Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Zou X, Wei Y, Jiang S, Xu F, Wang H, Zhan P, et al.
    J Agric Food Chem, 2022 Nov 16;70(45):14468-14479.
    PMID: 36322824 DOI: 10.1021/acs.jafc.2c06187
    2-Phenylethanol (2-PE), a common compound found in plants and microorganisms, exhibits broad-spectrum antifungal activity. Using Botrytis cinerea, we demonstrated that 2-PE suppressed mycelium growth in vitro and in strawberry fruit and reduced natural disease without adverse effects to fruit quality. 2-PE caused structural damage to mycelia, as shown by scanning and transmission electron microscopy. From RNA sequencing analysis we found significantly upregulated genes for enzymatic and nonenzymatic reactive oxygen species (ROS) scavenging systems including sulfur metabolism and glutathione metabolism, indicating that ROS stress was induced by 2-PE. This was consistent with results from assays demonstrating an increase ROS and hydrogen peroxide levels, antioxidant enzyme activities, and malondialdehyde content in treated cells. The upregulation of ATP-binding cassette transporter genes, the downregulation of major facilitator superfamily transporters genes, and the downregulation of ergosterol biosynthesis genes indicated a severe disruption of cell membrane structure and function. This was consistent with results from assays demonstrating compromised membrane integrity and lipid peroxidation. To summarize, 2-PE exposure suppressed B. cinerea growth through ROS stress and cell membrane disruption.
  2. Zou X, Wei Y, Zhu J, Sun J, Shao X
    Foods, 2023 Sep 28;12(19).
    PMID: 37835272 DOI: 10.3390/foods12193619
    This study aims to evaluate the antifungal effects of volatile organic compounds (VOCs) produced by a marine biocontrol yeast, Scheffersomyces spartinae W9. The results showed that the VOCs from the yeast inhibited the growth of Botrytis cinerea mycelium and spore germination by 77.8% and 58.3%, respectively. Additionally, it reduced the disease incidence and lesion diameter of gray mold on the strawberry fruit surface by 20.7% and 67.4%, respectively. Electronic micrographs showed that VOCs caused damage to the morphology and ultrastructure of the hyphae. Based on headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS), S. spartinae W9 emitted 18 main VOCs, and the pure substance of VOCs, such as 3-methyl-1-butanol, 2-methyl-1-butanol, 2-phenylethanol, and isoamyl acetate, showed antifungal effects against B. cinerea mycelium growth. Among them, 2-phenylethanol exhibited the strongest antifungal activity. It has been concluded that VOCs are the key antifungal mechanism of S. spartinae W9, and a promising strategy for controlling gray mold on strawberry fruit.
  3. Zhu J, Zhou Y, Wei Y, Luo Q, Huang H
    Heliyon, 2024 Mar 15;10(5):e26427.
    PMID: 38434358 DOI: 10.1016/j.heliyon.2024.e26427
    For the classical multi-objective optimal power flow (MOOPF) problem, only traditional thermal power generators are used in power systems. However, there is an increasing interest in renewable energy sources and the MOOPF problem using wind and solar energy has been raised to replace part of the thermal generators in the system with wind turbines and solar photovoltaics (PV) generators. The optimization objectives of MOOPF with renewable energy sources vary with the study case. They are mainly a combination of 2-4 objectives from fuel cost, emissions, power loss and voltage deviation (VD). In addition, reasonable prediction of renewable power is a major difficulty due to the discontinuous, disordered and unstable nature of renewable energy. In this paper, the Weibull probability distribution function (PDF) and lognormal PDF are applied to evaluate the available wind and available solar power, respectively. In this paper, an enhanced multi-objective mayfly algorithm (NSMA-SF) based on non-dominated sorting and the superiority of feasible solutions is implemented to tackle the MOOPF problem with wind and solar energy. The algorithm NSMA-SF is applied to the modified IEEE-30 and standard IEEE-57 bus test systems. The simulation results are analyzed and compared with the recently reported MOOPF results.
  4. Zhou L, Song Y, Jiang Y, Wei Y, Jiang S, Chen Y, et al.
    Food Funct, 2023 Oct 02;14(19):8876-8892.
    PMID: 37698234 DOI: 10.1039/d3fo03041e
    Thinned peach fruit is a by-product with abundant yields. However, it is barely utilized. This study aimed to study the physicochemical properties and anti-diabetic ability of polysaccharides (PPSs) from a thinned peach fruit to investigate its application potential. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) characterizations were performed together with tests to determine rheology properties, monosaccharide composition, and molecular weight of the obtained polysaccharide. Moreover, the antioxidant activity, α-amylase inhibitory activity, binding abilities to bile salts, and effects on type 2 diabetic mice were analyzed. The results indicated that PPS consisted of two components with molecular weights of 287.38 kDa and 12.02 kDa, accounting for 89.83% and 10.17% of the composition, respectively. The dominant monosaccharides were galactose, galacturonic acid, and arabinose, exhibiting α-configurations. The concentration was positively related to the viscosity of PPS. As the temperature was increased from 25 °C to 37 °C and the pH from 2.0 to 7.0, the viscosity decreased. The IC50 values for scavenging DPPH and ABTS were around 0.22 and 1.47 mg mL-1. Also, PPS could inhibit α-amylase ability and bind bile salts. The administration of PPS significantly inhibited emaciation, organ damage, improved oral glucose tolerance and insulin resistance, enhanced the content of short-chain fatty acids (SCFAs), and regulated blood lipid profiles and the composition and structure of colon microbiota in type-2 diabetic mice. These results provide new evidence for the potential of PPS as a bioactive ingredient with anti-diabetic properties for use in the food industry.
  5. Zhao Z, Wei Y, Zou X, Jiang S, Chen Y, Ye J, et al.
    J Agric Food Chem, 2023 Dec 02.
    PMID: 38041637 DOI: 10.1021/acs.jafc.3c06676
    Previously, we reported that marine yeast Scheffersomyces spartinae exhibited biocontrol efficacy against the gray mold of strawberries caused by Botrytis cinerea. Herein, tryptophol, a quorum-sensing molecule, was identified in the metabolites of S. spartinae. Subsequently, we found that 25 μM tryptophol promoted population density, biofilm formation, and cell aggregation of S. spartinae. Furthermore, 25 μM tryptophol improved the biocontrol efficacy of S. spartinae against B. cinerea in vitro and in the strawberry fruit. Under a scanning electronic microscope, tryptophol facilitated colonization and biofilm formation on strawberry wounds, showing that tryptophol increased the biocontrol efficacy of S. spartinae via quorum sensing. Transcriptome analysis revealed that tryptophol upregulated the gene expression of SDS3, DAL81, DSE1, SNF5, SUN41, FLO8, and HOP1, which was associated with cell adhesion or biofilm formation. Thus, to the best of our knowledge, this study was the first to report that tryptophol improved the biocontrol efficacy of S. spartinae via quorum sensing.
  6. Zhao S, Chen J, Cao S, Wang H, Chen H, Wei Y, et al.
    Plant Physiol Biochem, 2024 Mar;208:108480.
    PMID: 38437751 DOI: 10.1016/j.plaphy.2024.108480
    It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.
  7. Zhang X, Cheung S, Wang J, Zhang G, Wei Y, Liu H, et al.
    Front Microbiol, 2022;13:806390.
    PMID: 35283844 DOI: 10.3389/fmicb.2022.806390
    Marine picocyanobacteria Synechococcus exhibit highly diverse pigment types (PTs) and hence possess great advantage to utilize different spectrum of light effectively and to occupy a wide range of light niches. In this study, we explored the diversity of Synechococcus PTs in the eastern Indian Ocean (EIO), surface water of Strait of Malacca (SSM), and coastal waters of Sri Lanka (SSL). All the detected PTs were phycourobilin (PUB) containing PT 3 and showed distinct distribution patterns. Low PUB PT 3a and partial chromatic acclimater PT 3eA dominated in coastal and shallow waters (SSM and SSL). In contrast, high PUB and chromatic acclimaters PT 3dA and PT 3c/3dB were mainly distributed in open ocean (EIO). PT 3dA and PT 3c/3dB occurred at similar depths of the lower euphotic layers but showed distinct distribution pattern that are partially exclusive, indicating that they compete with each other for the same light niche. Interestingly, the newly described PT 3f was detected with high relative abundances at all stations and particularly dominated in the upper euphotic layer in EIO, which was confirmed with PT-specific quantitative polymerase chain reaction (qPCR). The relative abundance of PT 3f was negatively correlated with nutrient level, implying that PT 3f is adapted to oligotrophic waters. Pronounced niche partition of different PTs was observed in the upper and lower layers of euphotic zone in EIO and SSM/SSL. Light, nutrients, and strong stratification may play important roles in the niche partition of different PTs. Further analysis about ecologically significant taxonomic units revealed high diversity within each PT at different locations, which provided insights for understanding specific PT with wide range of niches.
  8. Zhang S, Cao K, Wei Y, Jiang S, Ye J, Xu F, et al.
    Plant Physiol Biochem, 2023 Sep;202:107972.
    PMID: 37611487 DOI: 10.1016/j.plaphy.2023.107972
    Brassinosteroids (BRs) are phytohormones that play numerous roles in a plant's response to environmental stress. While BES/BZR transcription factors are essential components in BR signaling, their role in regulating postharvest fruit responses to cold stress is largely unknown. In this study, the application of 24-epibrassinolide (EBR) to peaches alleviated chilling injury (CI) during postharvest cold storage. We further characterized a key BES/BZR gene, PpBZR1, which regulates peach cold resistance. Transient expression PpBZR1 in peaches showed that PpBZR1 inhibits PpVIN2 expression and VIN activity, resulting in an elevated level of sucrose, which protects fruit from CI. Arabidopsis thaliana expressing PpBZR1 that had a high germination and seedling survival rate at low temperatures, which may be due to higher level of sucrose and lower oxidative damage. Mechanistically, we confirmed that PpBZR1 directly binds to the PpVIN2 promoter and functions as a negative regulator for sucrose metabolism. In addition, PpCBF1/5/6 were induced by EBR treatment and AtCBFs were upregulated in PpBZR1 transgenic Arabidopsis thaliana. Combined with previous findings, we hypothesize that PpBZR1 regulates PpVIN2 and may also be mediated by CBF. In conclusion, PpBZR1 expression is induced by EBR treatment during cold storage, which futher inhibite sucrose degradation gene PpVIN2 transcription via direct binding its promoter and indirectly regulating PpVIN2, resulting in slower sucrose degradation and higher chilling tolerance of peach.
  9. Yao M, Guo X, Shao X, Wei Y, Zhang X, Wang H, et al.
    Food Chem Toxicol, 2023 May;175:113725.
    PMID: 36925041 DOI: 10.1016/j.fct.2023.113725
    Lead (Pb) can pollute the environment and food through air, water and other means, resulting in human exposure to lead pollution, and there is no threshold level of lead toxicity, even small doses of lead will have a range of harmful effects in humans. This study demonstrates for the first time that dietary addition of soluble dietary fiber (SDF) from Prunus persica dregs reduces lead bioaccumulation in mice, and eliminates lead through feces. Compared with lead-exposed mice, SDF supplementation effectively prevented lead-induced changes in colon tissue, and increased expression of tight junction proteins (ZO-1 and occludin). We analyzed the effects of SDF on gut microbiota and metabolites by a combination of 16S rRNA high-throughput sequencing and untargeted metabolomics. The results showed that SDF altered lead-induced perturbations in the layout and structure of the gut microbiota, including increased Desulfovibrio and Alistipes abundance and decreased Bacteroidetes abundance. Meanwhile, we also provide evidence that SDF supplementation alters the levels of amino acids, bile acids, and lipids in the gut, and that these metabolites are closely associated with microbiota with good lead binding capacity. Therefore, we speculate that SDF has the potential to provide a protective effect against intestinal damage by promoting lead excretion.
  10. Yang J, Xu S, Wang W, Ran X, Ching YC, Sui X, et al.
    Carbohydr Polym, 2023 Jan 15;300:120253.
    PMID: 36372510 DOI: 10.1016/j.carbpol.2022.120253
    In this work, a systematic coupling study of silane coupling agent between starch and epoxidized soybean oils (ESO) was carried out. Starch was modified by 3-aminopropyl trimethoxy silane (APMS) with various contents of NaOH. The APMS-modified starch was incorporated with ESO to synthesize the bioplastics by solution casting. As demonstrated by the FTIR spectra, the hydrogen bond interactions among starch molecules were inhibited by the modification. This outcome provided higher interaction and compatibility of starch with ESO, as confirmed by FESEM. TGA showed that the thermal stability of starch decreased considerably after the silylation. In contrast, the produced bioplastics with silylated starch exhibited higher thermal stability than the control sample. Regarding the bioplastics, an obvious increase of tensile strength from 5.78 MPa to 9.29 MPa was obtained. This work suggested a simple and effective modification technique by APMS to improve compatibility of starch/ESO-based bioplastics with superior mechanical and thermal properties.
  11. Yang J, Xu S, Chee CY, Ching KY, Wei Y, Wang R, et al.
    Int J Biol Macromol, 2024 Feb;258(Pt 2):129037.
    PMID: 38158061 DOI: 10.1016/j.ijbiomac.2023.129037
    The present work systematically investigated the influence of starch silylation on the structures and properties of starch/epoxidized soybean oil-based bioplastics. Silylated starch was synthesized using starch particles (SP-ST) or gelatinized starch (SG-ST) under different silane hydrolysis pHs. Due to the appearance of -NH2 groups and lower OH wavenumbers, SP-ST obtained at pH 5 showed higher silylation degree and stronger hydrogen bond interaction with epoxidized soybean oils (ESO) than that at pH 11. The morphology analysis revealed better interfacial compatibility of ESO and SP-ST. The tensile strength of the samples containing SP-ST increased by 51.91 % than the control, emphasizing the enhanced interaction within the bioplastics. However, tensile strength of the bioplastics with SG-ST decreased by 59.56 % due to their high moisture contents from unreacted silanes. Additionally, the bioplastics with SG-ST exhibited an obvious reduction of thermal stability and an increase in water solubility because of the presence of unreacted APMS. The bioplastic degradation was not prevented by starch silylation except high pH. The bioplastics showed the most desirable tensile properties, thermal stability, and water solubility when starch was surface-modified with silanes hydrolyzed at pH 5. These outcomes made the fabricated bioplastics strong candidates for petroleum-based plastics for packaging applications.
  12. Yan S, Ren T, Wan Mahari WA, Feng H, Xu C, Yun F, et al.
    Sci Total Environ, 2021 Aug 24;802:149835.
    PMID: 34461468 DOI: 10.1016/j.scitotenv.2021.149835
    Soil carbon supplementation is known to stimulate plant growth by improving soil fertility and plant nutrient uptake. However, the underlying process and chemical mechanism that could explain the interrelationship between soil carbon supplementation, soil micro-ecology, and the growth and quality of plant remain unclear. In this study, we investigated the influence and mechanism of soil carbon supplementation on the bacterial community, chemical cycling, mineral nutrition absorption, growth and properties of tobacco leaves. The soil carbon supplementation increased amino acid, carbohydrates, chemical energy metabolism, and bacterial richness in the soil. This led to increased content of sugar (23.75%), starch (13.25%), and chlorophyll (10.56%) in tobacco leaves. Linear discriminant analysis revealed 49 key phylotypes and significant increment of some of the Plant Growth-Promoting Rhizobacteria (PGPR) genera (Bacillus, Novosphingobium, Pseudomonas, Sphingomonas) in the rhizosphere, which can influence the tobacco growth. Partial Least Squares Path Modeling (PLS-PM) showed that soil carbon supplementation positively affected the sugar and starch contents in tobacco leaves by possibly altering the photosynthesis pathway towards increasing the aroma of the leaves, thus contributing to enhanced tobacco flavor. These findings are useful for understanding the influence of soil carbon supplementation on bacterial community for improving the yields and quality of tobacco in industrial plantation.
  13. Wong CHM, Xu N, Lim J, Feng KK, Chan WKW, Chan MTY, et al.
    Prostate, 2023 Jun;83(8):801-808.
    PMID: 36938957 DOI: 10.1002/pros.24519
    BACKGROUND: Androgen deprivation therapy (ADT) use in prostate cancer (PCa) has seen a rising trend. We investigated the relationship between ADT and adverse changes in metabolic parameters in an Asian population.

    METHODS: This is an international prospective multicenter single-arm cohort yielded from the real-life experience of ADT in Asia (READT) registry. Consecutive ADT-naïve patients diagnosed of PCa and started on ADT were prospectively recruited from 2016 and analyzed. Baseline patient characteristics, PCa disease status, and metabolic parameters were documented. Patients were followed up at 6-month interval for up to 5 years. Metabolic parameters including body weight, lipid profiles, and glycemic profiles were recorded and analyzed.

    RESULTS: 589 patients were eligible for analysis. ADT was associated with adverse glycemic profiles, being notable at 6 months upon ADT initiation and persisted beyond 1 year. Comparing to baseline, fasting glucose level and hemoglobin A1c level increased by 4.8% (p 

  14. Wei Y, Wang D, Li G, Yu H, Dong X, Jiang H
    Water Sci Technol, 2023 Nov;88(10):2566-2580.
    PMID: 38017678 DOI: 10.2166/wst.2023.365
    In recent years, chemical water treatment equipment has gained significant attention due to its environmental-friendly features, multifunctionality, and broad applicability. Recognizing the limitations of existing chemical treatment equipment, such as challenges in scale removal and the high water content in scale deposits, we propose a novel drum design for both anode and cathode, enabling simultaneous scale suction and dehydration. We constructed a small experimental platform to validate the equipment's performance based on our model. Notably, under the optimal operating parameters, the hardness removal rate for circulating water falls within the range of 19.6-24.46%. Moreover, the scale accumulation rate per unit area and unit time reaches 13.7 g h-1 m-2. Additionally, the energy consumption per unit weight of the scale remains impressively low at 0.16 kWh g-1. Furthermore, the chemical oxygen demand (COD) concentration decreased from an initial 106.0 mg L-1 to a mere 18.8 mg L-1, resulting in a remarkable total removal rate of 82.26%. In conclusion, our innovative electrochemical water treatment equipment demonstrates exceptional performance in scale removal, organic matter degradation, and water resource conservation, offering valuable insights for future research and development in chemical treatment equipment and electrochemical theory.
  15. Wei Q, Xie K, Wang H, Shao X, Wei Y, Chen Y, et al.
    Plants (Basel), 2023 Jan 04;12(2).
    PMID: 36678938 DOI: 10.3390/plants12020224
    The effect of fructose on γ-aminobutyric acid (GABA) content and its metabolic pathway in broccoli sprouts was investigated. The results demonstrated that the fructose treatment not only significantly increased the fresh weight, GABA, and glutamate contents in sprouts, but also promoted the activity of glutamic acid decarboxylase (GAD) and the expressions of BoGAD1 and BoGAD2. Meanwhile, fructose treatment inhibited the stem length of broccoli sprouts and enhanced the abscisic acid (ABA) production in comparison with the control. Ca2+, CaM contents, and BoCaM2 expression in broccoli sprouts were also stimulated after fructose treatment. Exogenous fructose increased inositol trisphosphate (IP3) content and activated the activity of phosphatidylinositol-specific phospholipase C (PI-PLC) and the expression of BoPLC2, contributing to Ca2+ influx into the cells. These results suggested that Ca2+ played an essential role in GABA enrichment under fructose treatment, which may be associated with GAD and PI-PLC.
  16. Wang Y, Zhao S, Wei Y, Li K, Jiang X, Li C, et al.
    Infect Dis Model, 2023 Sep;8(3):645-655.
    PMID: 37440763 DOI: 10.1016/j.idm.2023.05.008
    The potential for dengue fever epidemic due to climate change remains uncertain in tropical areas. This study aims to assess the impact of climate change on dengue fever transmission in four South and Southeast Asian settings. We collected weekly data of dengue fever incidence, daily mean temperature and rainfall from 2012 to 2020 in Singapore, Colombo, Selangor, and Chiang Mai. Projections for temperature and rainfall were drawn for three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585) scenarios. Using a disease transmission model, we projected the dengue fever epidemics until 2090s and determined the changes in annual peak incidence, peak time, epidemic size, and outbreak duration. A total of 684,639 dengue fever cases were reported in the four locations between 2012 and 2020. The projected change in dengue fever transmission would be most significant under the SSP585 scenario. In comparison to the 2030s, the peak incidence would rise by 1.29 times in Singapore, 2.25 times in Colombo, 1.36 times in Selangor, and >10 times in Chiang Mai in the 2090s under SSP585. Additionally, the peak time was projected to be earlier in Singapore, Colombo, and Selangor, but be later in Chiang Mai under the SSP585 scenario. Even in a milder emission scenario of SSP126, the epidemic size was projected to increase by 5.94%, 10.81%, 12.95%, and 69.60% from the 2030s-2090s in Singapore, Colombo, Selangor, and Chiang Mai, respectively. The outbreak durations in the four settings were projected to be prolonged over this century under SSP126 and SSP245, while a slight decrease is expected in 2090s under SSP585. The results indicate that climate change is expected to increase the risk of dengue fever transmission in tropical areas of South and Southeast Asia. Limiting greenhouse gas emissions could be crucial in reducing the transmission of dengue fever in the future.
  17. Wang H, Ge Q, Shao X, Wei Y, Zhang X, Wang H, et al.
    PMID: 37079063 DOI: 10.1007/s00253-023-12526-z
    Pseudomonas fragi (P. fragi) is one of the main categories of bacteria responsible for the spoilage of chilled meat. In the processing and preservation of chilled meat, it is easy to form biofilms on the meat, leading to the development of slime on the meat, which becomes a major quality defect. Flavonoids, as one of the critical components of secondary plant metabolites, are receiving increasing attention for their antibacterial activity. Flavonoids in Sedum aizoon L. (FSAL), relying on its prominent antibacterial activity, are of research importance in food preservation and other applications. This article aims to investigate the effect of FSAL on the biofilm formation of P. fragi, to better apply FSAL to the processing and preservation of meat products. The disruption of cellular structure and aggregation properties by FSAL was demonstrated by the observation of the cellular state within the biofilm. The amount of biofilm formation was determined by crystal violet staining, and the content of polysaccharides and proteins in the extracellular wrapped material was determined. It was shown that the experimental concentrations of FSAL (1.0 MIC) was able to inhibit biofilm formation and reduce the main components in the extracellular secretion. The swimming motility assay and the downregulation of flagellin-related genes confirmed that FSAL reduced cell motility and adhesion. The downregulation of cell division genes and the lowering of bacterial metabolic activity suggested that FSAL could hinder bacterial growth and reproduction within P. fragi biofilms. KEY POINTS: • FSAL inhibited the activity of Pseudomonas fragi in the dominant meat strain • The absence of EPS components affected the formation of P. fragi biofilms • P. fragi has reduced adhesion capacity due to impaired flagellin function.
  18. Tyler L, Kennelly PJ, Engelman S, Block KF, Bobenko JC, Catalano J, et al.
    Biochem Mol Biol Educ, 2024;52(1):58-69.
    PMID: 37815098 DOI: 10.1002/bmb.21789
    We present as a case study the evolution of a series of participant-centered workshops designed to meet a need in the life sciences education community-the incorporation of best practices in the assessment of student learning. Initially, the ICABL (Inclusive Community for the Assessment of Biochemistry and Molecular Biology/BMB Learning) project arose from a grass-roots effort to develop material for a national exam in biochemistry and molecular biology. ICABL has since evolved into a community of practice in which participants themselves-through extensive peer review and reflection-become integral stakeholders in the workshops. To examine this evolution, this case study begins with a pilot workshop supported by seed funding and thoughtful programmatic assessment, the results of which informed evidence-based changes that, in turn, led to an improved experience for the community. Using participant response data, the case study also reveals critical features for successful workshops, including participant-centered activities and the value of frequent peer review of participants' products. Furthermore, we outline a train-the-trainer model for creating a self-renewing community by bringing new perspectives and voices into an existing core leadership team. This case study, then, offers a blueprint for building a thriving, evolving community of practice that not only serves the needs of individual scientist-educators as they seek to enhance student learning, but also provides a pathway for elevating members to positions of leadership.
  19. Teoh JY, Cho CL, Wei Y, Isotani S, Tiong HY, Ong TA, et al.
    World J Urol, 2019 Sep;37(9):1879-1887.
    PMID: 30560297 DOI: 10.1007/s00345-018-2602-2
    PURPOSE: The Asian Urological Surgery Training & Education Group (AUSTEG) has been established to provide training and education to young urologists in Asia. We developed and validated a porcine bladder training model for transurethral resection of bladder tumour (TURBT).

    METHODS: Urology residents and specialists were invited to test the training model. They were asked to complete a pre-task questionnaire, to perform piecemeal and en bloc resection of 'bladder tumours' within the training model, and to complete a post-task questionnaire afterwards. Their performances were assessed by faculty members of the AUSTEG. For the face validity, a pre-task questionnaire consisting of six statements on TURBT and the training model were set. For the content validity, a post-task questionnaire consisting of 14 items on the details of the training model were set. For the construct validity, a Global Rating Scale was used to assess the participants' performances. The participants were stratified into two groups (junior surgeons and senior surgeons groups) according to their duration of urology training.

    RESULTS: For the pre-task questionnaire, a mean score of ≥ 4.0 out of 5.0 was achieved in 5 out of 6 statements. For the post-task questionnaire, a mean score of ≥ 4.5 out of 5.0 was achieved in every item. For the Global Rating Scale, the senior surgeons group had higher scores than the junior surgeons group in 8 out of 11 items as well as the total score.

    CONCLUSION: A porcine TURBT training model has been developed, and its face, content and construct validity has been established.

  20. Teoh JY, Cho CL, Wei Y, Isotani S, Tiong HY, Ong TA, et al.
    Andrologia, 2020 Sep;52(8):e13708.
    PMID: 32557751 DOI: 10.1111/and.13708
    Anatomical endoscopic enucleation of the prostate has been proposed as a potentially superior benign prostatic hyperplasia surgery than conventional transurethral resection of prostate. However, the learning curve of the procedure is steep, hence limiting its generalisability worldwide. In order to overcome the learning curve, a proper surgical training is extremely important. This review article discussed about various aspects of surgical training in anatomical endoscopic enucleation of the prostate. In summary, no matter what surgical technique or energy modality you use, the principle of anatomical enucleation should be followed. When one starts to perform prostate enucleation, a 50 to 80 g prostate appears to be the 'best case' to begin with. Mentorship is extremely important to shorten the learning curve and to prevent drastic complications from the procedure. A proficiency-based progression training programme with the use of simulation and training models should be the best way to teach and learn about prostate enucleation. Enucleation ratio efficacy is the preferred measure for assessing skill level and learning curve of prostate enucleation. Morcellation efficiency is commonly used to assess morcellation performance, but the importance of safety rather than efficiency must be emphasised.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links