Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Thinh DD, Rasid MH, Deris ZM, Shazili NA, De Boeck G, Wong LL
    Arch Environ Contam Toxicol, 2016 Nov;71(4):530-540.
    PMID: 27638714
    To assess stress level induced by multiple stressors in aquatic organism, biomarkers have been adopted as early warning indicator due to their high accuracy, rapidity, and sensitivity. We investigated the effects of ectoparasitic isopod infection on heavy metal bioaccumulation (Fe, Cu, Zn, and Cd) in the fish Nemipterus furcosus and profiled the expression of metallothionein (MT) and heat shock proteins 70 (HSP70) genes of the fish host. Sixty individuals (parasitized and nonparasitized with Cymothoa truncata) were collected from three sites differing in the levels of anthropogenic activities off the South China Sea. Our results revealed no significant difference in heavy metal concentrations between infected and nonparasitized fish. We observed a positive correlation between heavy metal bioaccumulation in the fish host and anthropogenic activities. Accordingly, expression analysis of MT genes in fish liver showed significant differences in expression level between sampling sites, with lowest level in the least exploited site (Batu Rakit). A reverse pattern in HSP70 gene expression was demonstrated in fish muscle, showing the highest expression at Batu Rakit. While cymothoid infection in N. furcosus had no significant impact on fish MT gene expression, it resulted in a reduction of HSP70 level in liver of parasitized fish. These findings highlight the putative roles of MT in heavy metal assessment. Future studies should determine the kinetics of cymothoid infection and other potential stressors in characterizing the HSP70 gene expression profile.
  2. Waiho K, Fazhan H, Shahreza MS, Moh JH, Noorbaiduri S, Wong LL, et al.
    PLoS One, 2017;12(1):e0171095.
    PMID: 28135340 DOI: 10.1371/journal.pone.0171095
    Adequate genetic information is essential for sustainable crustacean fisheries and aquaculture management. The commercially important orange mud crab, Scylla olivacea, is prevalent in Southeast Asia region and is highly sought after. Although it is a suitable aquaculture candidate, full domestication of this species is hampered by the lack of knowledge about the sexual maturation process and the molecular mechanisms behind it, especially in males. To date, data on its whole genome is yet to be reported for S. olivacea. The available transcriptome data published previously on this species focus primarily on females and the role of central nervous system in reproductive development. De novo transcriptome sequencing for the testes of S. olivacea from immature, maturing and mature stages were performed. A total of approximately 144 million high-quality reads were generated and de novo assembled into 160,569 transcripts with a total length of 142.2 Mb. Approximately 15-23% of the total assembled transcripts were annotated when compared to public protein sequence databases (i.e. UniProt database, Interpro database, Pfam database and Drosophila melanogaster protein database), and GO-categorised with GO Ontology terms. A total of 156,181 high-quality Single-Nucleotide Polymorphisms (SNPs) were mined from the transcriptome data of present study. Transcriptome comparison among the testes of different maturation stages revealed one gene (beta crystallin like gene) with the most significant differential expression-up-regulated in immature stage and down-regulated in maturing and mature stages. This was further validated by qRT-PCR. In conclusion, a comprehensive transcriptome of the testis of orange mud crabs from different maturation stages were obtained. This report provides an invaluable resource for enhancing our understanding of this species' genome structure and biology, as expressed and controlled by their gonads.
  3. Kadir SRA, Rasid MHFA, Kwong KO, Wong LL, Arai T
    Zookeys, 2017.
    PMID: 29134009 DOI: 10.3897/zookeys.695.13298
    Recent studies suggested that accurate species identification in the tropical anguillid eels based on morphological examination requires confirmation by molecular genetic analysis. Previous studies found that two tropical anguillid eels, Anguilla bicolor bicolor and A. bengalensis bengalensis, were found in peninsular Malaysia (West Malaysia) based on morphological and molecular genetic analyses. This study is the first record of A. marmorata in peninsular Malaysia confirmed by both morphological and molecular genetic analyses. The present study also suggests that accurate tropical eel species identification is difficult by morphological identification alone; therefore, molecular genetic analysis is needed for precise species confirmation.
  4. Asaduzzaman M, Wahab MA, Rahman MJ, Nahiduzzzaman M, Dickson MW, Igarashi Y, et al.
    Sci Rep, 2019 11 05;9(1):16050.
    PMID: 31690767 DOI: 10.1038/s41598-019-52465-2
    The anadromous Hilsa shad (Tenualosa ilisha) live in the Bay of Bengal and migrate to the estuaries and freshwater rivers for spawning and nursing of the juveniles. This has led to two pertinent questions: (i) do all Hilsa shad that migrate from marine to freshwater rivers come from the same population? and (ii) is there any relationship between adults and juveniles of a particular habitat? To address these questions, NextRAD sequencing was applied to genotype 31,276 single nucleotide polymorphism (SNP) loci for 180 individuals collected from six strategic locations of riverine, estuarine and marine habitats. FST OutFLANK approach identified 14,815 SNP loci as putatively neutral and 79 SNP loci as putatively adaptive. We observed that divergent local adaptations in differing environmental habitats have divided Hilsa shad into three genetically structured ecotypes: turbid freshwater (Western Riverine), clear freshwater (Eastern Riverine) and brackish-saline (Southern Estuarine-Marine). Our results also revealed that genes involved in neuronal activity may have facilitated the juveniles' Hilsa shad in returning to their respective natal rivers for spawning. This study emphasized the application of fundamental population genomics information in strategizing conservation and management of anadromous fish such as Hilsa shad that intersect diverse ecotypes during their life-history stages.
  5. Teh KY, Afifudeen CLW, Aziz A, Wong LL, Loh SH, Cha TS
    Data Brief, 2019 Dec;27:104680.
    PMID: 31720332 DOI: 10.1016/j.dib.2019.104680
    Interest in harvesting potential benefits from microalgae renders it necessary to have the many ecological niches of a single species to be investigated. This dataset comprises de novo whole genome assembly of two mangrove-isolated microalgae (from division Chlorophyta); Chlorella vulgaris UMT-M1 and Messastrum gracile SE-MC4 from Universiti Malaysia Terengganu, Malaysia. Library runs were carried out with 2 × 150 base paired-ends reads, whereas sequencing was conducted using Illumina Novaseq 2500 platform. Sequencing yielded raw reads amounting to ∼11 Gb in total bases for both species and was further assembled de novo. Genome assembly resulted in a 50.15 Mbp and 60.83 Mbp genome size for UMT-M1 and SE-MC4, respectively. All filtered and assembled genomic data sequences have been submitted to National Centre for Biotechnology Information (NCBI) and can be located at DDBJ/ENA/GenBank under the accession of VJNP00000000 (UMT-M1) and VIYE00000000 (SE-MC4).
  6. Asaduzzaman M, Igarashi Y, Wahab MA, Nahiduzzaman M, Rahman MJ, Phillips MJ, et al.
    Genes (Basel), 2019 12 30;11(1).
    PMID: 31905942 DOI: 10.3390/genes11010046
    The migration of anadromous fish in heterogenic environments unceasingly imposes a selective pressure that results in genetic variation for local adaptation. However, discrimination of anadromous fish populations by fine-scale local adaptation is challenging because of their high rate of gene flow, highly connected divergent population, and large population size. Recent advances in next-generation sequencing (NGS) have expanded the prospects of defining the weakly structured population of anadromous fish. Therefore, we used NGS-based restriction site-associated DNA (NextRAD) techniques on 300 individuals of an anadromous Hilsa shad (Tenualosa ilisha) species, collected from nine strategic habitats, across their diverse migratory habitats, which include sea, estuary, and different freshwater rivers. The NextRAD technique successfully identified 15,453 single nucleotide polymorphism (SNP) loci. Outlier tests using the FST OutFLANK and pcadapt approaches identified 74 and 449 SNPs (49 SNPs being common), respectively, as putative adaptive loci under a divergent selection process. Our results, based on the different cluster analyses of these putatively adaptive loci, suggested that local adaptation has divided the Hilsa shad population into two genetically structured clusters, in which marine and estuarine collection sites were dominated by individuals of one genetic cluster and different riverine collection sites were dominated by individuals of another genetic cluster. The phylogenetic analysis revealed that all the riverine populations of Hilsa shad were further subdivided into the north-western riverine (turbid freshwater) and the north-eastern riverine (clear freshwater) ecotypes. Among all of the putatively adaptive loci, only 36 loci were observed to be in the coding region, and the encoded genes might be associated with important biological functions related to the local adaptation of Hilsa shad. In summary, our study provides both neutral and adaptive contexts for the observed genetic divergence of Hilsa shad and, consequently, resolves the previous inconclusive findings on their population genetic structure across their diverse migratory habitats. Moreover, the study has clearly demonstrated that NextRAD sequencing is an innovative approach to explore how dispersal and local adaptation can shape genetic divergence of non-model anadromous fish that intersect diverse migratory habitats during their life-history stages.
  7. Tan MP, Wong LL, Razali SA, Afiqah-Aleng N, Mohd Nor SA, Sung YY, et al.
    Evol Bioinform Online, 2019;15:1176934319892284.
    PMID: 31839703 DOI: 10.1177/1176934319892284
    Aquatic ecosystems that form major biodiversity hotspots are critically threatened due to environmental and anthropogenic stressors. We believe that, in this genomic era, computational methods can be applied to promote aquatic biodiversity conservation by addressing questions related to the evolutionary history of aquatic organisms at the molecular level. However, huge amounts of genomics data generated can only be discerned through the use of bioinformatics. Here, we examine the applications of next-generation sequencing technologies and bioinformatics tools to study the molecular evolution of aquatic animals and discuss the current challenges and future perspectives of using bioinformatics toward aquatic animal conservation efforts.
  8. Do TD, Thi Mai N, Duy Khoa TN, Abol-Munafi AB, Liew HJ, Kim CB, et al.
    Evol Bioinform Online, 2019;15:1176934319853580.
    PMID: 31236006 DOI: 10.1177/1176934319853580
    Temperature is an abiotic factor that affects various biological and physiological processes in fish. Temperature stress is known to increase the production of reactive oxygen species (ROS) that subsequently cause oxidative stress. Fish is known to evolve a system of antioxidant enzymes to reduce ROS toxicology. Glutathione peroxidase (GPx) family consists of key enzymes that protect fish from oxidative stress. In this study, full-length GPx1 cDNA (GenBank accession no. KY984468) of Tor tambroides was cloned and characterized by rapid amplification of cDNA ends (RACE). The 899-base-pair (bp) GPx1 cDNA includes a 576-bp open reading frame encoding for 191 amino acids, plus 28 bp of 5'-untranslated region (UTR) and 295 bp of 3'-UTR. Homology analysis revealed that GPx1 of T tambroides (Tor-GPx1) shared high similarity with GPx1 sequences of other fish species. The phylogenetic construction based on the amino acid sequence showed that Tor-GPx1 formed a clade with GPx1 sequences of various fish species. Real-time polymerase chain reaction (PCR) was performed to assess the levels of GPx1 gene expression in the liver and muscle of T tambroides under thermal stress. The results indicated that GPx1 gene expression was down-regulated under decreased temperature. However, there was no significant difference between GPx1 gene expression in fish exposed to high temperature and control. Our study provides the first data regarding GPx gene expression in T tambroides under thermal stress.
  9. Raja TN, Hu TH, Kadir KA, Mohamad DSA, Rosli N, Wong LL, et al.
    Emerg Infect Dis, 2020 08;26(8):1801-1809.
    PMID: 32687020 DOI: 10.3201/eid2608.200343
    To monitor the incidence of Plasmodium knowlesi infections and determine whether other simian malaria parasites are being transmitted to humans, we examined 1,047 blood samples from patients with malaria at Kapit Hospital in Kapit, Malaysia, during June 24, 2013-December 31, 2017. Using nested PCR assays, we found 845 (80.6%) patients had either P. knowlesi monoinfection (n = 815) or co-infection with other Plasmodium species (n = 30). We noted the annual number of these zoonotic infections increased greatly in 2017 (n = 284). We identified 6 patients, 17-65 years of age, with P. cynomolgi and P. knowlesi co-infections, confirmed by phylogenetic analyses of the Plasmodium cytochrome c oxidase subunit 1 gene sequences. P. knowlesi continues to be a public health concern in the Kapit Division of Sarawak, Malaysian Borneo. In addition, another simian malaria parasite, P. cynomolgi, also is an emerging cause of malaria in humans.
  10. Iryani MTM, Sorgeloos P, Danish-Daniel M, Tan MP, Wong LL, Mok WJ, et al.
    Cell Stress Chaperones, 2020 Nov;25(6):1099-1103.
    PMID: 32383141 DOI: 10.1007/s12192-020-01113-0
    Females of the brine shrimp Artemia franciscana produce either free-swimming nauplii via ovoviviparous pathway of reproduction or encysted embryos, known as cysts, via oviparous pathway, in which biological processes are arrested. While previous study has shown a crucial role of ATP-dependent molecular chaperone, heat shock protein 70 (Hsp70) in protecting A. franciscana nauplii against various abiotic and abiotic stressors, the function of this protein in diapausing embryos and cyst development, however, remains unknown. RNA interference (RNAi) was applied in this study to examine the role of Hsp70 in cyst development and stress tolerance, with the latter performed by desiccation and freezing, a common method used for diapause termination in Artemia cysts. Hsp70 knockdown was apparent in cysts released from females that were injected with Hsp70 dsRNA. The loss of Hsp70 affected neither the development nor morphology of the cysts. The time between fertilization and cyst release from Artemia females injected with Hsp70 dsRNA was delayed slightly, but the differences were not significant when compared to the controls. However, the hatching percentage of cysts which lacks Hsp70 were reduced following desiccation and freezing. Taken together, these results indicated that Hsp70 possibly plays a role in the stress tolerance but not in the development of diapause-destined embryos of Artemia. This research makes fundamental contributions to our understanding of the role molecular chaperone Hsp70 plays in Artemia, an excellent model organism for diapause studies of the crustaceans.
  11. Ahammad AKS, Asaduzzaman M, Uddin Ahmed MB, Akter S, Islam MS, Haque MM, et al.
    J Therm Biol, 2021 Feb;96:102830.
    PMID: 33627269 DOI: 10.1016/j.jtherbio.2020.102830
    Although indigenous climbing perch (Anabas testudineusis) is a highly valuable species, slow growth pattern during the culture period impeding its commercial success in aquaculture. In many fish species, it has been demonstrated that incubation temperature of eggs influenced the muscle development and growth rates, which persisted throughout the subsequent larval and juvenile phases. Therefore, this study aimed to investigate whether different incubation temperature of eggs prior to hatching can stimulate the muscle development, growth, and growth-related gene expression of the slow-growing indigenous species of climbing perch. The fertilized eggs of A. testudineus from an artificial breeding program were incubated under control temperature of 24 °C (IT24), 26 °C (IT26), 28 °C (IT28), and 30 °C (IT30) in 10L glass aquaria with four replicated units for each temperature treatment. After hatching, the larvae from each incubated temperature were separately reared at ambient temperature for 10 days in aquarium, 20 days in hapas, and the next 42 days in cages, totaling 72 days post-hatching (dph). The hatching rates were found significantly (P 
  12. Anirudhan A, Okomoda VT, Mimi Iryani MT, Andriani Y, Abd Wahid ME, Tan MP, et al.
    Fish Shellfish Immunol, 2021 Feb;109:97-105.
    PMID: 33352338 DOI: 10.1016/j.fsi.2020.12.011
    Plants and herbal extracts are indispensable for controlling the spread of disease-causing bacteria, including those that infect aquatic organisms used in aquaculture. The use of plant or herbal extract is expected to be safe for aquatic animals and less harmful to the environment, as opposed to conventional therapeutic alternatives such as antibiotics that promote the occurrence of potential antibiotic-resistant bacteria when used improperly. The efficacy of Pandanus tectorius fruit extract in the regulation of Hsp70 expression, pro-phenoloxidase (ProPO), peroxinectin, penaeidin, crustin and transglutaminase, all immune peptides essential for Vibrio tolerance in white leg shrimp, Penaeus vannamei, was investigated in this study, which included the determination of the safety levels of the extract. Tolerance of shrimp against Vibrio parahaemolyticus, a pathogenic bacteria that causes Acute Hepatopancreas Necrosis Disease (AHPND), was assessed on the basis of median lethal dose challenge survival (LD50 = 106 cells/ml). Mortality was not observed 24 h after exposure of 0.5-6 g/L of the fruit extract, indicating that P. tectorius was not toxic to shrimp at these concentrations. A 24-h incubation of 2-6 g/L of the fruit extract increased shrimp tolerance to V. parahaemolyticus, with survival doubled when the maximum dose tested in this study was used. Concomitant with a rise in survival was the increase in immune-related proteins, with Hsp70, ProPO, peroxinectin, penaeidin, crustin and transglutaminase increased 10, 11, 11, 0.4, 8 and 13-fold respectively. Histological examination of the hepatopancreas and muscle tissues of Vibrio-infected shrimp primed with P. tectorius extract revealed reduced signs of histopathological degeneration, possibly due to the accumulation of Hsp70, a molecular chaperone crucial to cellular protein folding, tissue repair and immune response of living organisms, including Penaeid shrimp.
  13. Mohd Yusoff NIS, Mat Jaafar TNA, Vilasri V, Mohd Nor SA, Seah YG, Habib A, et al.
    Sci Rep, 2021 Jun 25;11(1):13357.
    PMID: 34172804 DOI: 10.1038/s41598-021-92905-6
    Benthic species, though ecologically important, are vulnerable to genetic loss and population size reduction due to impacts from fishing trawls. An assessment of genetic diversity and population structure is therefore needed to assist in a resource management program. To address this issue, the two-spined yellowtail stargazer (Uranoscopus cognatus) was collected within selected locations in the Indo-West Pacific (IWP). The partial mitochondrial DNA cytochrome c oxidase subunit 1 and the nuclear DNA recombination activating gene 1 were sequenced. Genetic diversity analyses revealed that the populations were moderately to highly diversified (haplotype diversity, H = 0.490-0.900, nucleotide diversity, π = 0.0010-0.0034) except sampling station (ST) 1 and 14. The low diversity level, however was apparent only in the matrilineal marker (H = 0.118-0.216; π = 0.0004-0.0008), possibly due to stochastic factors or anthropogenic stressors. Population structure analyses revealed a retention of ancestral polymorphism that was likely due to incomplete lineage sorting in U. cognatus, and prolonged vicariance by the Indo-Pacific Barrier has partitioned them into separate stock units. Population segregation was also shown by the phenotypic divergence in allopatric populations, regarding the premaxillary protrusion, which is possibly associated with the mechanism for upper jaw movement in biomechanical feeding approaches. The moderate genetic diversity estimated for each region, in addition to past population expansion events, indicated that U. cognatus within the IWP was still healthy and abundant (except in ST1 and 14), and two stock units were identified to be subjected to a specific resource management program.
  14. Gao C, Xia J, Zhou X, Liang Y, Jiang Y, Wang M, et al.
    Appl Environ Microbiol, 2021 10 28;87(22):e0116021.
    PMID: 34469192 DOI: 10.1128/AEM.01160-21
    Nordic Seas are the subarctic seas connecting the Arctic Ocean and North Atlantic Ocean with complex water masses, experiencing an abrupt climate change. Though knowledge of the marine virosphere has expanded rapidly, the diversity of viruses and their relationships with host cells and water masses in the Nordic Seas remain to be fully revealed. Here, we establish the Nordic Sea DNA virome (NSV) data set of 55,315 viral contigs including 1,478 unique viral populations from seven stations influenced by both the warm Atlantic and cold Arctic water masses. Caudovirales dominated in the seven NSVs, especially in the warm Atlantic waters. The major giant nucleocytoplasmic large DNA viruses (NCLDVs) contributed a significant proportion of the classified viral contigs in the NSVs (32.2%), especially in the cold Arctic waters (44.9%). The distribution patterns of Caudovirales and NCLDVs were a reflection of the community structure of their hosts in the corresponding water masses and currents. Latitude, pH, and flow speed were found to be key factors influencing the microbial communities and coinfluencing the variation of viral communities. Network analysis illustrated the tight coupling between the variation of viral communities and microbial communities in the Nordic Seas. This study suggests a probable linkage between viromes, host cells, and surface water masses from both the cool Arctic and warm Atlantic Oceans. IMPORTANCE This is a systematic study of Nordic Sea viromes using metagenomic analysis. The viral diversity, community structure, and their relationships with host cells and the complex water masses from both the cool Arctic and the warm Atlantic oceans were illustrated. The NCLDVs and Caudovirales are proposed as the viral characteristics of the cold Arctic and warm Atlantic waters, respectively. This study provides an important background for the viromes in the subarctic seas connecting the Arctic Ocean and North Atlantic Ocean and sheds light on their responses to abrupt climate change in the future.
  15. Wang Z, Zhang F, Liang Y, Zheng K, Gu C, Zhang W, et al.
    Microbiol Spectr, 2021 10 31;9(2):e0046321.
    PMID: 34643440 DOI: 10.1128/Spectrum.00463-21
    Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCE Alteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
  16. Wan Afifudeen CL, Aziz A, Wong LL, Takahashi K, Toda T, Abd Wahid ME, et al.
    Phytochemistry, 2021 Dec;192:112936.
    PMID: 34509143 DOI: 10.1016/j.phytochem.2021.112936
    The non-model microalga Messastrum gracile SE-MC4 is a potential species for biodiesel production. However, low biomass productivity hinders it from passing the life cycle assessment for biodiesel production. Therefore, the current study was aimed at uncovering the differences in the transcriptome profiles of the microalgae at early exponential and early stationary growth phases and dissecting the roles of specific differential expressed genes (DEGs) involved in cell division during M. gracile cultivation. The transcriptome analysis revealed that the photosynthetic integral membrane protein genes such as photosynthetic antenna protein were severely down-regulated during the stationary growth phase. In addition, the signaling pathways involving transcription, glyoxylate metabolism and carbon metabolism were also down-regulated during stationary growth phase. Current findings suggested that the coordination between photosynthetic integral membrane protein genes, signaling through transcription and carbon metabolism classified as prominent strategies during exponential growth stage. These findings can be applied in genetic improvement of M. gracile for biodiesel application.
  17. Afifudeen CLW, Loh SH, Wong LL, Aziz A, Takahashi K, Wahid MEA, et al.
    Data Brief, 2021 Dec;39:107607.
    PMID: 34869809 DOI: 10.1016/j.dib.2021.107607
    Messastrum gracile SE-MC4 is a non-model microalga exhibiting superior oil-accumulating abilities. However, biomass production in M. gracile SE-MC4 is limited due to low cell proliferation especially after prolonged cultivation under oil-inducing culture conditions. Present data consist of next generation RNA sequencing data of M. gracile SE-MC4 under exponential and stationary growth stages. RNA of six samples were extracted and sequenced with insert size of 100 bp paired-end strategy using BGISEQ-500 platform to produce a total of 59.64 Gb data with 314 million reads. Sequences were filtered and de novo assembled to form 53,307 number of gene sequences. Sequencing data were deposited in National Center for Biotechnology Information (NCBI) and can be accessed via BioProject ID PRJNA552165. This information can be used to enhance biomass production in M. gracile SE-MC4 and other microalgae aimed towards improving biodiesel development.
  18. Gu C, Liang Y, Li J, Shao H, Jiang Y, Zhou X, et al.
    iScience, 2021 Dec 17;24(12):103439.
    PMID: 34988389 DOI: 10.1016/j.isci.2021.103439
    The highest plateau on Earth, Qinghai-Tibet Plateau, contains thousands of lakes with broad salinity and diverse and unique microbial communities. However, little is known about their co-occurring viruses. Herein, we identify 4,560 viral Operational Taxonomic Units (vOTUs) from six viromes of three saline lakes on Qinghai-Tibet Plateau, with less than 1% that could be classified. Most of the predicted vOTUs were associated with the dominant bacterial and archaeal phyla. Virus-encoded auxiliary metabolic genes suggest that viruses influence microbial metabolisms of carbon, nitrogen, sulfur, and lipid; the antibiotic resistance mediation; and their salinity adaption. The six viromes clustered together with the ice core viromes and bathypelagic ocean viromes and might represent a new viral habitat. This study has revealed the unique characteristics and potential ecological roles of DNA viromes in the lakes of the highest plateau and established a foundation for the recognition of the viral roles in plateau lake ecosystems.
  19. Liu Y, Zheng K, Liu B, Liang Y, You S, Zhang W, et al.
    Front Microbiol, 2021;12:726074.
    PMID: 34512604 DOI: 10.3389/fmicb.2021.726074
    Marinobacter is the abundant and important algal-associated and hydrocarbon biodegradation bacteria in the ocean. However, little knowledge about their phages has been reported. Here, a novel siphovirus, vB_MalS-PS3, infecting Marinobacter algicola DG893(T), was isolated from the surface waters of the western Pacific Ocean. Transmission electron microscopy (TEM) indicated that vB_MalS-PS3 has the morphology of siphoviruses. VB_MalS-PS3 was stable from -20 to 55°C, and with the latent and rise periods of about 80 and 10 min, respectively. The genome sequence of VB_MalS-PS3 contains a linear, double-strand 42,168-bp DNA molecule with a G + C content of 56.23% and 54 putative open reading frames (ORFs). Nineteen conserved domains were predicted by BLASTp in NCBI. We found that vB_MalS-PS3 represent an understudied viral group with only one known isolate. The phylogenetic tree based on the amino acid sequences of whole genomes revealed that vB_MalS-PS3 has a distant evolutionary relationship with other siphoviruses, and can be grouped into a novel viral genus cluster with six uncultured assembled viral genomes from metagenomics, named here as Marinovirus. This study of the Marinobacter phage vB_MalS-PS3 genome enriched the genetic database of marine bacteriophages, in addition, will provide useful information for further research on the interaction between Marinobacter phages and their hosts, and their relationship with algal blooms and hydrocarbon biodegradation in the ocean.
  20. Guo R, Zheng K, Luo L, Liu Y, Shao H, Guo C, et al.
    Microbiol Spectr, 2022 Aug 31;10(4):e0058522.
    PMID: 35862991 DOI: 10.1128/spectrum.00585-22
    Vibrio parahaemolyticus, a widespread marine bacterium, is responsible for a variety of diseases in marine organisms. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus is also known to cause acute gastroenteritis in humans. While numerous dsDNA vibriophages have been isolated so far, there have been few studies of vibriophages belonging to the ssDNA Microviridae family. In this study, a novel ssDNA phage, vB_VpaM_PG19 infecting V. parahaemolyticus, with a 5,572 bp ssDNA genome with a G+C content of 41.31% and encoded eight open reading frames, was isolated. Genome-wide phylogenetic analysis of the total phage isolates in the GenBank database revealed that vB_VpaM_PG19 was only related to the recently deposited vibriophage vB_VpP_WS1. The genome-wide average nucleotide homology of the two phages was 89.67%. The phylogenetic tree and network analysis showed that vB_VpaM_PG19 was different from other members of the Microviridae family and might represent a novel viral genus, together with vibriophage vB_VpP_WS1, named Vimicrovirus. One-step growth curves showed that vB_VpaM_PG19 has a short incubation period, suggesting its potential as an antimicrobial agent for pathogenic V. parahaemolyticus. IMPORTANCE Vibriophage vB_VpaM_PG19 was distant from other isolated microviruses in the phylogenetic tree and network analysis and represents a novel microviral genus, named Vimicrovirus. Our report describes the genomic and phylogenetic features of vB_VpaM_PG19 and provides a potential antimicrobial candidate for pathogenic V. parahaemolyticus.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links