Displaying publications 1 - 20 of 273 in total

Abstract:
Sort:
  1. Zhu P, Li J, Wen X, Huang Y, Yang H, Wang S, et al.
    J Environ Manage, 2022 Feb 07;308:114682.
    PMID: 35144065 DOI: 10.1016/j.jenvman.2022.114682
    This study investigated the effects of biochar-based solid acids (SAs) on carbon conversion, alpha diversity and bacterial community succession during cow manure composting with the goal of providing a new strategy for rapid carbon conversion during composting. The addition of SA prolonged the thermophilic phase and accelerated the degradation of lignocellulose; in particular, the degradation time of cellulose was shortened by 50% and the humus content was increased by 22.56% compared with the control group (CK). In addition, high-throughput sequencing results showed that SA improved the alpha diversity and the relative abundance of thermophilic bacteria, mainly Actinobacteria, increased by 12.955% compared with CK. A redundancy analysis (RDA) showed that Actinobacteria was positively correlated with the transformation of carbon.
  2. Zhou X, Li Y, Wang W, Wang S, Hou J, Zhang A, et al.
    Theranostics, 2020;10(21):9443-9457.
    PMID: 32863938 DOI: 10.7150/thno.46078
    Objective: Esophageal squamous cell carcinoma (ESCC) is one of the most commonly diagnosed cancer types in China. Recent genomic sequencing analysis indicated the over-activation of Hippo/YAP signaling might play important roles for the carcinogenic process and progression for ESCC patients. However, little is known about the molecular mechanisms that controls Hippo signaling activity in ESCC. Our previous studies indicated that PLCE1-an important risk factor for ESCC-linked to ESCC progression through snail signaling, during this period, we found PARK2 was an important downstream target of PLCE1-snail axis. PARK2 was decreased in ESCC human samples, and correlated with good prognosis in ESCC patients. Further research showed that PARK2 could inhibit YAP, which functions as key downstream effectors of the Hippo pathway. Here, we aim to reveal the molecular mechanisms of PARK2 modulated Hippo pathway in ESCC. Methods: To evaluate the function of PARK2 in ESCC, we used a tissue microarray (TMA) of 223 human ESCC patients and immunohistochemistry to analyze the correlation between PARK2 expression and clinicopathologic variables. Depletion of endogenous PARK2 and YAP from ESCC cells using CRISPR/Cas9 technologies. Flow cytometry and EdU cell proliferation assay were used to detect proliferation of ESCC cells. Nude mice subcutaneous injection and Ki-67 staining were used to evaluate tumor growth in vivo. Migration and invasion assays were performed. In addition, lung metastasis models in mice were used to validate the function of PARK2 in vivo. Identification of PARK2 involved in hippo pathway was achieved by expression microarray screening, double immunofluorescence staining and co-immunoprecipitation assays. The RNA-seq analysis results were validated through quantitative real-time PCR (qRT-PCR) analysis. The protein half-life of YAP was analyzed by Cycloheximide assay, and the TEAD activity was detected by Luciferase reporter assays. Results: Clinical sample of ESCC revealed that low PARK2 expression correlated with late tumor stage (P < 0.001), poor differentiation (P < 0.04), lymph node (P < 0.001) and distant metastasis (P = 0.0087). Multivariate Cox proportional regression analysis further revealed that PARK2 expression (P = 0.032) is an independent prognostic factor for the overall survival of ESCC patients. Besides, the immunohistochemistry results showed that PARK2 negatively correlated with YAP protein level (P < 0.001). PARK2 depletion promotes ESCC progression both through Hippo/YAP axis, while PARK2 overexpression suppresses ESCC tumor progression by Hippo signaling. Co-IP and ubiquitination assays revealed that PARK2 could interact with YAP in the cytosol and promotes YAP K48-linked ubiquitination at K90 sites. Conclusion: Clinical sample analysis and mechanistic study have validated PARK2 as a tumor suppressor for ESCC. Multivariate Cox proportional regression analysis further revealed that PARK2 is an independent prognostic factor for the overall survival of ESCC patients. Cellular and molecular mechanisms in this study showed that PARK2 associated with YAP protein in the cytosol, promoted YAP ubiquitination and proteasome-dependent degradation in ESCC cells. Therefore, as a novel modulator for Hippo signaling, modulation of PARK2 activity or gene expression level could be an appealing strategy to treat esophageal.
  3. Zhou J, Wu C, Yeh PJ, Ju J, Zhong L, Wang S, et al.
    Sci Total Environ, 2023 Sep 01;889:164274.
    PMID: 37209749 DOI: 10.1016/j.scitotenv.2023.164274
    The successive flood-heat extreme (SFHE) event, which threatens the securities of human health, economy, and building environment, has attracted extensive research attention recently. However, the potential changes in SFHE characteristics and the global population exposure to SFHE under anthropogenic warming remain unclear. Here, we present a global-scale evaluation of the projected changes and uncertainties in SFHE characteristics (frequency, intensity, duration, land exposure) and population exposure under the Representative Concentration Pathway (RCP) 2.6 and 6.0 scenarios, based on the multi-model ensembles (five global water models forced by four global climate models) within the Inter-Sectoral Impact Model Intercomparison Project 2b framework. The results reveal that, relative to the 1970-1999 baseline period, the SFHE frequency is projected to increase nearly globally by the end of this century, especially in the Qinghai-Tibet Plateau (>20 events/30-year) and the tropical regions (e.g., northern South America, central Africa, and southeastern Asia, >15 events/30-year). The projected higher SFHE frequency is generally accompanied by a larger model uncertainty. By the end of this century, the SFHE land exposure is expected to increase by 12 % (20 %) under RCP2.6 (RCP6.0), and the intervals between flood and heatwave in SFHE tend to decrease by up to 3 days under both RCPs, implying the more intermittent SFHE occurrence under future warming. The SFHE events will lead to the higher population exposure in the Indian Peninsula and central Africa (<10 million person-days) and eastern Asia (<5 million person-days) due to the higher population density and the longer SFHE duration. Partial correlation analysis indicates that the contribution of flood to the SFHE frequency is greater than that of heatwave for most global regions, but the SFHE frequency is dominated by the heatwave in northern North America and northern Asia.
  4. Zhong X, Xiong Y, Wei D, Wang S, Xiao Z, Liu M, et al.
    Complement Ther Med, 2020 Aug;52:102491.
    PMID: 32951740 DOI: 10.1016/j.ctim.2020.102491
    BACKGROUND: Inconsistencies exist with regard to effect of maternal vitamin D supplementation on infant vitamin D status. The inconsistencies could be attributed to numerous factors, such as duration of intervention and dosage, among others. In this work, we conducted a systematic review and meta-analysis to determine the influence of maternal vitamin D supplementation on infant vitamin D status.

    METHODS: A comprehensive systematic search was performed in Scopus, EMBASE, Web of Science, and PubMed/MEDLINE, by investigators, from database inception until November 2019, without using any restrictions. Weighted mean difference (WMD) with the 95 % CI was used for assessing the effects of maternal vitamin D supplementation on 25(OH) D levels in infants.

    RESULTS: Overall results from 14 studies revealed a non-significant effect of maternal vitamin D administration on the level of 25(OH) D in breastfeeding infants (WMD: -0.464 ng/mL, 95 % CI: -6.68 to 5.75, p = 0.884, I2 = 98 %). Subgroup analyses demonstrated that vitamin D supplementation dosage ≥2000 IU/day (WMD: 9 ng/mL, 95 % CI: 8.19, 9.82, I2 = 99 %) and intervention duration ≥20 weeks (WMD: 16.20 ng/mL, 95 % CI: 14.89, 17.50, I2 = 99 %) significantly increased 25(OH) D.

    CONCLUSIONS: The main results indicate a non-significant increase in infant vitamin D following maternal vitamin D supplementation. Additionally, vitamin D supplementation dosage ≥2000 IU/day and intervention duration ≥20 weeks significantly increased infant 25(OH) D.

  5. Zheng R, Jia H, Abualigah L, Liu Q, Wang S
    Math Biosci Eng, 2022 01;19(1):473-512.
    PMID: 34903000 DOI: 10.3934/mbe.2022023
    Arithmetic optimization algorithm (AOA) is a newly proposed meta-heuristic method which is inspired by the arithmetic operators in mathematics. However, the AOA has the weaknesses of insufficient exploration capability and is likely to fall into local optima. To improve the searching quality of original AOA, this paper presents an improved AOA (IAOA) integrated with proposed forced switching mechanism (FSM). The enhanced algorithm uses the random math optimizer probability (RMOP) to increase the population diversity for better global search. And then the forced switching mechanism is introduced into the AOA to help the search agents jump out of the local optima. When the search agents cannot find better positions within a certain number of iterations, the proposed FSM will make them conduct the exploratory behavior. Thus the cases of being trapped into local optima can be avoided effectively. The proposed IAOA is extensively tested by twenty-three classical benchmark functions and ten CEC2020 test functions and compared with the AOA and other well-known optimization algorithms. The experimental results show that the proposed algorithm is superior to other comparative algorithms on most of the test functions. Furthermore, the test results of two training problems of multi-layer perceptron (MLP) and three classical engineering design problems also indicate that the proposed IAOA is highly effective when dealing with real-world problems.
  6. Zheng L, Wang S, Romans P, Zhao H, Luna C, Benedict MQ
    BMC Genet, 2003 Oct 24;4:16.
    PMID: 14577840
    Anopheles gambiae females are the world's most successful vectors of human malaria. However, a fraction of these mosquitoes is refractory to Plasmodium development. L3-5, a laboratory selected refractory strain, encapsulates transforming ookinetes/early oocysts of a wide variety of Plasmodium species. Previous studies on these mosquitoes showed that one major (Pen1) and two minor (Pen2, Pen3) autosomal dominant quantitative trait loci (QTLs) control the melanotic encapsulation response against P. cynomolgi B, a simian malaria originating in Malaysia.
  7. Zhang R, Wang S, Huang X, Yang Y, Fan H, Yang F, et al.
    Anal Chim Acta, 2020 Jan 15;1094:142-150.
    PMID: 31761041 DOI: 10.1016/j.aca.2019.10.012
    α-synuclein is a predominantly expressing neuronal protein for understanding the neurodegenerative disorders. A diagnosing system with aggregated α-synuclein encoded by SNCA gene is necessary to make the precautionary treatment against Parkinson's disease (PD). Herein, gold-nanourchin conjugated anti-α-synuclein antibody was desired as the probe and seeded on single-walled carbon nanotube (SWCN) integrated interdigitated electrode (IDE). The surface morphology of SWCN-modified IDE and gold urchin-antibody conjugates were observed under FESEM, FETEM and AFM, the existing elements were confirmed. Voltammetry analysis revealed that the limit of fibril-formed α-synuclein detection was improved by 1000 folds (1 fM) with gold-nanourchin-antibody modified surface, compared to the surface with only antibody (1 pM). Validating the interaction of α-synuclein by Enzyme-linked Immunosorbent Assay was displayed the detection limit as 10 pM. IDE has a good reproducibility and a higher selectivity on α-synuclein as evidenced by the interactive analysis with the control proteins, PARK1 and DJ-1.
  8. Zhang A, Kuang LF, Maisin N, Karumuru B, Hall DR, Virdiana I, et al.
    Environ Entomol, 2008 Jun;37(3):719-24.
    PMID: 18559177
    The previously identified female sex pheromone of cocoa pod borer, Conopomorpha cramerella, was re-evaluated for its attractive activity in different field conditions. It was found that lures containing 100-mug of synthetic sex pheromone blend, (E,Z,Z)- and (E,E,Z)-4,6,10-hexadecatrienyl acetates, and the corresponding alcohols in a ratio of 40:60:4:6 in a polyethylene vial attracted male C. cramerella moths in Sabah and peninsular Malaysia and in Sumatra and Sulawesi, Indonesia, suggesting that the same pheromone strain existed in a wide stretch of the Indo-Malayan archipelago. Of the three kinds of trap designs tested, the Delta traps were more effective than Pherocon V scale traps. Male captures were not significantly different among traps baited with 100-, 300-, or 1,000-mug doses of sex pheromone. A release rate study of pheromone formulation conducted in the laboratory showed that volatile active ingredients were desorbed from polyethylene vials following first-order kinetics, which indicates a satisfactory "half-life time" of a 100-mug loading is approximately 6 wk under laboratory conditions. A satisfactory attractiveness of the lure with a 100-mug loading was approximately 1-2 mo in the fields.
  9. Yu S, Park KT, Wang S
    Zootaxa, 2019 Jun 18;4619(1):zootaxa.4619.1.7.
    PMID: 31716319 DOI: 10.11646/zootaxa.4619.1.7
    Seven new species of the genus Deltoplastis Meyrick are described: D. acutangulata Wang et Yu, sp. nov., D. anatoliana Wang et Park, sp. nov., D. multidentalis Wang et Yu, sp. nov. and D. similihoristis Wang et Yu, sp. nov. from China; D. aculeata Wang et Yu, sp. nov. and D. spatuliunca Wang et Yu, sp. nov. from Malaysian Borneo; and D. ovidiscalis Park et Wang, sp. nov. from Vietnam. Deltoplastis horistis (Meyrick, 1910) is newly recorded in China and its female is described for the first time. Images of adults and genitalia of the new species are provided.
  10. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al.
    mBio, 2017 06 27;8(3).
    PMID: 28655818 DOI: 10.1128/mBio.00543-17
    The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3 The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia colimcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3 The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors.
  11. Yang X, Wang S, King TL, Kerr CJ, Blanchet C, Svergun D, et al.
    Faraday Discuss, 2016 Jul 18.
    PMID: 27430046
    We have developed a new class of lanthanide nano-clusters that self-assemble using flexible Schiff base ligands. Cd-Ln and Ni-Ln clusters, [Ln8Cd24(L(1))12(OAc)39Cl7(OH)2] (Ln = Nd, Eu), [Eu8Cd24(L(1))12(OAc)44], [Ln8Cd24(L(2))12(OAc)44] (Ln = Nd, Yb, Sm) and [Nd2Ni4(L(3))2(acac)6(NO3)2(OH)2], were constructed using different types of flexible Schiff base ligands. These molecular nano-clusters exhibit anisotropic architectures that differ considerably depending upon the presence of Cd (nano-drum) or Ni (square-like nano-cluster). Structural characterization of the self-assembled particles has been undertaken using crystallography, transmission electron microscopy and small-angle X-ray scattering. Comparison of the metric dimensions of the nano-drums shows a consistency of size using these techniques, suggesting that these molecules may share similar structural features in both solid and solution states. Photophysical properties were studied by excitation of the ligand-centered absorption bands in the solid state and in solution, and using confocal microscopy of microspheres loaded with the compounds. The emissive properties of these compounds vary depending upon the combination of lanthanide and Cd or Ni present in these clusters. The results provide new insights into the construction of novel high-nuclearity nano-clusters and offer a promising foundation for the development of new functional nanomaterials.
  12. Yang X, Ikhwanuddin M, Li X, Lin F, Wu Q, Zhang Y, et al.
    Mar Biotechnol (NY), 2018 Feb;20(1):20-34.
    PMID: 29152671 DOI: 10.1007/s10126-017-9784-2
    The molecular mechanism underlying sex determination and gonadal differentiation of the mud crab (Scylla paramamosain) has received considerable attention, due to the remarkably biological and economic differences between sexes. However, sex-biased genes, especially non-coding genes, which account for these differences, remain elusive in this crustacean species. In this study, the first de novo gonad transcriptome sequencing was performed to identify both differentially expressed genes and long non-coding RNAs (lncRNAs) between male and female S. paramamosain by using Illumina Hiseq2500. A total of 79,282,758 and 79,854,234 reads were generated from ovarian and testicular cDNA libraries, respectively. After filtrating and de novo assembly, 262,688 unigenes were produced from both libraries. Of these unigenes, 41,125 were annotated with known protein sequences in public databases. Homologous genes involved in sex determination and gonadal development pathways (Sxl-Tra/Tra-2-Dsx/Fru, Wnt4, thyroid hormone synthesis pathway, etc.) were identified. Three hundred and sixteen differentially expressed unigenes were further identified between both transcriptomes. Meanwhile, a total of 233,078 putative lncRNAs were predicted. Of these lncRNAs, 147 were differentially expressed between sexes. qRT-PCR results showed that nine lncRNAs negatively regulated the expression of eight genes, suggesting a potential role in sex differentiation. These findings will provide fundamental resources for further investigation on sex differentiation and regulatory mechanism in crustaceans.
  13. Yang J, Lu J, Zhu Q, Tao Y, Zhu Q, Guo C, et al.
    J Biosci Bioeng, 2021 Aug;132(2):161-166.
    PMID: 33972168 DOI: 10.1016/j.jbiosc.2020.12.016
    As one of Lianyungang's most famous specialties, Acanthogobius hasta is delicious and nutritious fish, but is extremely susceptible to spoilage during transportation and storage. In this study, Lactobacillus plantarum MMB-07 was isolated from traditional fermented sour fish to reduce losses and improve the utilization and food value of A. hasta. L. plantarum MMB-07 had good ability of acid production and acid resistance. Moreover, it could also inhibit common pathogens in food or aquatic products to ensure the safety of fermented products. MMB-07 was used to ferment A. hasta and obtain fermented Suanyu rich in nutrition value and good flavor. The volatile base nitrogen was 18.44 mg/100 g and the fermented fish meat maintained second-grade freshness. Thiobarbituric acid assay was 0.90 mg/kg and fat in fish meat was oxidized to a low degree. The studies indicated that MMB-07 has a high application prospect in low salt fermented fish.
  14. Yang J, Gao T, Ge F, Sun H, Cui Z, Wei Z, et al.
    Front Nutr, 2021;8:810460.
    PMID: 35118108 DOI: 10.3389/fnut.2021.810460
    The demand for roasted seaweed sandwich (Porphyra yezoensis) product has risen in recent years. The product slicing process has created a huge number of scraps that are not utilized effectively. Three lactic acid bacteria (LAB) strains were used to ferment P. yezoensis sauces in this study, including Lactobacillus fermentum, Lactobacillus casei, Streptococcus thermophilus, and the mixed strains (1:1:1, v/v). The fermentation characteristics, antioxidant capacity in vitro, sensory properties, and flavoring substances of fermented P. yezoensis sauces were analyzed. After 21 days of fermentation, all LAB strains grew well in the P. yezoensis sauces, with protease activity increased to 6.6, 9.24, 5.06, and 5.5 U/mL, respectively. Also, the flavors of P. yezoensis sauces fermented with L. casei and L. fermentum were satisfactory. On this premise, gas chromatography-mass spectrometry (GC-MS) was used to investigate the changes in gustatory compounds in P. yezoensis sauces fermented with L. casei and L. fermentum. In general, 42 and 41 volatile flavor chemicals were identified after the fermentation of L. casei and L. fermentum. Furthermore, the fermented P. yezoensis sauce possessed greater DPPH scavenging activity and ferric-reducing ability power than the unfermented P. yezoensis. Overall, the flavor and taste of P. yezoensis sauce fermented by L. casei was superior.
  15. Yang F, Jin C, Wang S, Wang Y, Wei L, Zheng L, et al.
    Chemosphere, 2023 May;323:138245.
    PMID: 36841450 DOI: 10.1016/j.chemosphere.2023.138245
    Due to increasing antibiotic pollution in the water environment, green and efficient adsorbents are urgently needed to solve this problem. Here we prepare magnetic bamboo-based activated carbon (MDBAC) through delignification and carbonization using ZnCl2 as activator, resulting in production of an activated carbon with large specific surface area (1388.83 m2 g-1). The influencing factors, such as solution pH, initial sulfadiazine (SD) concentration, temperature, and contact time, were assessed in batch adsorption experiments. The Langmuir isotherm model demonstrated that MDBAC adsorption capacity on SD was 645.08 mg g-1 at its maximum, being higher than majority of previously reported adsorbents. In SD adsorption, the kinetic adsorption process closely followed the pseudo-second kinetic model, and the thermodynamic adsorption process was discovered to be exothermic and spontaneous in nature. The MDBAC exhibited excellent physicochemical stability, facile magnetic recovery and acceptable recyclability properties. Moreover, the synergistic interactions between MDBAC and SD mainly involved electrostatic forces, hydrogen bonding, π-π stacking, and chelation. Within the benefits of low cost, ease of production and excellent adsorption performance, the MDBAC biosorbent shows promising utilization in removing antibiotic contaminants from wastewater.
  16. Xiong J, Luo R, Jia Z, Ge S, Lam SS, Xie L, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128399.
    PMID: 38007014 DOI: 10.1016/j.ijbiomac.2023.128399
    To develop a green and facile adsorbent for removing indoor polluted formaldehyde (HCHO) gas, the biomass porous nanofibrous membranes (BPNMs) derived from microcrystalline cellulose/chitosan were fabricated by electrospinning. The enhanced chemical adsorption sites with diverse oxygen (O) and nitrogen (N)-containing functional groups were introduced on the surface of BPNMs by non-thermal plasma modification under carbon dioxide (CO2) and nitrogen (N2) atmospheres. The average nanofiber diameters of nanofibrous membranes and their nanomechanical elastic modulus and hardness values decreased from 341 nm to 175-317 nm and from 2.00 GPa and 0.25 GPa to 1.70 GPa and 0.21 GPa, respectively, after plasma activation. The plasma-activated nanofibers showed superior hydrophilicity (WCA = 0°) and higher crystallinity than that of the control. The optimal HCHO adsorption capacity (134.16 mg g-1) of BPNMs was achieved under a N2 atmosphere at a plasma power of 30 W and for 3 min, which was 62.42 % higher compared with the control. Pyrrolic N, pyridinic N, CO and O-C=O were the most significant O and N-containing functional groups for the improved chemical adsorption of the BPNMs. The adsorption mechanism involved a synergistic combination of physical and chemical adsorption. This study provides a novel strategy that combines clean plasma activation with electrospinning to efficiently remove gaseous HCHO.
  17. Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, Mannan R, et al.
    Nature, 2022 Jan;601(7893):434-439.
    PMID: 34937944 DOI: 10.1038/s41586-021-04246-z
    The switch/sucrose non-fermentable (SWI/SNF) complex has a crucial role in chromatin remodelling1 and is altered in over 20% of cancers2,3. Here we developed a proteolysis-targeting chimera (PROTAC) degrader of the SWI/SNF ATPase subunits, SMARCA2 and SMARCA4, called AU-15330. Androgen receptor (AR)+ forkhead box A1 (FOXA1)+ prostate cancer cells are exquisitely sensitive to dual SMARCA2 and SMARCA4 degradation relative to normal and other cancer cell lines. SWI/SNF ATPase degradation rapidly compacts cis-regulatory elements bound by transcription factors that drive prostate cancer cell proliferation, namely AR, FOXA1, ERG and MYC, which dislodges them from chromatin, disables their core enhancer circuitry, and abolishes the downstream oncogenic gene programs. SWI/SNF ATPase degradation also disrupts super-enhancer and promoter looping interactions that wire supra-physiologic expression of the AR, FOXA1 and MYC oncogenes themselves. AU-15330 induces potent inhibition of tumour growth in xenograft models of prostate cancer and synergizes with the AR antagonist enzalutamide, even inducing disease remission in castration-resistant prostate cancer (CRPC) models without toxicity. Thus, impeding SWI/SNF-mediated enhancer accessibility represents a promising therapeutic approach for enhancer-addicted cancers.
  18. Wu J, Zhang H, Wang S, Yuan L, Grünhofer P, Schreiber L, et al.
    J Plant Res, 2019 Jul;132(4):531-540.
    PMID: 31127431 DOI: 10.1007/s10265-019-01115-9
    Areca nuts (seeds of Areca catechu L.) are a traditional and popular masticatory in India, Bangladesh, Malaysia, certain parts of China, and some other countries. Four related pyridine alkaloids (arecoline, arecaidine, guvacoline, and guvacine) are considered being the main functional ingredients in areca nut. Until now, A. catechu is the only known species producing these alkaloids in the Arecaceae family. In the present study, we investigated alkaloid contents in 12 Arecaceae species and found that only Areca triandra Roxb. contained these pyridine alkaloids. We further analyzed in more detail tissue-specific and development-related distribution of these alkaloids in leaves, male and female flowers and fruits in different stages of maturity in A. triandra by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Results revealed that the alkaloids were most abundant in young leaves, the pericarp of ripe fruits and the endosperm of unripe fruits in developmental stage 2. Abundance of the 4 different alkaloids in A. triandra fruits varied during maturation. Pericarps of ripe fruits had the highest arecaidine concentration (4.45 mg g-1) and the lowest guvacoline concentration (0.0175 mg g-1), whereas the endosperm of unripe fruits of developmental stage 2 contained the highest guvacoline concentration (3.39 mg g-1) and the lowest guvacine concentration (0.245 mg g-1). We conclude that A. triandra is useful in future as a further valuable source of Areca alkaloids.
  19. Wu C, Zhong L, Yeh PJ, Gong Z, Lv W, Chen B, et al.
    Sci Total Environ, 2024 Jan 01;906:167632.
    PMID: 37806579 DOI: 10.1016/j.scitotenv.2023.167632
    Drought affects vegetation growth to a large extent. Understanding the dynamic changes of vegetation during drought is of great significance for agricultural and ecological management and climate change adaptation. The relations between vegetation and drought have been widely investigated, but how vegetation loss and restoration in response to drought remains unclear. Using the standardized precipitation evapotranspiration index (SPEI) and the normalized difference vegetation index (NDVI) data, this study developed an evaluation framework for exploring the responses of vegetation loss and recovery to meteorological drought, and applied it to the humid subtropical Pearl River basin (PRB) in southern China for estimating the loss and recovery of three vegetation types (forest, grassland, cropland) during drought using the observed NDVI changes. Results indicate that vegetation is more sensitive to drought in high-elevation areas (lag time  8 months). Vegetation loss (especially in cropland) is found to be more sensitive to drought duration than drought severity and peak. No obvious linear relationship between drought intensity and the extent of vegetation loss is found. Regardless of the intensity, drought can cause the largest probability of mild loss of vegetation, followed by moderate loss, and the least probability of severe loss. Large spatial variability in the probability of vegetation loss and recovery time is found over the study domain, with a higher probability (up to 50 %) of drought-induced vegetation loss and a longer recovery time (>7 months) mostly in the high-elevation areas. Further analysis suggests that forest shows higher but cropland shows lower drought resistance than other vegetation types, and grassland requires a shorter recovery time (4.2-month) after loss than forest (5.1-month) and cropland (4.8-month).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links