Displaying publications 1 - 20 of 61 in total

Abstract:
Sort:
  1. Yap KL, Wong YH, Khor CM, Ooi YE
    Can J Microbiol, 1992 Sep;38(9):996-9.
    PMID: 1334446
    A 12-month study was carried out on the molecular epidemiology of rotavirus in urban and suburban Malaysian children. Analysis of faecal samples from 973 hospitalized diarrhoeic children by polyacrylamide gel electrophoresis detected 268 rotaviruses (28%). All isolates were group A rotaviruses, which produced 22 electropherotypes: 16 (91.5%) with long RNA migration patterns and 6 (8.5%) with short patterns. One of the long-pattern electropherotypes was the predominant strain (71.1% of the total electropherotypes) isolated during this study. Although 3 other strains were detected sporadically over the study period, 16 others were present only during the first 7 months and 2 others were confined to the last 5 months. Long- and short-pattern electropherotypes were found to co-circulate extensively. There was a significant association of short-pattern electropherotypes with infection in older children. In addition, the prevalence of vomiting and mean duration of diarrhoea were significantly associated with different electropherotypes.
  2. Yap KL, Yasmin AM, Wong YH, Ooi YE, Tan SC, Jegathesan M, et al.
    Med J Malaysia, 1992 Dec;47(4):303-8.
    PMID: 1303484
    A 1 year longitudinal study of 156 Malaysian children from urban and suburban areas in the Klang Valley revealed that the incidence rate of diarrhoea was 23.6 per 100 person-year with abnormal faeces reported on 0.26% of the total days of observation. Diarrhoea cases were detected in children from all socioeconomic classes. Rotavirus was isolated from 12% of the diarrheic children and asymptomatic rotavirus infection occurred in 3.2% of the children. All rotaviruses isolated were group A rotaviruses with long electrophoretypic pattern.
  3. Wong YH, Kadir HA, Tayyab S
    Int J Biol Macromol, 2015 Feb;73:207-14.
    PMID: 25434804 DOI: 10.1016/j.ijbiomac.2014.11.015
    Effect of simulated honey sugar cocktail (SHSC) on chemical and thermal stability of ovalbumin (OVA) was investigated using multiple-spectroscopic techniques. Urea-induced denaturation of OVA produced a transition, characterized by the start-, the mid- and the end-points at 3.2 M, 5.9/5.6 M and 8.5/8.0 M urea, respectively, when studied by MRE222nm and tryptophan fluorescence measurements. Presence of 10% or 20% (w/v) SHSC in the incubation mixture shifted the transition curve towards higher urea concentration in a concentration dependent manner. A comparison of far- and near-UV CD, UV-difference, ANS fluorescence and 3-D fluorescence spectral results of native OVA and 5.9 M urea-denatured OVA (U-OVA), obtained in the absence and the presence of 20% (w/v) SHSC suggested SHSC-induced stabilization of U-OVA. Furthermore, a significant shift towards higher denaturant concentration was also noticed in the GdnHCl and thermal transition curves of OVA in the presence of 20% (w/v) SHSC. Taken together, all these results suggested stabilization of OVA against chemical and thermal denaturations by SHSC.
  4. Wong YH, Tan WY, Tan CP, Long K, Nyam KL
    Asian Pac J Trop Biomed, 2014 May;4(Suppl 1):S510-5.
    PMID: 25183141 DOI: 10.12980/APJTB.4.2014C1090
    To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines.
  5. Wong YH, Lau HW, Tan CP, Long K, Nyam KL
    ScientificWorldJournal, 2014;2014:789346.
    PMID: 24592184 DOI: 10.1155/2014/789346
    The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β -carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP) assay. Total phenolic content (TPC) and total flavonoid content (TFC) evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract) and sinapic acid (1198.22 mg/100 g extract), which can be used as alternative antioxidants in the food industry.
  6. Wong YH, Abdul Kadir H, Tayyab S
    ScientificWorldJournal, 2013;2013:981902.
    PMID: 24222758 DOI: 10.1155/2013/981902
    Protein stabilizing potential of honey was studied on a model protein, bovine serum albumin (BSA), using extrinsic fluorescence of fluorescein isothiocyanate (FITC) as the probe. BSA was labelled with FITC using chemical coupling, and urea and thermal denaturation studies were performed on FITC-labelled BSA (FITC-BSA) both in the absence and presence of 10% and 20% (w/v) honey using FITC fluorescence at 522 nm upon excitation at 495 nm. There was an increase in the FITC fluorescence intensity upon increasing urea concentration or temperature, suggesting protein denaturation. The results from urea and thermal denaturation studies showed increased stability of protein in the presence of honey as reflected from the shift in the transition curve along with the start point and the midpoint of the transition towards higher urea concentration/temperature. Furthermore, the increase in ΔG D (H2O) and ΔG D (25°C) in presence of honey also suggested protein stabilization.
  7. Wong YH, Cheong KY
    Nanoscale Res Lett, 2011;6:489.
    PMID: 21831264 DOI: 10.1186/1556-276X-6-489
    The band alignment of ZrO2/interfacial layer/Si structure fabricated by simultaneous oxidation and nitridation of sputtered Zr on Si in N2O at 700°C for different durations has been established by using X-ray photoelectron spectroscopy. Valence band offset of ZrO2/Si was found to be 4.75 eV, while the highest corresponding conduction offset of ZrO2/interfacial layer was found to be 3.40 eV; owing to the combination of relatively larger bandgaps, it enhanced electrical breakdown field to 13.6 MV/cm at 10-6 A/cm2.
  8. Wong YH, Goh KM, Nyam KL, Cheong LZ, Wang Y, Nehdi IA, et al.
    Sci Rep, 2020 09 15;10(1):15110.
    PMID: 32934328 DOI: 10.1038/s41598-020-72118-z
    3-Monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GE) are heat-induced contaminants which form during oil refining process, particularly at the high temperature deodorization stage. It is worth to investigate the content of 3-MCPD and GE in fries which also involved high temperature. The content of 3-MCPD esters and GE were monitored in fries. The factors that been chosen were temperature and duration of frying, and different concentration of salt (NaCl). The results in our study showed that the effect was in the order of concentration of sodium chloride 
  9. Wong YH, Wong SH, Wong XT, Yi Yap Q, Yip KY, Wong LZ, et al.
    Panminerva Med, 2021 Oct 05.
    PMID: 34609116 DOI: 10.23736/S0031-0808.21.04285-3
    According to the International Diabetes Federation, the number of adults (age of 20-79) being diagnosed with Diabetes Mellitus (DM) have increased from 285 million in year 2009 to 463 million in year 2019 which comprises of 95% Type 2 DM patient (T2DM). Research have claimed that genetic predisposition could be one of the factors causing T2DM complications. In addition, T2DMcomplications cause an incremental risk to mortality. Therefore, this article aims to discuss some complications of T2DM in and their genetic association. The complications that are discussed in this article are diabetic nephropathy, diabetes induced cardiovascular disease, diabetic neuropathy, Diabetic Foot Ulcer (DFU) and Alzheimer's disease. According to the information obtained, genes associated with diabetic nephropathy (DN) are gene GABRR1 and ELMO1 that cause injury to glomerular. Replication of genes FRMD3, CARS and MYO16/IRS2 shown to have link with DN. The increase of gene THBS2, NGAL, PIP, TRAF6 polymorphism, ICAM-1 encoded for rs5498 polymorphism and C667T increase susceptibility towards DN in T2DM patient. Genes associated with cardiovascular diseases are Adiponectin gene (ACRP30) and Apolipoprotein E (APOE) polymorphism gene with ξ2 allele. Haptoglobin (Hp) 1-1 genotype and Mitochondria Superoxide Dismutase 2 (SOD2) plays a role in cardiovascular events. As for genes related to diabetic neuropathy, Janus Kinase (JAK), mutation of SCN9A and TRPA1 gene and destruction of miRNA contribute to pathogenesis of diabetic neuropathy among T2DM patients. Expression of cytokine IL-6, IL-10, miR-146a are found to cause diabetic neuropathy. Besides, A1a16Va1 gene polymorphism, an oxidative stress influence was found as one of the gene factors. Diabetic retinopathy (DR) is believed to have association with Monocyte Chemoattractant Protein-1 (MCP-1) and Insulin-like Growth Factor 1 (IGF1). Over-expression of gene ENPP1, IL-6 pro-inflammatory cytokine, ARHGAP22's protein rs3844492 polymorphism and TLR4 heterozygous genotype are contributing to significant pathophysiological process causing DR, while research found increases level of UCP1 gene protects retina cells from oxidative stress. Diabetic Foot Ulcer (DFU) is manifested by slowing in reepithelialisation of keratinocyte, persistence wound inflammation and healing impairment. Reepithelialisation disturbance was caused by E2F3 gene, reduction of Tacl gene encoded substance P causing persistence inflammation while expression of MMp-9 polymorphism contributes to healing impairment. A decrease in HIF-1a gene expression leads to increased risk of pathogenesis, while downregulation of TLR2 increases severity of wound in DFU patients. SNPs alleles has been shown to have significant association between the genetic dispositions of T2DM and Alzheimer's disease (AD). The progression of AD can be due to the change in DNA methylation of CLOCK gene, followed with worsening of AD by APOE4 gene due to dyslipidaemia condition in T2DM patients. Insulin resistance is also a factor that contributes to pathogenesis of AD.
  10. Wong YH, Kadir HA, Tayyab S
    Protein Pept Lett, 2016;23(10):898-904.
    PMID: 27586182
    Urea and thermal denaturations of bovine serum albumin (BSA) were studied in the absence and the presence of honey or simulated honey sugar cocktail (SHSC) using far-UV CD and ANS fluorescence spectroscopy. Presence of 20% (w/v) honey or SHSC in the incubation mixture shifted the urea transition curve towards higher urea concentrations, being higher in the presence of honey and transformed the two-step, three-state transition into a single-step, two-state transition. A comparison of the far-UV CD and the ANS fluorescence spectra of 4.6 M urea-denatured BSA (U-BSA) in the absence and the presence of 20% (w/v) honey or SHSC suggested greater stabilizing potential of honey than SHSC, as U-BSA maintained native like conformation in the presence of 20% (w/v) honey. Furthermore, thermal transition curves of BSA were also shifted towards higher temperature range in the presence of 20% (w/v) SHSC and honey, showing greater shift in the presence of honey. The far-UV CD spectra of the heat-denatured BSA also showed greater stabilization in the presence of honey. Taken together all these results suggested greater protein stabilizing potential of honey than SHSC against chemical and thermal denaturations of BSA.
  11. Wong YH, Muhamad H, Abas F, Lai OM, Nyam KL, Tan CP
    Food Chem, 2017 Mar 15;219:126-130.
    PMID: 27765207 DOI: 10.1016/j.foodchem.2016.09.130
    The effects of frying duration, frying temperature and concentration of sodium chloride on the formation of 3-monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GEs) of refined, bleached and deodorized (RBD) palm olein during deep-fat frying (at 160°C and 180°C) of potato chips (0%, 1%, 3% and 5% NaCl) for 100min/d for five consecutive days in eight systems were compared in this study. All oil samples collected after each frying cycle were analyzed for 3-MCPD esters, GEs, free fatty acid (FFA) contents, specific extinction at 232 and 268 nm (K232 and K268), p-anisidine value (pAV), and fatty acid composition. The 3-MCPD ester trend was decreasing when the frying duration increased, whereas the trend was increasing when frying temperature and concentration of NaCl increased. The GEs trend was increasing when the frying temperature, frying duration and concentration of NaCl increased. All of the oil qualities were within the safety limit.
  12. Wong YH, Tan HY, Kasbollah A, Abdullah BJJ, Yeong CH
    Pharmaceutics, 2019 Nov 12;11(11).
    PMID: 31718079 DOI: 10.3390/pharmaceutics11110596
    INTRODUCTION: Transarterial radioembolization (TARE) has been proven as an effective treatment for unresectable liver tumor. In this study, neutron activated, 153Sm-labeled microspheres were developed as an alternative to 90Y-labeled microspheres for hepatic radioembolization. 153Sm has a theranostic advantage as it emits both therapeutic beta and diagnostic gamma radiations simultaneously, in comparison to the pure beta emitter, 90Y.

    METHODS: Negatively charged acrylic microspheres were labeled with 152Sm ions through electrostatic interactions. In another formulation, the Sm-labeled microsphere was treated with sodium carbonate solution to form the insoluble 152Sm carbonate (152SmC) salt within the porous structures of the microspheres. Both formulations were neutron-activated in a research reactor. Physicochemical characterization, gamma spectrometry, and radiolabel stability tests were carried out to study the performance and stability of the microspheres.

    RESULTS: The Sm- and SmC-labeled microspheres remained spherical and smooth, with a mean size of 35 µm before and after neutron activation. Fourier transform infrared (FTIR) spectroscopy indicated that the functional groups of the microspheres remained unaffected after neutron activation. The 153Sm- and 153SmC-labeled microspheres achieved activity of 2.53 ± 0.08 and 2.40 ± 0.13 GBq·g-1, respectively, immediate after 6 h neutron activation in the neutron flux of 2.0 × 1012 n·cm-2·s-1. Energy-dispersive X-ray (EDX) and gamma spectrometry showed that no elemental and radioactive impurities were present in the microspheres after neutron activation. The retention efficiency of 153Sm in the 153SmC-labeled microspheres was excellent (~99% in distilled water and saline; ~97% in human blood plasma), which was higher than the 153Sm-labeled microspheres (~95% and ~85%, respectively).

    CONCLUSION: 153SmC-labeled microspheres have demonstrated excellent properties for potential application as theranostic agents for hepatic radioembolization.

  13. Wong YH, Tan HY, Kasbollah A, Abdullah BJJ, Acharya RU, Yeong CH
    World journal of experimental medicine, 2020 Mar 30;10(2):10-25.
    PMID: 32266125 DOI: 10.5493/wjem.v10.i2.10
    BACKGROUND: Liver cancer is the 6th most common cancer in the world and the 4th most common death from cancer worldwide. Hepatic radioembolization is a minimally invasive treatment involving intraarterial administration of radioembolic microspheres.

    AIM: To develop a neutron-activated, biodegradable and theranostics samarium-153 acetylacetonate (153SmAcAc)-poly-L-lactic acid (PLLA) microsphere for intraarterial radioembolization of hepatic tumors.

    METHODS: Microspheres with different concentrations of 152SmAcAc (i.e., 100%, 150%, 175% and 200% w/w) were prepared by solvent evaporation method. The microspheres were then activated using a nuclear reactor in a neutron flux of 2 × 1012 n/cm2/s1, converting 152Sm to Samarium-153 (153Sm) via152Sm (n, γ) 153Sm reaction. The SmAcAc-PLLA microspheres before and after neutron activation were characterized using scanning electron microscope, energy dispersive X-ray spectroscopy, particle size analysis, Fourier transform infrared spectroscopy, thermo-gravimetric analysis and gamma spectroscopy. The in-vitro radiolabeling efficiency was also tested in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    RESULTS: The SmAcAc-PLLA microspheres with different SmAcAc contents remained spherical before and after neutron activation. The mean diameter of the microspheres was about 35 µm. Specific activity achieved for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc after 3 h neutron activation were 1.7 ± 0.05, 2.5 ± 0.05, 2.7 ± 0.07, and 2.8 ± 0.09 GBq/g, respectively. The activity of per microspheres were determined as 48.36 ± 1.33, 74.10 ± 1.65, 97.87 ± 2.48, and 109.83 ± 3.71 Bq for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc. The energy dispersive X-ray and gamma spectrometry showed that no elemental and radioactive impurities present in the microspheres after neutron activation. Retention efficiency of 153Sm in the SmAcAc-PLLA microspheres was excellent (approximately 99%) in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    CONCLUSION: The 153SmAcAc-PLLA microsphere is potentially useful for hepatic radioembolization due to their biodegradability, favorable physicochemical characteristics and excellent radiolabeling efficiency. The synthesis of the formulation does not involve ionizing radiation and hence reducing the complication and cost of production.

  14. Wong YH, Kasbollah A, Abdullah BJJ, Yeong CH
    Pharmaceutics, 2023 Mar 08;15(3).
    PMID: 36986738 DOI: 10.3390/pharmaceutics15030877
    Radioembolization shows great potential as a treatment for intermediate- and advanced-stage liver cancer. However, the choices of radioembolic agents are currently limited, and hence the treatment is relatively costly compared to other approaches. In this study, a facile preparation method was developed to produce samarium carbonate-polymethacrylate [152Sm2(CO3)3-PMA] microspheres as neutron activatable radioembolic microspheres for hepatic radioembolization. The developed microspheres emits both therapeutic beta and diagnostic gamma radiations for post-procedural imaging. The 152Sm2(CO3)3-PMA microspheres were produced from commercially available PMA microspheres through the in situ formation of 152Sm2(CO3)3 within the pores of the PMA microspheres. Physicochemical characterization, gamma spectrometry and radionuclide retention assay were performed to evaluate the performance and stability of the developed microspheres. The mean diameter of the developed microspheres was determined as 29.30 ± 0.18 µm. The scanning electron microscopic images show that the spherical and smooth morphology of the microspheres remained after neutron activation. The 153Sm was successful incorporated into the microspheres with no elemental and radionuclide impurities produced after neutron activation, as indicated by the energy dispersive X-ray analysis and gamma spectrometry. Fourier transform infrared spectroscopy confirmed that there was no alteration to the chemical groups of the microspheres after neutron activation. After 18 h of neutron activation, the microspheres produced an activity of 4.40 ± 0.08 GBq.g-1. The retention of 153Sm on the microspheres was greatly improved to greater than 98% over 120 h when compared to conventionally radiolabeling method at ~85%. The 153Sm2(CO3)3-PMA microspheres achieved suitable physicochemical properties as theragnostic agent for hepatic radioembolization and demonstrated high radionuclide purity and 153Sm retention efficiency in human blood plasma.
  15. Wong YH, Lee SH
    PMID: 38409702 DOI: 10.2174/0115701638290855240207114727
    BACKGROUND: Cancer is a worldwide issue. It has been observed that conventional therapies face many problems, such as side effects and drug resistance. Recent research reportedly used marine-derived products to treat various diseases and explored their potential in treating cancers.

    OBJECTIVE: This study aims to discover short-length anticancer peptides derived from pardaxin 6 through an in silico approach.

    METHODS: Fragmented peptides ranging from 5 to 15 amino acids were derived from the pardaxin 6 parental peptide. These peptides were further replaced with one residue and, along with the original fragmented peptides, were predicted for their SVM scores and physicochemical properties. The top 5 derivative peptides were further examined for their toxicity, hemolytic probability, peptide structures, docking models, and energy scores using various web servers. The trend of in silico analysis outputs across 5 to 15 amino acid fragments was further analyzed.

    RESULTS: Results showed that when the amino acids were increased, SVM scores of the original fragmented peptides were also increased. Designed peptides had increased SVM scores, which was aligned with previous studies where the single residue replacement transformed the non-anticancer peptide into an anticancer agent. Moreover, in vitro studies validated that the designed peptides retained or enhanced anticancer effects against different cancer cell lines. Interestingly, a decreasing trend was observed in those fragmented derivative peptides.

    CONCLUSION: Single residue replacement in fragmented pardaxin 6 was found to produce stronger anticancer agents through in silico predictions. Through bioinformatics tools, fragmented peptides improved the efficiency of marine-derived drugs with higher efficacy and lower hemolytic effects in treating cancers.

  16. Wong YH, Abdul Kadir H
    PMID: 22203877 DOI: 10.1155/2012/684740
    Leea indica is a medicinal plant traditionally used to treat cancer. Through bioassay-guided approach, we isolated mollic acid arabinoside (MAA), for the first time from Leea indica. Here, we present the apoptosis-inducing effect of MAA on Ca Ski cervical cancer cells. Based on DAPI staining, MAA-treated cells manifested nuclear shrinkage, condensation, and fragmentation. We further confirmed the fragmentation of DNA using TUNEL assay. During early apoptosis, MAA caused the perturbation of plasma membrane through externalization of PS, followed by the formation of apoptotic blebs. Prior to these events, MAA triggered rapid dissipation of the mitochondrial membrane potential. In the upstream, MAA increased the expression of Bax, decreased the expression of Bcl-2, and augmented the Bax/Bcl-2 ratio. These findings suggested that MAA induced mitochondrial-mediated apoptosis in Ca Ski cells and thus provide the scientific explanation for the traditional application of this herbal medicine in cancer treatment.
  17. Wong YH, Abdul Kadir H, Ling SK
    PMID: 22203865 DOI: 10.1155/2012/164689
    Leea indica is a medicinal plant used traditionally to cure cancer. In this study, the cytotoxic compounds of L. indica were isolated using bioassay-guided approach. Two cycloartane triterpenoid glycosides, mollic acid arabinoside (MAA) and mollic acid xyloside (MAX), were firstly isolated from L. indica. They inhibited the growth of Ca Ski cervical cancer cells with IC(50) of 19.21 μM (MAA) and 33.33 μM (MAX). MRC5 normal cell line was used to calculate selectivity index. MAA and MAX were about 8 and 4 times more cytotoxic to Ca Ski cells compared to MRC5. The cytotoxicity of MAA was characterized by both cytostatic and cytocidal effects. MAA decreased the expression of proliferative cell nuclear antigen, increased sub-G1 cells, and arrested cells in S and G2/M phases. This study provides the evidence for the ethnomedicinal use of L. indica and paves the way for future mechanism studies on the anticancer effects of MAA.
  18. Wong SK, Wong YH, Chin KY, Ima-Nirwana S
    Polymers (Basel), 2021 Sep 12;13(18).
    PMID: 34577976 DOI: 10.3390/polym13183075
    Calcium phosphate cement (CPC) is a promising material used in the treatment of bone defects due to its profitable features of self-setting capability, osteoconductivity, injectability, mouldability, and biocompatibility. However, the major limitations of CPC, such as the brittleness, lack of osteogenic property, and poor washout resistance, remain to be resolved. Thus, significant research effort has been committed to modify and reinforce CPC. The mixture of CPC with various biological materials, defined as the materials produced by living organisms, have been fabricated by researchers and their characteristics have been investigated in vitro and in vivo. This present review aimed to provide a comprehensive overview enabling the readers to compare the physical, mechanical, and biological properties of CPC upon the incorporation of different biological materials. By mixing the bone-related transcription factors, proteins, and/or polysaccharides with CPC, researchers have demonstrated that these combinations not only resolved the lack of mechanical strength and osteogenic effects of CPC but also further improve its own functional properties. However, exceptions were seen in CPC incorporated with certain proteins (such as elastin-like polypeptide and calcitonin gene-related peptide) as well as blood components. In conclusion, the addition of biological materials potentially improves CPC features, which vary depending on the types of materials embedded into it. The significant enhancement of CPC seen in vitro and in vivo requires further verification in human trials for its clinical application.
  19. Wee LH, Galvan JAA, Patil SS, Madhavan P, Mahalingam D, Yeong CH, et al.
    Healthcare (Basel), 2023 Jul 08;11(14).
    PMID: 37510421 DOI: 10.3390/healthcare11141980
    The prevalence of vaping worldwide is showing an upward trend. This study aimed to determine the factors associated with motivation to quit vaping among vapers in the Federal Territory of Kuala Lumpur, Malaysia, through a cross-sectional, purposive sampling study. Respondents were required to complete a questionnaire consisting of vapers' sociodemographic questions, habitual behavioral pattern questions, the e-Fagerström Test of Nicotine Dependence, the Glover-Nilsson Smoking Behavioral Dependence Questionnaire, perception questions, motivation to quit questions, and withdrawal symptom questions. A total of 311 vapers participated in this study. The majority of the vapers were male (84.6%), younger (18-25 years) (55.3%), and with monthly income less than RM 4000 (USD 868; 83.9%). The level of motivation to quit vaping was found to have a significant association with the perception of vaping being as satisfying as cigarette smoking (p = 0.006) and mild to very strong nicotine dependence (p = 0.001). Participants who recorded moderate and strong habitual vaping behaviors had lower odds of having high motivation to quit vaping compared to those recording slight habitual behaviors (OR = 0.279, 95%CI(0.110-0.708), p = 0.007 and OR = 0.185, 95%CI(0.052-0.654), p = 0.009, respectively). Factors associated with higher motivation to quit vaping could be explored to gain better understanding of how to increase their motivation level for future quit attempts.
  20. Tan SC, Wong YH, Jegathesan M, Chang SM
    Malays J Pathol, 1989 Aug;11:25-7.
    PMID: 2632996
    Tatumella ptyseos, the type species for the genus Tatumella, is a newly established member of the Family Enterobacteriaceae. It is a Gram-negative, oxidase negative, fermentative rod that grows on Mac Conkey agar. This first isolate was obtained from the blood culture of a neonate having neonatal jaundice with presumed sepsis. The organism was in vitro sensitive to Gentamicin, Chloramphenicol, Cotrimoxazole and Ampicillin. The patient was treated with Ampicillin and Gentamicin and recovered uneventfully.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links