% CI, 0.70 to 1.76), with data available for 5398 patients (99.9%). There were no significant differences between the groups in any of the secondary outcomes or in the incidence of prespecified adverse events, including myocardial infarction.

    CONCLUSIONS: Among patients undergoing elective CABG, anesthesia with a volatile agent did not result in significantly fewer deaths at 1 year than total intravenous anesthesia. (Funded by the Italian Ministry of Health; MYRIAD ClinicalTrials.gov number, NCT02105610.).

  11. Garg AX, Cuerden M, Aguado H, Amir M, Belley-Cote EP, Bhatt K, et al.
    Can J Kidney Health Dis, 2022;9:20543581211069225.
    PMID: 35024154 DOI: 10.1177/20543581211069225
    Background: Most patients who take antihypertensive medications continue taking them on the morning of surgery and during the perioperative period. However, growing evidence suggests this practice may contribute to perioperative hypotension and a higher risk of complications. This protocol describes an acute kidney injury substudy of the Perioperative Ischemic Evaluation-3 (POISE-3) trial, which is testing the effect of a perioperative hypotension-avoidance strategy versus a hypertension-avoidance strategy in patients undergoing noncardiac surgery.

    Objective: To conduct a substudy of POISE-3 to determine whether a perioperative hypotension-avoidance strategy reduces the risk of acute kidney injury compared with a hypertension-avoidance strategy.

    Design: Randomized clinical trial with 1:1 randomization to the intervention (a perioperative hypotension-avoidance strategy) or control (a hypertension-avoidance strategy).

    Intervention: If the presurgery systolic blood pressure (SBP) is <130 mmHg, all antihypertensive medications are withheld on the morning of surgery. If the SBP is ≥130 mmHg, some medications (but not angiotensin receptor blockers [ACEIs], angiotensin receptor blockers [ARBs], or renin inhibitors) may be continued in a stepwise manner. During surgery, the patients' mean arterial pressure (MAP) is maintained at ≥80 mmHg. During the first 48 hours after surgery, some antihypertensive medications (but not ACEIs, ARBs, or renin inhibitors) may be restarted in a stepwise manner if the SBP is ≥130 mmHg.

    Control: Patients receive their usual antihypertensive medications before and after surgery. The patients' MAP is maintained at ≥60 mmHg from anesthetic induction until the end of surgery.

    Setting: Recruitment from 108 centers in 22 countries from 2018 to 2021.

    Patients: Patients (~6800) aged ≥45 years having noncardiac surgery who have or are at risk of atherosclerotic disease and who routinely take antihypertensive medications.

    Measurements: The primary outcome of the substudy is postoperative acute kidney injury, defined as an increase in serum creatinine concentration of either ≥26.5 μmol/L (≥0.3 mg/dL) within 48 hours of randomization or ≥50% within 7 days of randomization.

    Methods: The primary analysis (intention-to-treat) will examine the relative risk and 95% confidence interval of acute kidney injury in the intervention versus control group. We will repeat the primary analysis using alternative definitions of acute kidney injury and examine effect modification by preexisting chronic kidney disease, defined as a prerandomization estimated glomerular filtration rate <60 mL/min/1.73 m2.

    Results: Substudy results will be analyzed in 2022.

    Limitations: It is not possible to mask patients or providers to the intervention; however, objective measures will be used to assess acute kidney injury.

    Conclusions: This substudy will provide generalizable estimates of the effect of a perioperative hypotension-avoidance strategy on the risk of acute kidney injury.

  12. Roshanov PS, Chan MTV, Borges FK, Conen D, Wang CY, Xavier D, et al.
    Anesthesiology, 2023 Sep 15.
    PMID: 37713506 DOI: 10.1097/ALN.0000000000004763
    BACKGROUND: In prior analyses, myocardial injury after noncardiac surgery, major bleeding, and sepsis were independently associated with most deaths in the 30 days after noncardiac surgery, but most of these deaths occurred during the index hospitalization for surgery. We set out to describe outcomes after discharge from hospital up to one year after inpatient noncardiac surgery and associations between pre-discharge complications and post-discharge death up to one year after surgery.

    METHODS: Analysis of patients discharged after inpatient noncardiac surgery in a large international prospective cohort study across 28 centers from 2007-2013 of patients aged ≥45 years followed to one year after surgery. We estimated 1) the cumulative post-discharge incidence of death and other outcomes up to a year after surgery and 2) the adjusted time-varying associations between post-discharge death and pre-discharge complications including myocardial injury after noncardiac surgery, major bleeding, sepsis, infection without sepsis, stroke, congestive heart failure, clinically important atrial fibrillation or flutter, amputation, venous thromboembolism, and acute kidney injury managed with dialysis.

    RESULTS: Among 38,898 patients discharged after surgery, the cumulative one-year incidence was 5.8% (95% CI, 5.5-6.0%) for all-cause death and 24.7% (24.2-25.1%) for all-cause hospital readmission. Pre-discharge complications were associated with 33.7% (27.2-40.2%) of deaths up to 30 days after discharge and 15.0% (12.0-17.9%) up to one year. Most of the association with death was due to myocardial injury after noncardiac surgery (15.6% [9.3-21.9%) of deaths within 30 days, 6.4% [4.1-8.7%] within one year), major bleeding (15.0% [8.3-21.7%] within 30 days, 4.7% [2.2-7.2%] within one year), and sepsis (5.4% [2.2-8.6%] within 30 days, 2.1% [1.0-3.1%] within one year).

    CONCLUSIONS: One in 18 patients ≥45 years old discharged after inpatient noncardiac surgery died within one year and one quarter were readmitted to hospital. The risk of death associated with pre-discharge perioperative complications persists for weeks to months after discharge.

  13. Devereaux PJ, Lamy A, Chan MTV, Allard RV, Lomivorotov VV, Landoni G, et al.
    N Engl J Med, 2022 Mar 03;386(9):827-836.
    PMID: 35235725 DOI: 10.1056/NEJMoa2000803
    BACKGROUND: Consensus recommendations regarding the threshold levels of cardiac troponin elevations for the definition of perioperative myocardial infarction and clinically important periprocedural myocardial injury in patients undergoing cardiac surgery range widely (from >10 times to ≥70 times the upper reference limit for the assay). Limited evidence is available to support these recommendations.

    METHODS: We undertook an international prospective cohort study involving patients 18 years of age or older who underwent cardiac surgery. High-sensitivity cardiac troponin I measurements (upper reference limit, 26 ng per liter) were obtained 3 to 12 hours after surgery and on days 1, 2, and 3 after surgery. We performed Cox analyses using a regression spline that explored the relationship between peak troponin measurements and 30-day mortality, adjusting for scores on the European System for Cardiac Operative Risk Evaluation II (which estimates the risk of death after cardiac surgery on the basis of 18 variables, including age and sex).

    RESULTS: Of 13,862 patients included in the study, 296 (2.1%) died within 30 days after surgery. Among patients who underwent isolated coronary-artery bypass grafting or aortic-valve replacement or repair, the threshold troponin level, measured within 1 day after surgery, that was associated with an adjusted hazard ratio of more than 1.00 for death within 30 days was 5670 ng per liter (95% confidence interval [CI], 1045 to 8260), a level 218 times the upper reference limit. Among patients who underwent other cardiac surgery, the corresponding threshold troponin level was 12,981 ng per liter (95% CI, 2673 to 16,591), a level 499 times the upper reference limit.

    CONCLUSIONS: The levels of high-sensitivity troponin I after cardiac surgery that were associated with an increased risk of death within 30 days were substantially higher than levels currently recommended to define clinically important periprocedural myocardial injury. (Funded by the Canadian Institutes of Health Research and others; VISION Cardiac Surgery ClinicalTrials.gov number, NCT01842568.).

  14. Duceppe E, Patel A, Chan MTV, Berwanger O, Ackland G, Kavsak PA, et al.
    Ann Intern Med, 2020 01 21;172(2):96-104.
    PMID: 31869834 DOI: 10.7326/M19-2501
    Background: Preliminary data suggest that preoperative N-terminal pro-B-type natriuretic peptide (NT-proBNP) may improve risk prediction in patients undergoing noncardiac surgery.

    Objective: To determine whether preoperative NT-proBNP has additional predictive value beyond a clinical risk score for the composite of vascular death and myocardial injury after noncardiac surgery (MINS) within 30 days after surgery.

    Design: Prospective cohort study.

    Setting: 16 hospitals in 9 countries.

    Patients: 10 402 patients aged 45 years or older having inpatient noncardiac surgery.

    Measurements: All patients had NT-proBNP levels measured before surgery and troponin T levels measured daily for up to 3 days after surgery.

    Results: In multivariable analyses, compared with preoperative NT-proBNP values less than 100 pg/mL (the reference group), those of 100 to less than 200 pg/mL, 200 to less than 1500 pg/mL, and 1500 pg/mL or greater were associated with adjusted hazard ratios of 2.27 (95% CI, 1.90 to 2.70), 3.63 (CI, 3.13 to 4.21), and 5.82 (CI, 4.81 to 7.05) and corresponding incidences of the primary outcome of 12.3% (226 of 1843), 20.8% (542 of 2608), and 37.5% (223 of 595), respectively. Adding NT-proBNP thresholds to clinical stratification (that is, the Revised Cardiac Risk Index [RCRI]) resulted in a net absolute reclassification improvement of 258 per 1000 patients. Preoperative NT-proBNP values were also statistically significantly associated with 30-day all-cause mortality (less than 100 pg/mL [incidence, 0.3%], 100 to less than 200 pg/mL [incidence, 0.7%], 200 to less than 1500 pg/mL [incidence, 1.4%], and 1500 pg/mL or greater [incidence, 4.0%]).

    Limitation: External validation of the identified NT-proBNP thresholds in other cohorts would reinforce our findings.

    Conclusion: Preoperative NT-proBNP is strongly associated with vascular death and MINS within 30 days after noncardiac surgery and improves cardiac risk prediction in addition to the RCRI.

    Primary Funding Source: Canadian Institutes of Health Research.

  15. Sartini C, Lomivorotov V, Pieri M, Lopez-Delgado JC, Baiardo Redaelli M, Hajjar L, et al.
    J Cardiothorac Vasc Anesth, 2019 05;33(5):1430-1439.
    PMID: 30600204 DOI: 10.1053/j.jvca.2018.11.026
    The authors aimed to identify interventions documented by randomized controlled trials (RCTs) that reduce mortality in adult critically ill and perioperative patients, followed by a survey of clinicians' opinions and routine practices to understand the clinicians' response to such evidence. The authors performed a comprehensive literature review to identify all topics reported to reduce mortality in perioperative and critical care settings according to at least 2 RCTs or to a multicenter RCT or to a single-center RCT plus guidelines. The authors generated position statements that were voted on online by physicians worldwide for agreement, use, and willingness to include in international guidelines. From 262 RCT manuscripts reporting mortality differences in the perioperative and critically ill settings, the authors selected 27 drugs, techniques, and strategies (66 RCTs, most frequently published by the New England Journal of Medicine [13 papers], Lancet [7], and Journal of the American Medical Association [5]) with an agreement ≥67% from over 250 physicians (46 countries). Noninvasive ventilation was the intervention supported by the largest number of RCTs (n = 13). The concordance between agreement and use (a positive answer both to "do you agree" and "do you use") showed differences between Western and other countries and between anesthesiologists and intensive care unit physicians. The authors identified 27 clinical interventions with randomized evidence of survival benefit and strong clinician support in support of their potential life-saving properties in perioperative and critically ill patients with noninvasive ventilation having the highest level of support. However, clinician views appear affected by specialty and geographical location.
  16. Borges FK, Bhandari M, Patel A, Avram V, Guerra-Farfán E, Sigamani A, et al.
    BMJ Open, 2019 05 01;9(4):e028537.
    PMID: 31048449 DOI: 10.1136/bmjopen-2018-028537
    INTRODUCTION: Annually, millions of adults suffer hip fractures. The mortality rate post a hip fracture is 7%-10% at 30 days and 10%-20% at 90 days. Observational data suggest that early surgery can improve these outcomes in hip fracture patients. We designed a clinical trial-HIP fracture Accelerated surgical TreaTment And Care tracK (HIP ATTACK) to determine the effect of accelerated surgery compared with standard care on the 90-day risk of all-cause mortality and major perioperative complications.

    METHODS AND ANALYSIS: HIP ATTACK is a multicentre, international, parallel group randomised controlled trial (RCT) that will include patients ≥45 years of age and diagnosed with a hip fracture from a low-energy mechanism requiring surgery. Patients are randomised to accelerated medical assessment and surgical repair (goal within 6 h) or standard care. The co-primary outcomes are (1) all-cause mortality and (2) a composite of major perioperative complications (ie, mortality and non-fatal myocardial infarction, pulmonary embolism, pneumonia, sepsis, stroke, and life-threatening and major bleeding) at 90 days after randomisation. All patients will be followed up for a period of 1 year. We will enrol 3000 patients.

    ETHICS AND DISSEMINATION: All centres had ethics approval before randomising patients. Written informed consent is required for all patients before randomisation. HIP ATTACK is the first large international trial designed to examine whether accelerated surgery can improve outcomes in patients with a hip fracture. The dissemination plan includes publishing the results in a policy-influencing journal, conference presentations, engagement of influential medical organisations, and providing public awareness through multimedia resources.

    TRIAL REGISTRATION NUMBER: NCT02027896; Pre-results.

  17. Biccard BM, Scott DJA, Chan MTV, Archbold A, Wang CY, Sigamani A, et al.
    Ann Surg, 2018 08;268(2):357-363.
    PMID: 28486392 DOI: 10.1097/SLA.0000000000002290
    OBJECTIVE: To determine the prognostic relevance, clinical characteristics, and 30-day outcomes associated with myocardial injury after noncardiac surgery (MINS) in vascular surgical patients.

    BACKGROUND: MINS has been independently associated with 30-day mortality after noncardiac surgery. The characteristics and prognostic importance of MINS in vascular surgery patients are poorly described.

    METHODS: This was an international prospective cohort study of 15,102 noncardiac surgery patients 45 years or older, of whom 502 patients underwent vascular surgery. All patients had fourth-generation plasma troponin T (TnT) concentrations measured during the first 3 postoperative days. MINS was defined as a TnT of 0.03 ng/mL of higher secondary to ischemia. The objectives of the present study were to determine (i) if MINS is prognostically important in vascular surgical patients, (ii) the clinical characteristics of vascular surgery patients with and without MINS, (iii) the 30-day outcomes for vascular surgery patients with and without MINS, and (iv) the proportion of MINS that probably would have gone undetected without routine troponin monitoring.

    RESULTS: The incidence of MINS in the vascular surgery patients was 19.1% (95% confidence interval (CI), 15.7%-22.6%). 30-day all-cause mortality in the vascular cohort was 12.5% (95% CI 7.3%-20.6%) in patients with MINS compared with 1.5% (95% CI 0.7%-3.2%) in patients without MINS (P < 0.001). MINS was independently associated with 30-day mortality in vascular patients (odds ratio, 9.48; 95% CI, 3.46-25.96). The 30-day mortality was similar in MINS patients with (15.0%; 95% CI, 7.1-29.1) and without an ischemic feature (12.2%; 95% CI, 5.3-25.5, P = 0.76). The proportion of vascular surgery patients who suffered MINS without overt evidence of myocardial ischemia was 74.1% (95% CI, 63.6-82.4).

    CONCLUSIONS: Approximately 1 in 5 patients experienced MINS after vascular surgery. MINS was independently associated with 30-day mortality. The majority of patients with MINS were asymptomatic and would have gone undetected without routine postoperative troponin measurement.

  18. Mrkobrada M, Chan MTV, Cowan D, Spence J, Campbell D, Wang CY, et al.
    BMJ Open, 2018 07 06;8(7):e021521.
    PMID: 29982215 DOI: 10.1136/bmjopen-2018-021521
    OBJECTIVES: Covert stroke after non-cardiac surgery may have substantial impact on duration and quality of life. In non-surgical patients, covert stroke is more common than overt stroke and is associated with an increased risk of cognitive decline and dementia. Little is known about covert stroke after non-cardiac surgery.NeuroVISION is a multicentre, international, prospective cohort study that will characterise the association between perioperative acute covert stroke and postoperative cognitive function.

    SETTING AND PARTICIPANTS: We are recruiting study participants from 12 tertiary care hospitals in 10 countries on 5 continents.

    PARTICIPANTS: We are enrolling patients ≥65 years of age, requiring hospital admission after non-cardiac surgery, who have an anticipated length of hospital stay of at least 2 days after elective non-cardiac surgery that occurs under general or neuraxial anaesthesia.

    PRIMARY AND SECONDARY OUTCOME MEASURES: Patients are recruited before elective non-cardiac surgery, and their cognitive function is measured using the Montreal Cognitive Assessment (MoCA) instrument. After surgery, a brain MRI study is performed between postoperative days 2 and 9 to determine the presence of acute brain infarction. One year after surgery, the MoCA is used to assess postoperative cognitive function. Physicians and patients are blinded to the MRI study results until after the last patient follow-up visit to reduce outcome ascertainment bias.We will undertake a multivariable logistic regression analysis in which the dependent variable is the change in cognitive function 1 year after surgery, and the independent variables are acute perioperative covert stroke as well as other clinical variables that are associated with cognitive dysfunction.

    CONCLUSIONS: The NeuroVISION study will characterise the epidemiology of covert stroke and its clinical consequences. This will be the largest and the most comprehensive study of perioperative stroke after non-cardiac surgery.

    TRIAL REGISTRATION NUMBER: NCT01980511; Pre-results.

  19. Sartini C, Lomivorotov V, Pisano A, Riha H, Baiardo Redaelli M, Lopez-Delgado JC, et al.
    J Cardiothorac Vasc Anesth, 2019 Oct;33(10):2685-2694.
    PMID: 31064730 DOI: 10.1053/j.jvca.2019.03.022
    OBJECTIVE: Reducing mortality is a key target in critical care and perioperative medicine. The authors aimed to identify all nonsurgical interventions (drugs, techniques, strategies) shown by randomized trials to increase mortality in these clinical settings.

    DESIGN: A systematic review of the literature followed by a consensus-based voting process.

    SETTING: A web-based international consensus conference.

    PARTICIPANTS: Two hundred fifty-one physicians from 46 countries.

    INTERVENTIONS: The authors performed a systematic literature search and identified all randomized controlled trials (RCTs) showing a significant increase in unadjusted landmark mortality among surgical or critically ill patients. The authors reviewed such studies during a meeting by a core group of experts. Studies selected after such review advanced to web-based voting by clinicians in relation to agreement, clinical practice, and willingness to include each intervention in international guidelines.

    MEASUREMENTS AND MAIN RESULTS: The authors selected 12 RCTs dealing with 12 interventions increasing mortality: diaspirin-crosslinked hemoglobin (92% of agreement among web voters), overfeeding, nitric oxide synthase inhibitor in septic shock, human growth hormone, thyroxin in acute kidney injury, intravenous salbutamol in acute respiratory distress syndrome, plasma-derived protein C concentrate, aprotinin in high-risk cardiac surgery, cysteine prodrug, hypothermia in meningitis, methylprednisolone in traumatic brain injury, and albumin in traumatic brain injury (72% of agreement). Overall, a high consistency (ranging from 80% to 90%) between agreement and clinical practice was observed.

    CONCLUSION: The authors identified 12 clinical interventions showing increased mortality supported by randomized controlled trials with nonconflicting evidence, and wide agreement upon clinicians on a global scale.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links