Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Chen L, Xu YY, Lin JY, Ji ZP, Yang F, Tan S, et al.
    Asian J Psychiatr, 2024 Mar;93:103958.
    PMID: 38364597 DOI: 10.1016/j.ajp.2024.103958
    BACKGROUND AND AIM: Suicide is nearly always associated with underlying mental disorders. Risk factors for suicide attempts (SAs) in patients with bipolar disorder (BD) misdiagnosed with major depressive disorder (MDD) remain unelucidated. This study was to evaluate the prevalence and clinical risk factors of SAs in Chinese patients with BD misdiagnosed with MDD.

    METHODS: A total of 1487 patients with MDD from 13 mental health institutions in China were enrolled. Mini International Neuropsychiatric Interview (MINI) was used to identify patients with BD who are misdiagnosed as MDD. The general sociodemographic and clinical data of the patients were collected and MINI suicide module was used to identify patients with SAs in these misdiagnosed patients.

    RESULTS: In China, 20.6% of patients with BD were incorrectly diagnosed as having MDD. Among these misdiagnosed patients, 26.5% had attempted suicide. These patients tended to be older, had a higher number of hospitalizations, and were more likely to experience frequent and seasonal depressive episodes with atypical features, psychotic symptoms, and suicidal thoughts. Frequent depressive episodes and suicidal thoughts during depression were identified as independent risk factors for SAs. Additionally, significant sociodemographic and clinical differences were found between individuals misdiagnosed with MDD in BD and patients with MDD who have attempted suicide.

    CONCLUSIONS: This study highlights the importance of accurate diagnosis in individuals with BD and provide valuable insights for the targeted identification and intervention of individuals with BD misdiagnosed as having MDD and those with genuine MDD, particularly in relation to suicidal behavior.

  2. Wang G, Niu Y, Mansor ZD, Leong YC, Yan Z
    Heliyon, 2024 Feb 29;10(4):e25583.
    PMID: 38379974 DOI: 10.1016/j.heliyon.2024.e25583
    While dynamic capabilities have been described as crucial for achieving organizational performance in dynamic environments, there has been limited scholarly distinction between dynamic capabilities and employee dynamic capabilities (EDC), especially in the digital era. Consequently, a knowledge gap has emerged. To address this void, this paper aims to investigate the driving factors of EDC and their impact on employee digital performance (EDP). Simultaneously, incorporating the competitive climate (CC) as a moderating variable between employee dynamic capabilities and employee digital performance addresses theoretical gaps in specific regions in China, particularly in small and medium-sized enterprises (SMEs). This study utilizes survey data from SMEs in four Chinese provinces: Shanghai, Guizhou, Guangdong, and Anhui. It employs CB-SEM (AMOS) to analyze the new conceptual framework. Firstly, the research uncovers that the positive relationship between digital capabilities and employee digital performance necessitates employee dynamic capabilities as a mediator. Secondly, there exists a direct and indirect relationship between organizational learning and employee digital performance. Finally, this study discerns that the competitive climate moderates the relationship between employee dynamic capabilities and employee digital performance. This finding demonstrates remarkable alignment with the competitive culture in specific regions of China. The research results encourage SMEs to seize the opportunities presented by emerging digital technologies and industry digitization trends. They should commit to embracing new digital technologies, enhancing digital capability, strengthening organizational learning, fostering a positive competitive climate, and focusing on the development of employee dynamic capability to enhance their competitive edge. The findings of this research contribute not only to academic inquiry but also furnish pertinent decision-making references for relevant departments.
  3. Short AW, Sebastian JSV, Huang J, Wang G, Dassanayake M, Finnegan PM, et al.
    Tree Physiol, 2024 Feb 11;44(3).
    PMID: 38366388 DOI: 10.1093/treephys/tpae019
    Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits-Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.
  4. Wang G, Sabran K
    Sci Rep, 2024 Feb 02;14(1):2759.
    PMID: 38308079 DOI: 10.1038/s41598-024-53292-w
    It has been well established that pandemics affect mental health, yet few studies have been conducted in China regarding this issue following COVID-19's gradual decline and the recent H1N1 influenza outbreak. In response to this research gap, this investigation explores the risk factors linked to depression and anxiety symptoms among young adults in this specific setting. Data were collected via an online cross-sectional survey of 385 young adults living in Anyang city, Henan Province, China, between June 15 and July 21, 2023. Respondents were assessed for anxiety and depression symptoms using the GAD-7 and PHQ-9 scales. Additionally, to examine the factors that influenced the study, we utilized an ordered logit regression model. Results revealed depression and anxiety prevalence rates of 33.3% and 21.6%, respectively. Several factors were found to increase the likelihood of depression and anxiety among young adults, including gender, age, education status, marital status, and attitudes towards epidemics. Participants' concerns about pandemics and viruses had a significant negative impact relationship on depression levels. Women report moderate to severe anxiety more frequently than men. An evident correlation can be observed between the educational attainment level and the influence of depression and anxiety.
  5. Wang G, Wan Y, Ding CJ, Liu X, Jiang Y
    Environ Sci Pollut Res Int, 2023 Oct;30(47):103513-103533.
    PMID: 37704820 DOI: 10.1007/s11356-023-29490-w
    The construction of low-carbon cities is an essential component of sustainable urban development. However, there is a lack of a comprehensive low-carbon city design and evaluation system that incorporates "carbon sink accounting-remote sensing monitoring-numerical modelling-design and application" in an all-around linkage, multi-scale coupling, and localized effects. This paper utilizes the Citespace tool to evaluate low-carbon city design applications by analyzing literature in the Web of Science (WOS) core collection database. The results reveal that low-carbon cities undergo four stages: "measurement-implementation-regulation - management." The research themes are divided into three core clustering evolutionary pathways: "extension of carbon sink functions," "spatialisation of carbon sink systems," and "full-cycle, full-dimensional decarbonisation." Applications include "Utility studies of multi-scale carbon sink assessments," "Correlation analysis of carbon sink influencing factors," "Predictive characterisation of multiple planning scenarios," and "Spatial planning applications of urban sink enhancement." Future low-carbon city construction should incorporate intelligent algorithm technology in real-time to provide a strong design basis for multi-scale urban spatial design with the features of "high-precision accounting, full-cycle assessment and low-energy concept."
  6. Shi T, Li C, Wang G, Huang G
    Curr Issues Mol Biol, 2023 Jun 28;45(7):5389-5402.
    PMID: 37504258 DOI: 10.3390/cimb45070342
    Cassava (Manihot esculenta Crantz) is an important tropical tuber crop around the world. Cassava bacterial blight, caused by Xanthomonas phaseoli pv. manihotis, is a key disease that influences cassava production worldwide. Between 2008 and 2020, 50 X. phaseoli pv. manihotis strains were isolated from diseased plant samples or acquired from China, Uganda, Cambodia, Colombia, Malaysia, and Micronesia. Using multilocus sequence analysis, the genetic diversity of X. phaseoli pv. manihotis strains was evaluated. A neighbor-joining phylogenetic dendrogram was constructed based on partial sequences of five housekeeping genes (atpD-dnaK-gyrB-efp-rpoD). The strains clustered into three groups whose clusters were consistent with atpD and RpoD gene sequences. Group I contained 46 strains from China, Uganda, Cambodia, and Micronesia, and the other two groups were comprised of strains from Colombia and Malaysia, respectively. The resistance of all these strains to copper ion (Cu2+) was determined, the minimal inhibitory concentration was between 1.3 and 1.7 mM, and there was no significant difference between strains from different geographic region. During genome annotation of the X. phaseoli pv. manihotis strain CHN01, homologous gene clusters of copLAB and xmeRSA were identified. The predicted amino acid sequences of two gene clusters were highly homologous with the copper-resistant protein from Xanthomonas strains. CopLAB and xmeRSA were amplified from all these strains, suggesting that the regulation of copper resistance is associated with two distinct metabolic pathways. CopLAB and xmeRSA were highly conserved among strains from different geographic regions, possibly associated with other conserved function.
  7. Chi KN, Rathkopf D, Smith MR, Efstathiou E, Attard G, Olmos D, et al.
    J Clin Oncol, 2023 Jun 20;41(18):3339-3351.
    PMID: 36952634 DOI: 10.1200/JCO.22.01649
    PURPOSE: Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease with current standard-of-care therapies. Homologous recombination repair (HRR) gene alterations, including BRCA1/2 alterations, can sensitize cancer cells to poly (ADP-ribose) polymerase inhibition, which may improve outcomes in treatment-naïve mCRPC when combined with androgen receptor signaling inhibition.

    METHODS: MAGNITUDE (ClinicalTrials.gov identifier: NCT03748641) is a phase III, randomized, double-blinded study that evaluates niraparib and abiraterone acetate plus prednisone (niraparib + AAP) in patients with (HRR+, n = 423) or without (HRR-, n = 247) HRR-associated gene alterations, as prospectively determined by tissue/plasma-based assays. Patients were assigned 1:1 to receive niraparib + AAP or placebo + AAP. The primary end point, radiographic progression-free survival (rPFS) assessed by central review, was evaluated first in the BRCA1/2 subgroup and then in the full HRR+ cohort, with secondary end points analyzed for the full HRR+ cohort if rPFS was statistically significant. A futility analysis was preplanned in the HRR- cohort.

    RESULTS: Median rPFS in the BRCA1/2 subgroup was significantly longer in the niraparib + AAP group compared with the placebo + AAP group (16.6 v 10.9 months; hazard ratio [HR], 0.53; 95% CI, 0.36 to 0.79; P = .001). In the overall HRR+ cohort, rPFS was significantly longer in the niraparib + AAP group compared with the placebo + AAP group (16.5 v 13.7 months; HR, 0.73; 95% CI, 0.56 to 0.96; P = .022). These findings were supported by improvement in the secondary end points of time to symptomatic progression and time to initiation of cytotoxic chemotherapy. In the HRR- cohort, futility was declared per the prespecified criteria. Treatment with niraparib + AAP was tolerable, with anemia and hypertension as the most reported grade ≥ 3 adverse events.

    CONCLUSION: Combination treatment with niraparib + AAP significantly lengthened rPFS in patients with HRR+ mCRPC compared with standard-of-care AAP.

    [Media: see text].

  8. Wang G, Alias SB, Sun Z, Wang F, Fan A, Hu H
    Heliyon, 2023 May;9(5):e16112.
    PMID: 37215850 DOI: 10.1016/j.heliyon.2023.e16112
    Influential nodes identification technology is one of the important topics which has been widely applied to logistics node location, social information dissemination, transportation network carrying, biological virus dissemination, power network anti-destruction, etc. At present, a large number of influential nodes identification methods have been studied, but the algorithms that are simple to execute, have high accuracy and can be better applied to real networks are still the focus of research. Therefore, due to the advantages of simple to execute in voting mechanism, a novel algorithm based on adaptive adjustment of voting ability (AAVA) to identify the influential nodes is presented by considering the local attributes of node and the voting contribution of its neighbor nodes, to solve the problem of low accuracy and discrimination of the existing algorithms. This proposed algorithm uses the similarity between the voting node and the voted node to dynamically adjust its voting ability without setting any parameters, so that a node can contribute different voting abilities to different neighbor nodes. To verify the performance of AAVA algorithm, the running results of 13 algorithms are analyzed and compared on 10 different networks with the SIR model as a reference. The experimental results show that the influential nodes identified by AAVA have high consistency with SIR model in Top-10 nodes and Kendall correlation, and have better infection effect of the network. Therefore, it is proved that AAV algorithm has high accuracy and effectiveness, and can be applied to real complex networks of different types and sizes.
  9. Wang G, Fu R, Zhang L, Xue L, Al-Mahdi AY, Xie X, et al.
    PLoS Negl Trop Dis, 2023 Apr 21;17(4):e0011243.
    PMID: 37083859 DOI: 10.1371/journal.pntd.0011243
    Scrub typhus, caused by mite-borne Orientia tsutsugamushi (O. tsutsugamushi), is a major febrile disease in the Asia-Pacific region. The DNA load of O. tsutsugamushi in the blood was previously found to be significantly higher in patients with fatal disease than those with non-fatal disease and correlated with the duration of illness, presence of eschar, and hepatic enzyme levels. In this prospective observation study, we analyzed the association of bacterial DNA load with clinical features, disease severity, and genotype using real-time PCR targeting the 56 kDa TSA gene of O. tsutsugamushi in the blood samples of 117 surviving patients with scrub typhus who had not received appropriate antibiotic treatment. The median O. tsutsugamushi DNA load was 3.11×103 copies/mL (range, 44 to 3.3×106 copies/mL). The severity of patients was categorized as mild, moderate, and severe based on the number of dysfunctional organs, and no significant difference in O. tsutsugamushi DNA load was found among these groups. Patients infected with the Karp group showed a significantly higher O. tsutsugamushi DNA load than those in the Gilliam (P 
  10. Mai W, Ren Y, Tian X, Al-Mahdi AY, Peng R, An J, et al.
    J Med Virol, 2023 Apr;95(4):e28692.
    PMID: 36946502 DOI: 10.1002/jmv.28692
    The coronavirus disease 2019 (COVID-19) pandemic and related public health intervention measures have been reported to have resulted in the reduction of infections caused by influenza viruses and other common respiratory viruses. However, the influence may be varied in areas that have different ecological, economic, and social conditions. This study investigated the changing epidemiology of 8 common respiratory pathogens, including Influenza A (IFVA), Influenza B (IFVB), Respiratory syncytial virus (HRSV), rhinovirus (RV), Human metapneumovirus Adenovirus, Human bocavirus, and Mycoplasma pneumoniae, among hospitalized children during spring and early summer in 2019-2021 in two hospitals in Hainan Island, China, in the COVID-19 pandemic era. The results revealed a significant reduction in the prevalence of IFVA and IFVB in 2020 and 2021 than in 2019, whereas the prevalence of HRSV increased, and it became the dominant viral pathogen in 2021. RV was one of the leading pathogens in the 3 year period, where no significant difference was observed. Phylogenetic analysis revealed close relationships among the circulating respiratory viruses. Large scale studies are needed to study the changing epidemiology of seasonal respiratory viruses to inform responses to future respiratory virus pandemics.
  11. Hu L, Xu Z, Fan R, Wang G, Wang F, Qin X, et al.
    Plant Biotechnol J, 2023 Jan;21(1):78-96.
    PMID: 36117410 DOI: 10.1111/pbi.13926
    Zanthoxylum armatum and Zanthoxylum bungeanum, known as 'Chinese pepper', are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.
  12. Wang G, Guo Q, Zhou X, Zhang F
    Environ Sci Pollut Res Int, 2023 Jan;30(1):2315-2328.
    PMID: 35930151 DOI: 10.1007/s11356-022-22337-w
    Agricultural carbon emission is an important cause of climate change, and the carbon transfer caused by agricultural trade is a key area related to carbon emissions of all countries. Based on the Eora database, this paper aims to constructs a multi-region input-output database of 185 countries or regions, analyzes a spatial correlation network of embodied net carbon transfer in global agricultural trade by using UCINET, selects multi-dimensional network measurement indicators, and comprehensively studies the global evolution characteristics and functional features of network plate role of embodied carbon transfer in the global agricultural trade. The result shows that the embodied net carbon transfer network of global agricultural trade is densely connected, the spatial correlation spillover effect is significant, and the edge of the network core structure is clear. On the one hand, the top four countries or regions in terms of embodied carbon outflow in agricultural trade are the USA, Australia, Vietnam, and China. On the other hand, the top four countries or regions of embodied carbon inflow are Malaysia, Central Africa, Singapore, and Serbia. From the perspective of outdegree, indegree, proximity centrality, and intermediary centrality, Cambodia, the Netherlands, Vietnam, Ghana, and South Africa, with the high frequency of the shortest path of the globally embodied net carbon transfer network, have a strong influence and linking facility in spatial correlation and have a strong control ability to the spatial correlation of other countries or regions. The embodied carbon emission network of global agricultural trade can be divided into four sectors: main spillover, two-way spillover, broker, and main benefit. The main spillover segment, constituted by the USA, India, Germany, and China, has significant embodied carbon spillover effects on the internal segment and other segments. It is the main embodied carbon spillover sector of embodied net carbon transfer of global agricultural trade. Countries should reasonably allocate the responsibility of carbon reduction according to the trading embodied carbon transfer and made efforts to optimize the export structure of agricultural products.
  13. Zhu Y, Hu Z, Lv X, Huang R, Gu X, Zhang C, et al.
    Transbound Emerg Dis, 2022 Jul;69(4):1782-1793.
    PMID: 33993639 DOI: 10.1111/tbed.14155
    Since 2010, several duck Tembusu viruses (DTMUVs) have been isolated from infected ducks in China, and these virus strains have undergone extensive variation over the years. Although the infection rate is high, the mortality rate is usually relatively low-~5%-30%; however, since fall 2019, an infectious disease similar to DTMUV infection but with a high mortality rate of ~50% in goslings has been prevalent in Anhui Province, China. The present study identified a new Tembusu virus, designated DTMUV/Goose/China/2019/AQ-19 (AQ-19), that is believed to be responsible for the noticeably high mortality in goslings. To investigate the genetic variation of this strain, its entire genome was sequenced and analysed for specific variations, and goslings and mice were challenged with the isolated virus to investigate its pathogenicity. The AQ-19 genome shared only 94.3%-96.9% and 90.9% nucleotide identity with other Chinese and Malaysian DTMUVs, respectively; however, AQ-19 has high homology with Thailand DTMUVs (97.2%-98.1% nucleotide identity). Phylogenetic analysis of the E gene revealed that AQ-19 and most of Thailand DTMUVs form a branch separate from any of the previously reported DTMUV strains in China. After the challenge, some goslings and mice showed typical clinical signs of DTMUV, particularly severe neurological dysfunction. AQ-19 has high virulence in goslings and mice, resulting in 60% and 70% mortality through intramuscular and intracerebral routes, respectively. Pathological examination revealed severe histological lesions in the brain and liver of the infected goslings and mice. Taken together, these results demonstrated the emergence of a novel Tembusu virus with high virulence circulating in goslings in China for the first time, and our findings highlight the high genetic diversity of DTMUVs in China. Further study of the pathogenicity and host range of this novel Tembusu virus is particularly important.
  14. Zhang H, Gao J, Ma Z, Liu Y, Wang G, Liu Q, et al.
    Front Cell Infect Microbiol, 2022;12:1082809.
    PMID: 36530420 DOI: 10.3389/fcimb.2022.1082809
    BACKGROUND: Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China.

    METHODS: A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied.

    RESULTS: 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%.

    CONCLUSIONS: Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.

  15. de Leon J, Schoretsanitis G, Smith RL, Molden E, Solismaa A, Seppälä N, et al.
    Pharmacopsychiatry, 2021 Dec 15.
    PMID: 34911124 DOI: 10.1055/a-1625-6388
    This international guideline proposes improving clozapine package inserts worldwide by using ancestry-based dosing and titration. Adverse drug reaction (ADR) databases suggest that clozapine is the third most toxic drug in the United States (US), and it produces four times higher worldwide pneumonia mortality than that by agranulocytosis or myocarditis. For trough steady-state clozapine serum concentrations, the therapeutic reference range is narrow, from 350 to 600 ng/mL with the potential for toxicity and ADRs as concentrations increase. Clozapine is mainly metabolized by CYP1A2 (female non-smokers, the lowest dose; male smokers, the highest dose). Poor metabolizer status through phenotypic conversion is associated with co-prescription of inhibitors (including oral contraceptives and valproate), obesity, or inflammation with C-reactive protein (CRP) elevations. The Asian population (Pakistan to Japan) or the Americas' original inhabitants have lower CYP1A2 activity and require lower clozapine doses to reach concentrations of 350 ng/mL. In the US, daily doses of 300-600 mg/day are recommended. Slow personalized titration may prevent early ADRs (including syncope, myocarditis, and pneumonia). This guideline defines six personalized titration schedules for inpatients: 1) ancestry from Asia or the original people from the Americas with lower metabolism (obesity or valproate) needing minimum therapeutic dosages of 75-150 mg/day, 2) ancestry from Asia or the original people from the Americas with average metabolism needing 175-300 mg/day, 3) European/Western Asian ancestry with lower metabolism (obesity or valproate) needing 100-200 mg/day, 4) European/Western Asian ancestry with average metabolism needing 250-400 mg/day, 5) in the US with ancestries other than from Asia or the original people from the Americas with lower clozapine metabolism (obesity or valproate) needing 150-300 mg/day, and 6) in the US with ancestries other than from Asia or the original people from the Americas with average clozapine metabolism needing 300-600 mg/day. Baseline and weekly CRP monitoring for at least four weeks is required to identify any inflammation, including inflammation secondary to clozapine rapid titration.
  16. Zhao C, Wang G, Zhang M, Wang G, de With G, Bezhenar R, et al.
    Mar Pollut Bull, 2021 May 21;169:112515.
    PMID: 34023585 DOI: 10.1016/j.marpolbul.2021.112515
    Japan recently announced plans to discharge over 1.2 million tons of radioactive water from the Fukushima Daiichi Nuclear Power Plant (FDNPP) into the Pacific Ocean. The contaminated water can poses a threat to marine ecosystems and human health. To estimate the impact of the plan, here, we developed a three-dimensional global model to track the transport and dispersion of tritium released from the radioactive water of the FDNPP. The pollution scenarios for four release durations (1 month, 1 year, 5 years, and 10 years) were simulated. The simulation results showed that for the release in short-duration scenarios (1 month and 1 year), the peak plume with high tritium concentration shifted with the currents and finally reached the northeastern Pacific. For the long-duration scenarios (5 years and 10 years), the peak plume of the contaminated water was confined to coastal regions east of Japan.
  17. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  18. Mohamad Noh MF, Ullah H, Arzaee NA, Ab Halim A, Abdul Rahim MAF, Mohamed NA, et al.
    Dalton Trans, 2020 Sep 14;49(34):12037-12048.
    PMID: 32869793 DOI: 10.1039/d0dt00406e
    Defect engineering is increasingly recognized as a viable strategy for boosting the performance of photoelectrochemical (PEC) water splitting using metal oxide-based photoelectrodes. However, previously developed methods for generating point defects associated with oxygen vacancies are rather time-consuming. Herein, high density oxygen deficient α-Fe2O3 with the dominant (110) crystal plane is developed in a very short timescale of 10 minutes by employing aerosol-assisted chemical vapor deposition and pure nitrogen as a gas carrier. The oxygen-defective film exhibits almost 8 times higher photocurrent density compared to a hematite photoanode with a low concentration of oxygen vacancies which is prepared in purified air. The existence of oxygen vacancies improves light absorption ability, accelerates charge transport in the bulk of films, and promotes charge separation at the electrolyte/semiconductor interface. DFT simulations verify that oxygen-defective hematite has a narrow bandgap, electron-hole trapped centre, and strong adsorption energy of water molecules compared to pristine hematite. This strategy might bring PEC technology another step further towards large-scale fabrication for future commercialization.
  19. Gou Z, Ma NL, Zhang W, Lei Z, Su Y, Sun C, et al.
    Environ Res, 2020 09;188:109829.
    PMID: 32798948 DOI: 10.1016/j.envres.2020.109829
    Intensive studies have been performed on the improvement of bioethanol production by transformation of lignocellulose biomass. In this study, the digestibility of corn stover was dramatically improved by using laccase immobilized on Cu2+ modified recyclable magnetite nanoparticles, Fe3O4-NH2. After digestion, the laccase was efficiently separated from slurry. The degradation rate of lignin reached 40.76%, and the subsequent cellulose conversion rate 38.37% for 72 h at 35 °C with cellulase at 50 U g-1 of corn stover. Compared to those of free and inactivated mode, the immobilized laccase pre-treatment increased subsequent cellulose conversion rates by 23.98% and 23.34%, respectively. Moreover, the reusability of immobilized laccase activity remained 50% after 6 cycles. The storage and thermal stability of the fixed laccase enhanced by 70% and 24.1% compared to those of free laccase at 65 °C, pH 4.5, respectively. At pH 10.5, it exhibited 16.3% more activities than its free mode at 35 °C. Our study provides a new avenue for improving the production of bioethanol with immobilized laccase for delignification using corn stover as the starting material.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links