Displaying publications 1 - 20 of 483 in total

Abstract:
Sort:
  1. Ooi EZH, Ab Karim NA, Chan ES, Wang Y, Tang TK, Tong SC, et al.
    J Sci Food Agric, 2024 May;104(7):3958-3970.
    PMID: 38284502 DOI: 10.1002/jsfa.13278
    BACKGROUND: As a by-product of the palm oil industry, palm stearin is often overlooked despite having several beneficial properties, such as excellent stability, which is critically essential to meet the demand of the global food trend in producing safer processed food. Specifically, deep frying of food is often associated with the production of toxic compounds that could potentially migrate into the food system when oils are degraded under continuous heating. The incorporation of palm stearin is regarded as a cost-effective and efficient method to modify the fatty acid composition of oils, enhance the frying qualities and lower the degradation rate.

    RESULTS: This study blended 5% and 10% palm stearin into palm oil to investigate the deep-frying performance and impact on food quality. Increasing the palm stearin content improved the frying oil's oxidative and hydrolytic stability, evidenced by reduction of total polar material, free fatty acid and total oxidation value. Addition of palm stearin increased the slip melting point which improved the oil's oxidative stability but no significant increase in oil content of instant noodles was observed. Scanning electron microscopy and fluorescence microscopy showed the formation of larger pores in the noodle structure that facilitated oil retention.

    CONCLUSION: Blending palm stearin into frying oil enhanced the frying stability and minimally affected the oil uptake in instant noodles. This article presents the viability of blending palm stearin into frying oils to develop longer-lasting frying oils. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  2. Lan X, Huang W, Sun B, Waiho K, Song H, Hu M, et al.
    Aquat Toxicol, 2024 May;270:106900.
    PMID: 38537436 DOI: 10.1016/j.aquatox.2024.106900
    Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 μg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.
  3. Wang Y, Shi J, Xu YJ, Tan CP, Liu Y
    Food Chem, 2024 Apr 16;438:137400.
    PMID: 38039864 DOI: 10.1016/j.foodchem.2023.137400
    The digestion behavior of lipids plays a crucial role in their nutritional bioaccessibility, which subsequently impacts human health. This study aims to investigate potential variations in lipid digestion profiles among individuals of different ages, considering the distinct physiological functions of the gastrointestinal tract in infants, aging populations, and healthy young adults. The digestion fates of high oleic peanut oil (HOPO), sunflower oil (SO), and linseed oil (LINO) were investigated using in vitro digestion models representing infants, adults, and elders. Comparatively, lipid digestion proved to be more comprehensive in adults, leading to free fatty acid (FFA) levels of 64.53%, 62.32%, and 57.90% for HOPO, SO, and LINO, respectively. Besides, infants demonstrated propensity to selectively release FFAs with shorter chain lengths and higher saturation levels during the digestion. In addition, in the gastric phase, particle sizes among the elderly were consistently larger than those observed in infants and adults, despite adults generating approximately 15% FFAs within the stomach. In summary, this study enhances our fundamental comprehension of how lipids with varying degrees of unsaturation undergo digestion in diverse age groups.
  4. Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, et al.
    Chem Commun (Camb), 2024 Apr 16.
    PMID: 38625567 DOI: 10.1039/d3cc06015b
    Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
  5. Huang M, Ma Y, Qian J, Sokolova IM, Zhang C, Waiho K, et al.
    J Hazard Mater, 2024 Apr 15;468:133801.
    PMID: 38377908 DOI: 10.1016/j.jhazmat.2024.133801
    Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 μg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.
  6. Cai ZZ, Xu CX, Song ZL, Li JL, Zhang N, Zhao JH, et al.
    Food Chem, 2024 Apr 09;449:139243.
    PMID: 38608605 DOI: 10.1016/j.foodchem.2024.139243
    Linusorbs (LO), cyclolinopeptides, are a group of cyclic hydrophobic peptides and considered a valuable by-product of flaxseed oil due to numerous health benefits. Currently applied acetone or methanol extraction could contaminate the feedstocks for further food-grade application. Using flaxseed cake as feedstock, this study established a practical method for preparing LO from pressed cake. Firstly, LO composition of 15 flaxseed cultivars was analyzed. Next, cold-pressed cake was milled and screened mechanically. The kernel and hull fractions were separated based on the disparity of their mechanical strength. Monitored by hyperspectral fluorescence, the LO-enriched kernel fraction separated from cold-pressed flaxseed cake was further used as feedstock for LO production. After ethanol extraction, partition, and precipitation, LOs were extracted from cold-pressed flaxseed cake with a purity of 91.4%. The proposed method could serve as feasible flaxseed cake valorization strategy and enable the preparation of other polar compounds such as flax lignan and mucilage.
  7. Hafeez R, Guo J, Ahmed T, Ibrahim E, Ali MA, Rizwan M, et al.
    Chemosphere, 2024 Apr 04;356:141904.
    PMID: 38582174 DOI: 10.1016/j.chemosphere.2024.141904
    Rice blast, an extremely destructive disease caused by the filamentous fungal pathogen Magnaporthe oryzae, poses a global threat to the production of rice (Oryza sativa L.). The emerging trend of reducing dependence on chemical fungicides for crop protection has increased interest in exploring bioformulated nanomaterials as a sustainable alternative antimicrobial strategy for effectively managing plant diseases. Herein, we used physiomorphological, transcriptomic, and metabolomic methods to investigate the toxicity and molecular action mechanisms of moringa-chitosan nanoparticles (M-CNPs) against M. oryzae. Our results demonstrate that M-CNPs exhibit direct antifungal properties by impeding the growth and conidia formation of M. oryzae in a concentration-dependent manner. Propidium iodide staining indicated concentration-dependent significant apoptosis (91.33%) in the fungus. Ultrastructural observations revealed complete structural damage in fungal cells treated with 200 mg/L M-CNPs, including disruption of the cell wall and destruction of internal organelles. Transcriptomic and metabolomic analyses revealed the intricate mechanism underlying the toxicity of M-CNPs against M. oryzae. The transcriptomics data indicated that exposure to M-CNPs disrupted various processes integral to cell membrane biosynthesis, aflatoxin biosynthesis, transcriptional regulation, and nuclear integrity in M. oryzae., emphasizing the interaction between M-CNPs and fungal cells. Similarly, metabolomic profiling demonstrated that exposure to M-CNPs significantly altered the levels of several key metabolites involved in the integral components of metabolic pathways, microbial metabolism, histidine metabolism, citrate cycle, and lipid and protein metabolism in M. oryzae. Overall, these findings demonstrated the potent antifungal action of M-CNPs, with a remarkable impact at the physiological and molecular level, culminating in substantial apoptotic-like fungal cell death. This research provides a novel perspective on investigating bioformulated nanomaterials as antifungal agents for plant disease control.
  8. Ma J, Ma NL, Fei S, Liu G, Wang Y, Su Y, et al.
    Environ Pollut, 2024 Apr 01;346:123646.
    PMID: 38402938 DOI: 10.1016/j.envpol.2024.123646
    Stover and manure are the main solid waste in agricultural industry. The generation of stover and manure could lead to serious environmental pollution if not handled properly. Composting is the potential greener solution to remediate and reduce agricultural solid waste, through which stover and manure could be remediated and converted into organic fertilizer, but the long composting period and low efficiency of humic substance production are the key constraints in such remediation approach. In this study, we explore the effect of lignocellulose selective removal on composting by performing chemical pretreatment on agricultural waste followed by utilization of biochar to assist in the remediation by co-composting treatment and reveal the impacts of different lignocellulose component on organic fertilizer production. Aiming to discover the key factors that influence humification during composting process and improve the composting quality as well as comprehensive utilization of agricultural solid waste. The results demonstrated that the removal of selective lignin or hemicellulose led to the shift of abundances lignocellulose-degrading bacteria, which in turn accelerated the degradation of lignocellulose by almost 51.2%. The process also facilitated the remediation of organic waste via humification and increased the humic acid level and HA/FA ratio in just 22 days. The richness of media relies on their lignocellulose content, which is negatively correlated with total nitrogen content, humic acid (HA) content, germination index (GI), and pH, but positively correlated with fulvic acid (FA) and total organic carbon (TOC). The work provides a potential cost effective and efficient framework for agricultural solid waste remediation and reduction.
  9. Sun Q, Guo F, Liu Y, Zhang Y, Zhang K, Wang Y, et al.
    J Org Chem, 2024 Mar 01;89(5):3304-3308.
    PMID: 38356371 DOI: 10.1021/acs.joc.3c02754
    A protocol for the construction of an angular tricyclic benzofuran skeleton based on the C-H activation strategy has been established. Different phthalide lactones on this skeleton can be easily assembled with various side chains by using C-H activation with aldehydes and subsequent reduction. This skeleton provides a versatile and crucial motif for the total synthesis of naturally occurring angular tricyclic benzofurans and their derivatives. Based on this protocol, the improved total syntheses of daldinin A and annullatin D were achieved in yields of 17.3 and 7.6%, respectively.
  10. Chen L, Xu YY, Lin JY, Ji ZP, Yang F, Tan S, et al.
    Asian J Psychiatr, 2024 Mar;93:103958.
    PMID: 38364597 DOI: 10.1016/j.ajp.2024.103958
    BACKGROUND AND AIM: Suicide is nearly always associated with underlying mental disorders. Risk factors for suicide attempts (SAs) in patients with bipolar disorder (BD) misdiagnosed with major depressive disorder (MDD) remain unelucidated. This study was to evaluate the prevalence and clinical risk factors of SAs in Chinese patients with BD misdiagnosed with MDD.

    METHODS: A total of 1487 patients with MDD from 13 mental health institutions in China were enrolled. Mini International Neuropsychiatric Interview (MINI) was used to identify patients with BD who are misdiagnosed as MDD. The general sociodemographic and clinical data of the patients were collected and MINI suicide module was used to identify patients with SAs in these misdiagnosed patients.

    RESULTS: In China, 20.6% of patients with BD were incorrectly diagnosed as having MDD. Among these misdiagnosed patients, 26.5% had attempted suicide. These patients tended to be older, had a higher number of hospitalizations, and were more likely to experience frequent and seasonal depressive episodes with atypical features, psychotic symptoms, and suicidal thoughts. Frequent depressive episodes and suicidal thoughts during depression were identified as independent risk factors for SAs. Additionally, significant sociodemographic and clinical differences were found between individuals misdiagnosed with MDD in BD and patients with MDD who have attempted suicide.

    CONCLUSIONS: This study highlights the importance of accurate diagnosis in individuals with BD and provide valuable insights for the targeted identification and intervention of individuals with BD misdiagnosed as having MDD and those with genuine MDD, particularly in relation to suicidal behavior.

  11. Achdiat M, Tan KA, Fujaya Y, Wang Y, Martin MB, Shu-Chien AC, et al.
    Microsc Res Tech, 2024 Feb 26.
    PMID: 38404206 DOI: 10.1002/jemt.24524
    Crustaceans possess a range of sensory organs crucial in sensory perception, communication, and various ecological functions. Understanding morphological and functional differences in antennae among species could validate taxonomic differentiation and ecological adaptations. The antennae morphology and ultrastructure of mud crab species within the Scylla genus are poorly understood, and their role in ecological adaptation and species differentiation remains unexplored. This study aimed to describe and compare the morphology and ultrastructure of antennae in Scylla olivacea, Scylla tranquebarica, and Scylla paramamosain. Antennae were carefully excised from each crab and subjected to morphological, morphometric, and ultrastructural analysis. The study revealed that the antennae of Scylla species exhibit similar overall morphology, with a series of segments that tapered toward the upper end. All species possess non-branched single setae on the upper end of each segment. The number of antennae segments varied between species, with S. paramamosain having significantly more segments than S. olivacea. Additionally, the length and width of antenna segments differed among the species, with S. tranquebarica having a rougher antenna surface compared to S. olivacea and S. paramamosain. Our findings suggest that Scylla's antennae are distinct between species, especially in the number of segments and setae size. Such difference might be related to ecological adaptation. The role of antennae in sensory perception and social behavioral cues in mud crabs warrants further investigation. This study serves as a foundational reference for future research on the taxonomy, ecological adaptation, and sensory behaviors in the Scylla genus. RESEARCH HIGHLIGHTS: Variations and similarities in morphology and ultrastructure of three Scylla species can be found in the antennae. Scylla paramamosain had significantly higher number of segments than Scylla olivacea in morphology feature. The antennae surface of Scylla tranquebarica was rougher than that of S. olivacea and S. paramamosain. Antennae of three Scylla species possess non-branched single setae.
  12. Liu L, Wang Y, Zhao Y
    Sci Total Environ, 2024 Feb 22;921:171110.
    PMID: 38395172 DOI: 10.1016/j.scitotenv.2024.171110
    Receiving international industrial transfer (mainly foreign direct investment, FDI) is extremely important for economic development but also brings negative environmental impacts for Southeast Asian developing countries (SEADCs). Due to relatively low labor costs and large market potential, SEADCs have become an attractive destination for industrial transfer after China, while studies were far from sufficient on the associated air pollutant emissions that would worsen air quality and threaten human health. We develop an exploratory framework to estimate the long-term trends of relevant air pollutant emissions in eight major SEADCs, including Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Thailand, and Vietnam. During 1990-2018, the emissions generally show a fluctuating upward trend and increased significantly in Cambodia, Laos, Philippines, and Vietnam. The total emissions of CO, NMVOC, SO2, NOX, PM2.5, and NH3 from the eight SEADCs increased from 19.0, 4.3, 3.6, 1.5, 0.5, and 0.4 kilotons (kt) to 391.6, 260.9, 271.1, 182.4, 48.4, and 12.2 kt, respectively. The emission growth in almost all SEADCs accelerated after 2008 and faster than FDI growth. The disparities in emissions among SEADCs basically grew first and then declined to a level lower than that of 1990, but generally exceeded the disparities in FDI. Productivity gain and emission intensity decrease primarily caused the emission growth and reduction, respectively. Relatively small reductions in emission intensity are found for NOX and SO2. In general, most SEADCs have utilized FDI for economic development without sufficient efforts on air pollutant emission controls. Our outcomes can inform the formulation and optimization of relevant policies reconciling economic development and air quality improvement in SEADCs.
  13. Wang Y, Lu Y, Tian X, Liu Y, Ma W
    Heliyon, 2024 Feb 15;10(3):e25060.
    PMID: 38314296 DOI: 10.1016/j.heliyon.2024.e25060
    Previous research has identified a negative association between mobile phone addiction and time management disposition among college students; however, the direction of this relationship remains divergent. This study utilized a cross-lagged panel model to elucidate the directionality of the relationship between mobile phone addiction and time management disposition. A total of 466 college students completed two measures at seven-month intervals. The findings revealed a prevalence of mobile phone addiction at 10.94 % and 13.73 % in the two surveys. Notably, both mobile phone addiction and time management disposition demonstrated stability over time. Furthermore, a discernible negative bidirectional relationship was observed between the two. The present findings underscore the importance of timely intervention for college students facing challenges in mobile phone usage and time management.
  14. Wang F, Wang Y, Han Y, Cho JH
    Heliyon, 2024 Feb 15;10(3):e25484.
    PMID: 38352763 DOI: 10.1016/j.heliyon.2024.e25484
    OBJECTIVE: With the arrival of the experience economy era, changes in the marketing environment, and the evolution of consumer psychological needs, a good user experience will bring them freshness. Based on user experience, this paper analyzes the relationship among product brand image, brand trust, and brand loyalty, aiming to promote product values and improve brand loyalty and trust.

    METHODS: Through case analysis, consumers' favorite brands were selected and conducted positioning analysis on brand color, image, package form, and so on. The study proposed a hypothetical model of user experience on brand loyalty and performed a questionnaire survey on 357 consumers. The relational model of the impact of user experience on consumers was verified using the SEM (Structural Equation Model) method.

    RESULTS: It is shown that sensory experience, emotional experience, behavioral experience, and thinking experience have significant impacts on brand image; brand image apparently affects brand trust; and brand trust and image remarkably influence brand loyalty.

    CONCLUSIONS: Extending the concept of user experience to the fast-moving consumer goods industry will contribute to the package design of products and the theory and practice of brand loyalty. The research findings can provide effective strategies and approaches for marketers to improve product market competitiveness and enhance consumer brand stickiness.

  15. Tong M, Liu P, Li C, Zhang Z, Sun W, Dong P, et al.
    J Chem Inf Model, 2024 Feb 12;64(3):785-798.
    PMID: 38262973 DOI: 10.1021/acs.jcim.3c01584
    The allosteric modulation of the homodimeric H10-03-6 protein to glycan ligands L1 and L2, and the STAB19 protein to glycan ligands L3 and L4, respectively, has been studied by molecular dynamics simulations and free energy calculations. The results revealed that the STAB19 protein has a significantly higher affinity for L3 (-11.38 ± 2.32 kcal/mol) than that for L4 (-5.51 ± 1.92 kcal/mol). However, the combination of the H10-03-6 protein with glycan L2 (1.23 ± 6.19 kcal/mol) is energetically unfavorable compared with that of L1 (-13.96 ± 0.35 kcal/mol). Further, the binding of glycan ligands L3 and L4 to STAB19 would result in the significant closure of the two CH2 domains of the STAB19 conformation with the decrease of the centroid distances between the two CH2 domains compared with the H10-03-6/L1/L2 complex. The CH2 domain closure of STAB19 relates directly to the formation of new hydrogen bonds and hydrophobic interactions between the residues Ser239, Val240, Asp265, Glu293, Asn297, Thr299, Ser337, Asp376, Thr393, Pro395, and Pro396 in STAB19 and glycan ligands L3 and L4, which suggests that these key residues would contribute to the specific regulation of STAB19 to L3 and L4. In addition, the distance analysis revealed that the EF loop in the H10-03-6/L1/L2 model presents a high flexibility and partial disorder compared with the stabilized STAB19/L3/L4 complex. These results will be helpful in understanding the specific regulation through the asymmetric structural characteristics in the CH2 and CH3 domains of the H10-03-6 and STAB19 proteins.
  16. Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H
    Langmuir, 2024 Feb 06;40(5):2465-2486.
    PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558
    Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
  17. Wang Y, Cao M, Hu T, Zhou X
    Plant Dis, 2024 Feb 06.
    PMID: 38319620 DOI: 10.1094/PDIS-12-23-2674-PDN
    Hibiscus latent Singapore virus (HLSV) and Hibiscus latent Fort Pierce virus (HLFPV) both belong to the genus Tobamovirus in the family Virgaviridae. The genomes of both HLSV and HLFPV consist of a linear positive sense single-stranded RNA of about 6.3 kb. HLSV is the causal agent of hibiscus leaf crinkle disease. Infections of HLSV in hibiscus (Hibiscus rosa-sinensis) have so far only been reported in Singapore, Japan and Malaysia (Srinivasan et al., 2002; Yoshida et al., 2018; Yusop et al., 2021). In 2017, leaf curling and chlorosis symptoms of lantana (Lantana camara) plants were found in Chenshan Botanical Garden, Shanghai, China. To detect potential virus(es) in these lantana samples, leaves from one lantana plant were collected and total RNA was extracted with RNAiso Plus (TaKaRa). A cDNA library was prepared by TruSeq RNA Sample Prep Kit (Illumina) after removing ribosomal RNA by Ribo-ZeroTM rRNA Removal Kit (Epicentre). The paired-end sequencing was then performed on an Illumina NovaSeq 6000. A total of 61,085,018 high quality reads were obtained and de novo assembly by StringTie revealed 124,516 contigs (greater than 50 bp, N50=719 bp) with an average length of 537 bp. BLASTx analyses in the National Center for Biotechnology Information (NCBI) database showed that 1 long contig of 6,305 bp, assembled of 1794 clean reads, shared significant nucleotide similarities with the genomic sequence of HLSV, and 1 contig of 6,271 bp, assembled of 3174 clean reads, shared significant similarities with the genomic sequence of HLFPV, yielding an average coverage of the whole genome at 42.65 and 75.83 per million reads, respectively. To obtain the complete genome of the viral RNA in this lantana sample, eleven overlapping regions covering the entire HLSV viral genome, and nine overlapping regions covering the entire HLFPV viral genome were amplified by reverse transcription-PCR (RT-PCR) and sequenced. In addition, the exact 5' and 3' ends of the genomic RNA of each virus were determined by rapid amplification of the cDNA ends (RACE) (Wang et al. 2020). The complete genome of the identified HLSV, deposited in GenBank: MZ020960, is 6,486 nt in length and shows 98.4% nucleotide sequence identity with HLSV Singapore isolate (GenBank: AF395898). Similar to other HLSV isolates, this virus isolate possesses an internal poly(A) tract of 87 nucleotides, which is crucial to virus replication (Niu et al., 2015). The complete genome of the Lantana HLFPV isolate is 6,463 nt (GenBank MZ020961) including a 73 nt internal poly(A) tract, and has 98.4% nt identity to HLFPV-Japan (AB917427). In two other lantana plants from the same site, the presence of HLSV and HLFPV was confirmed by RT-PCR using the primer pairs (5'-GCATCTGCATAACACGGTTG-3'/5'-ACGTTGTAGTAGACGTTGTTGTAG-3' and 5'-GGACCTTGCTAATCCGCTAAAGTTG-3'/5'-GGTCCATGTCCATCCAGATGCAATC-3'). In addition to the HLSV and HLFPV genomes, BLASTx analysis of three contigs of 3,006 bp, 2,845 bp and 2,200 bp, assembled of 1328, 352 and 2280 clean reads respectively, showed high identity to RNAs 1 (MG182148), 2 (DQ412731) and 3 (KY794710) of cucumber mosaic virus. To the best of our knowledge, this is the first report of L. camara as a new natural host of HLSV and HLFPV, and first identification of a mixed infection of HLSV and HLFPV.
  18. Yang D, Zhang Y, Lee YY, Lu Y, Wang Y, Zhang Z
    Food Chem, 2024 Feb 02;444:138635.
    PMID: 38325087 DOI: 10.1016/j.foodchem.2024.138635
    The relationship between batch and continuous enzymatic interesterification was studied through enzymatic interesterification of beef tallow. The interesterification degree (ID) during the batch reaction was monitored based on triacylglycerol composition, sn-2 fatty acid composition, solid fat content, and melting profile and was described by an exponential model. A relationship equation featuring reaction parameters of the two reations was established to predict the ID and physicochemical characteristics in continuous interesterification. The prediction of the ID based on triacylglycerol composition was reliable, with an R2 value greater than 0.85. Interesterification produced more high-melting-point components for both reactions, but the acyl migration in the batch-stirring reactor was much greater, resulting in faster crystallization, a more delicate crystal network, and lower hardness. The relationship equation can be employed to predict the ID, but the prediction of physicochemical properties was constrained by the difference in acyl migration degree between the two reactions.
  19. Ke W, Lee YY, Cheng J, Tan CP, Lai OM, Li A, et al.
    Food Chem, 2024 Feb 01;433:137374.
    PMID: 37683471 DOI: 10.1016/j.foodchem.2023.137374
    Enzymatic glycerolysis produced ground nut oil-based diacylglycerols (GNO-DAG) with a purity of 43.28 ± 0.89% (GNO-DAG40). GNO-DAG80 (with a DAG purity of 87.33 ± 0.61%) was obtained after purification using molecular distillation. Traditional palm oil was mixed with the "liquid" DAG as margarine base oils. Subsequent evaluations of palm oil-DAG-based fats (PO-GNO DAG) as a margarine replacement in a W/O model system showed that the material was an ideal functional base oil with improved aeration properties and plasticity during application. The binary system physical, textural and crystallization property were determined, and the compatibility of the binary mixed system was analyzed by constructing a phase diagrams. The PO-GNO DAG showed decent compatibility between the two phases and had better texture and rheological properties. In addition, PO-GNO DAG40 showed better apparent viscosity and aeration characteristics than PO-GNO DAG80, with potential application in the food specialty fats industry.
  20. Li Z, Li L, Sokolova I, Shang Y, Huang W, Khor W, et al.
    Mar Pollut Bull, 2024 Feb;199:115979.
    PMID: 38171167 DOI: 10.1016/j.marpolbul.2023.115979
    Coastal habitats are exposed to increasing pressure of nanopollutants commonly combined with warming due to the seasonal temperature cycles and global climate change. To investigate the toxicological effects of TiO2 nanoparticles (TiO2 NPs) and elevated temperature on the intestinal health of the mussels (Mytilus coruscus), the mussels were exposed to 0.1 mg/L TiO2 NPs with different crystal structures for 14 days at 20 °C and 28 °C, respectively. Compared to 20 °C, the agglomeration of TiO2 NPs was more serious at 28 °C. Exposure to TiO2 NPs led to elevated mortality of M. coruscus and modified the intestinal microbial community as shown by 16S rRNA sequence analysis. Exposure to TiO2 NPs changed the relative abundance of Bacteroidetes, Proteobacteria and Firmicutes. The relative abundances of putative mutualistic symbionts Tenericutes and Fusobacteria increased in the gut of M. coruscus exposed to anatase, which have contributed to the lower mortality in this group. LEfSe showed the combined stress of warming and TiO2 NPs increased the risk of M. coruscus being infected with potential pathogenic bacteria. This study emphasizes the toxicity differences between crystal structures of TiO2 NPs, and will provides an important reference for analyzing the physiological and ecological effects of nanomaterial pollution on bivalves under the background of global climate change.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links