Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Xu F, Binns C, Low WY
    Asia Pac J Public Health, 2020 5 16;32(2-3):134-135.
    PMID: 32410510 DOI: 10.1177/1010539520915009
  2. Zhao Z, Wei Y, Zou X, Jiang S, Chen Y, Ye J, et al.
    J Agric Food Chem, 2023 Dec 02.
    PMID: 38041637 DOI: 10.1021/acs.jafc.3c06676
    Previously, we reported that marine yeast Scheffersomyces spartinae exhibited biocontrol efficacy against the gray mold of strawberries caused by Botrytis cinerea. Herein, tryptophol, a quorum-sensing molecule, was identified in the metabolites of S. spartinae. Subsequently, we found that 25 μM tryptophol promoted population density, biofilm formation, and cell aggregation of S. spartinae. Furthermore, 25 μM tryptophol improved the biocontrol efficacy of S. spartinae against B. cinerea in vitro and in the strawberry fruit. Under a scanning electronic microscope, tryptophol facilitated colonization and biofilm formation on strawberry wounds, showing that tryptophol increased the biocontrol efficacy of S. spartinae via quorum sensing. Transcriptome analysis revealed that tryptophol upregulated the gene expression of SDS3, DAL81, DSE1, SNF5, SUN41, FLO8, and HOP1, which was associated with cell adhesion or biofilm formation. Thus, to the best of our knowledge, this study was the first to report that tryptophol improved the biocontrol efficacy of S. spartinae via quorum sensing.
  3. Zhao S, Chen J, Cao S, Wang H, Chen H, Wei Y, et al.
    Plant Physiol Biochem, 2024 Feb 29;208:108480.
    PMID: 38437751 DOI: 10.1016/j.plaphy.2024.108480
    It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.
  4. Hilpert P, Randall AK, Sorokowski P, Atkins DC, Sorokowska A, Ahmadi K, et al.
    Front Psychol, 2016;7:1106.
    PMID: 27551269 DOI: 10.3389/fpsyg.2016.01106
    OBJECTIVE: Theories about how couples help each other to cope with stress, such as the systemic transactional model of dyadic coping, suggest that the cultural context in which couples live influences how their coping behavior affects their relationship satisfaction. In contrast to the theoretical assumptions, a recent meta-analysis provides evidence that neither culture, nor gender, influences the association between dyadic coping and relationship satisfaction, at least based on their samples of couples living in North America and West Europe. Thus, it is an open questions whether the theoretical assumptions of cultural influences are false or whether cultural influences on couple behavior just occur in cultures outside of the Western world.

    METHOD: In order to examine the cultural influence, using a sample of married individuals (N = 7973) from 35 nations, we used multilevel modeling to test whether the positive association between dyadic coping and relationship satisfaction varies across nations and whether gender might moderate the association.

    RESULTS: RESULTS reveal that the association between dyadic coping and relationship satisfaction varies between nations. In addition, results show that in some nations the association is higher for men and in other nations it is higher for women.

    CONCLUSIONS: Cultural and gender differences across the globe influence how couples' coping behavior affects relationship outcomes. This crucial finding indicates that couple relationship education programs and interventions need to be culturally adapted, as skill trainings such as dyadic coping lead to differential effects on relationship satisfaction based on the culture in which couples live.

  5. Yao M, Guo X, Shao X, Wei Y, Zhang X, Wang H, et al.
    Food Chem Toxicol, 2023 May;175:113725.
    PMID: 36925041 DOI: 10.1016/j.fct.2023.113725
    Lead (Pb) can pollute the environment and food through air, water and other means, resulting in human exposure to lead pollution, and there is no threshold level of lead toxicity, even small doses of lead will have a range of harmful effects in humans. This study demonstrates for the first time that dietary addition of soluble dietary fiber (SDF) from Prunus persica dregs reduces lead bioaccumulation in mice, and eliminates lead through feces. Compared with lead-exposed mice, SDF supplementation effectively prevented lead-induced changes in colon tissue, and increased expression of tight junction proteins (ZO-1 and occludin). We analyzed the effects of SDF on gut microbiota and metabolites by a combination of 16S rRNA high-throughput sequencing and untargeted metabolomics. The results showed that SDF altered lead-induced perturbations in the layout and structure of the gut microbiota, including increased Desulfovibrio and Alistipes abundance and decreased Bacteroidetes abundance. Meanwhile, we also provide evidence that SDF supplementation alters the levels of amino acids, bile acids, and lipids in the gut, and that these metabolites are closely associated with microbiota with good lead binding capacity. Therefore, we speculate that SDF has the potential to provide a protective effect against intestinal damage by promoting lead excretion.
  6. Choi JR, Hu J, Feng S, Wan Abas WA, Pingguan-Murphy B, Xu F
    Biosens Bioelectron, 2016 May 15;79:98-107.
    PMID: 26700582 DOI: 10.1016/j.bios.2015.12.005
    Lateral flow assays (LFAs) have currently attracted broad interest for point-of-care (POC) diagnostics, but their application has been restricted by poor quantification and limited sensitivity. While the former has been currently solved to some extent by the development of handheld or smartphone-based readers, the latter has not been addressed fully, particularly the potential influences of environmental conditions (e.g., temperature and relative humidity (RH)), which have not yet received serious attention. The present study reports the use of a portable temperature-humidity control device to provide an optimum environmental requirement for sensitivity improvement in LFAs, followed by quantification by using a smartphone. We found that a RH beyond 60% with temperatures of 55-60°C and 37-40°C produced optimum nucleic acid hybridization and antigen-antibody interaction in LFAs, respectively representing a 10-fold and 3-fold signal enhancement over ambient conditions (25°C, 60% RH). We envision that in the future the portable device could be coupled with a fully integrated paper-based sample-to-answer biosensor for sensitive detection of various target analytes in POC settings.
  7. Liu X, Wu Y, Chen Y, Xu F, Halliday N, Gao K, et al.
    Res. Microbiol., 2016 Apr;167(3):168-77.
    PMID: 26671319 DOI: 10.1016/j.resmic.2015.11.003
    The σ(S) subunit RpoS of RNA polymerase functions as a master regulator of the general stress response in Escherichia coli and related bacteria. RpoS has been reported to modulate biocontrol properties in the rhizobacterium Serratia plymuthica IC1270. However, the role of RpoS in the stress response and biofilm formation in S. plymuthica remains largely unknown. Here we studied the role of RpoS from an endophytic S. plymuthica G3 in regulating these phenotypes. Mutational analysis demonstrated that RpoS positively regulates the global stress response to acid or alkaline stresses, oxidative stress, hyperosmolarity, heat shock and carbon starvation, in addition to proteolytic and chitinolytic activities. Interestingly, rpoS mutations resulted in significantly enhanced swimming motility, biofilm formation and production of the plant auxin indole-3-acetic acid (IAA), which may contribute to competitive colonization and environmental fitness for survival. These findings provide further insight into the strain-specific role of RpoS in the endophytic strain G3 of S. plymuthica, where it confers resistance to general stresses encountered within the plant environment. The heterogeneous functionality of RpoS in rhizosphere and endophytic S. plymuthica populations may provide a selective advantage for better adaptation to various physiological and environmental stresses.
  8. Wong JJ, Phan HP, Phumeetham S, Ong JSM, Chor YK, Qian S, et al.
    Crit Care Med, 2017 Jul 26.
    PMID: 28749854 DOI: 10.1097/CCM.0000000000002623
    OBJECTIVES: The Pediatric Acute Lung Injury Consensus Conference developed a pediatric specific definition for acute respiratory distress syndrome (PARDS). In this definition, severity of lung disease is stratified into mild, moderate, and severe groups. We aim to describe the epidemiology of patients with PARDS across Asia and evaluate whether the Pediatric Acute Lung Injury Consensus Conference risk stratification accurately predicts outcome in PARDS.

    DESIGN: A multicenter, retrospective, descriptive cohort study.

    SETTING: Ten multidisciplinary PICUs in Asia.

    PATIENTS: All mechanically ventilated children meeting the Pediatric Acute Lung Injury Consensus Conference criteria for PARDS between 2009 and 2015.

    INTERVENTIONS: None.

    MEASUREMENTS AND MAIN RESULTS: Data on epidemiology, ventilation, adjunct therapies, and clinical outcomes were collected. Patients were followed for 100 days post diagnosis of PARDS. A total of 373 patients were included. There were 89 (23.9%), 149 (39.9%), and 135 (36.2%) patients with mild, moderate, and severe PARDS, respectively. The most common risk factor for PARDS was pneumonia/lower respiratory tract infection (309 [82.8%]). Higher category of severity of PARDS was associated with lower ventilator-free days (22 [17-25], 16 [0-23], 6 [0-19]; p < 0.001 for mild, moderate, and severe, respectively) and PICU free days (19 [11-24], 15 [0-22], 5 [0-20]; p < 0.001 for mild, moderate, and severe, respectively). Overall PICU mortality for PARDS was 113 of 373 (30.3%), and 100-day mortality was 126 of 317 (39.7%). After adjusting for site, presence of comorbidities and severity of illness in the multivariate Cox proportional hazard regression model, patients with moderate (hazard ratio, 1.88 [95% CI, 1.03-3.45]; p = 0.039) and severe PARDS (hazard ratio, 3.18 [95% CI, 1.68, 6.02]; p < 0.001) had higher risk of mortality compared with those with mild PARDS.

    CONCLUSIONS: Mortality from PARDS is high in Asia. The Pediatric Acute Lung Injury Consensus Conference definition of PARDS is a useful tool for risk stratification.

  9. Zou X, Wei Y, Jiang S, Xu F, Wang H, Zhan P, et al.
    J Agric Food Chem, 2022 Nov 16;70(45):14468-14479.
    PMID: 36322824 DOI: 10.1021/acs.jafc.2c06187
    2-Phenylethanol (2-PE), a common compound found in plants and microorganisms, exhibits broad-spectrum antifungal activity. Using Botrytis cinerea, we demonstrated that 2-PE suppressed mycelium growth in vitro and in strawberry fruit and reduced natural disease without adverse effects to fruit quality. 2-PE caused structural damage to mycelia, as shown by scanning and transmission electron microscopy. From RNA sequencing analysis we found significantly upregulated genes for enzymatic and nonenzymatic reactive oxygen species (ROS) scavenging systems including sulfur metabolism and glutathione metabolism, indicating that ROS stress was induced by 2-PE. This was consistent with results from assays demonstrating an increase ROS and hydrogen peroxide levels, antioxidant enzyme activities, and malondialdehyde content in treated cells. The upregulation of ATP-binding cassette transporter genes, the downregulation of major facilitator superfamily transporters genes, and the downregulation of ergosterol biosynthesis genes indicated a severe disruption of cell membrane structure and function. This was consistent with results from assays demonstrating compromised membrane integrity and lipid peroxidation. To summarize, 2-PE exposure suppressed B. cinerea growth through ROS stress and cell membrane disruption.
  10. Zhang S, Cao K, Wei Y, Jiang S, Ye J, Xu F, et al.
    Plant Physiol Biochem, 2023 Sep;202:107972.
    PMID: 37611487 DOI: 10.1016/j.plaphy.2023.107972
    Brassinosteroids (BRs) are phytohormones that play numerous roles in a plant's response to environmental stress. While BES/BZR transcription factors are essential components in BR signaling, their role in regulating postharvest fruit responses to cold stress is largely unknown. In this study, the application of 24-epibrassinolide (EBR) to peaches alleviated chilling injury (CI) during postharvest cold storage. We further characterized a key BES/BZR gene, PpBZR1, which regulates peach cold resistance. Transient expression PpBZR1 in peaches showed that PpBZR1 inhibits PpVIN2 expression and VIN activity, resulting in an elevated level of sucrose, which protects fruit from CI. Arabidopsis thaliana expressing PpBZR1 that had a high germination and seedling survival rate at low temperatures, which may be due to higher level of sucrose and lower oxidative damage. Mechanistically, we confirmed that PpBZR1 directly binds to the PpVIN2 promoter and functions as a negative regulator for sucrose metabolism. In addition, PpCBF1/5/6 were induced by EBR treatment and AtCBFs were upregulated in PpBZR1 transgenic Arabidopsis thaliana. Combined with previous findings, we hypothesize that PpBZR1 regulates PpVIN2 and may also be mediated by CBF. In conclusion, PpBZR1 expression is induced by EBR treatment during cold storage, which futher inhibite sucrose degradation gene PpVIN2 transcription via direct binding its promoter and indirectly regulating PpVIN2, resulting in slower sucrose degradation and higher chilling tolerance of peach.
  11. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal Chem, 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
  12. Yong KW, Pingguan-Murphy B, Xu F, Abas WA, Choi JR, Omar SZ, et al.
    Sci Rep, 2015;5:9596.
    PMID: 25872464 DOI: 10.1038/srep09596
    Cryopreservation represents an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs) and allows pooling of cells via long-term storage for clinical applications, e.g., cell-based therapies. It is crucial to reduce freezing injury during the cryopreservation process by loading the ASCs with the optimum concentration of suitable cryoprotective agents (CPAs). In this study, human ASCs were preserved for 3 months in different combinations of CPAs, including 1) 0.25 M trehalose; 2) 5% dimethylsulfoxide (DMSO); 3) 10% DMSO; 4) 5% DMSO + 20% fetal bovine serum (FBS); 5) 10% DMSO + 20% FBS; 6) 10% DMSO + 90% FBS. Interestingly, even with a reduction of DMSO to 5% and without FBS, cryopreserved ASCs maintained high cell viability comparable with standard cryomedium (10% DMSO + 90% FBS), with normal cell phenotype and proliferation rate. Cryopreserved ASCs also maintained their differentiation capability (e.g., to adipocytes, osteocytes and chondrocytes) and showed an enhanced expression level of stemness markers (e.g., NANOG, OCT-4, SOX-2 and REX-1). Our findings suggest that 5% DMSO without FBS may be an ideal CPA for an efficient long-term cryopreservation of human ASCs. These results aid in establishing standardized xeno-free long-term cryopreservation of human ASCs for clinical applications.
  13. Yong KW, Li Y, Liu F, Bin Gao, Lu TJ, Wan Abas WA, et al.
    Sci Rep, 2016 10 05;6:33067.
    PMID: 27703175 DOI: 10.1038/srep33067
    Human mesenchymal stem cells (hMSCs) hold great promise in cardiac fibrosis therapy, due to their potential ability of inhibiting cardiac myofibroblast differentiation (a hallmark of cardiac fibrosis). However, the mechanism involved in their effects remains elusive. To explore this, it is necessary to develop an in vitro cardiac fibrosis model that incorporates pore size and native tissue-mimicking matrix stiffness, which may regulate cardiac myofibroblast differentiation. In the present study, collagen coated polyacrylamide hydrogel substrates were fabricated, in which the pore size was adjusted without altering the matrix stiffness. Stiffness is shown to regulate cardiac myofibroblast differentiation independently of pore size. Substrate at a stiffness of 30 kPa, which mimics the stiffness of native fibrotic cardiac tissue, was found to induce cardiac myofibroblast differentiation to create in vitro cardiac fibrosis model. Conditioned medium of hMSCs was applied to the model to determine its role and inhibitory mechanism on cardiac myofibroblast differentiation. It was found that hMSCs secrete hepatocyte growth factor (HGF) to inhibit cardiac myofibroblast differentiation via downregulation of angiotensin II type 1 receptor (AT1R) and upregulation of Smad7. These findings would aid in establishment of the therapeutic use of hMSCs in cardiac fibrosis therapy in future.
  14. Choi JR, Tang R, Wang S, Wan Abas WA, Pingguan-Murphy B, Xu F
    Biosens Bioelectron, 2015 Dec 15;74:427-39.
    PMID: 26164488 DOI: 10.1016/j.bios.2015.06.065
    Nucleic acid testing (NAT), as a molecular diagnostic technique, including nucleic acid extraction, amplification and detection, plays a fundamental role in medical diagnosis for timely medical treatment. However, current NAT technologies require relatively high-end instrumentation, skilled personnel, and are time-consuming. These drawbacks mean conventional NAT becomes impractical in many resource-limited disease-endemic settings, leading to an urgent need to develop a fast and portable NAT diagnostic tool. Paper-based devices are typically robust, cost-effective and user-friendly, holding a great potential for NAT at the point of care. In view of the escalating demand for the low cost diagnostic devices, we highlight the beneficial use of paper as a platform for NAT, the current state of its development, and the existing challenges preventing its widespread use. We suggest a strategy involving integrating all three steps of NAT into one single paper-based sample-to-answer diagnostic device for rapid medical diagnostics in the near future.
  15. Choi JR, Hu J, Wang S, Yang H, Wan Abas WA, Pingguan-Murphy B, et al.
    Crit Rev Biotechnol, 2017 Feb;37(1):100-111.
    PMID: 26912259
    Dengue endemic is a serious healthcare concern in tropical and subtropical countries. Although well-established laboratory tests can provide early diagnosis of acute dengue infections, access to these tests is limited in developing countries, presenting an urgent need to develop simple, rapid, and robust diagnostic tools. Point-of-care (POC) devices, particularly paper-based POC devices, are typically rapid, cost-effective and user-friendly, and they can be used as diagnostic tools for the prompt diagnosis of dengue at POC settings. Here, we review the importance of rapid dengue diagnosis, current dengue diagnostic methods, and the development of paper-based POC devices for diagnosis of dengue infections at the POC.
  16. Hu J, Yew CT, Chen X, Feng S, Yang Q, Wang S, et al.
    Talanta, 2017 Apr 01;165:419-428.
    PMID: 28153277 DOI: 10.1016/j.talanta.2016.12.086
    The identification and quantification of chemicals play a vital role in evaluation and surveillance of environmental health and safety. However, current techniques usually depend on costly equipment, professional staff, and/or essential infrastructure, limiting their accessibility. In this work, we develop paper-based capacitive sensors (PCSs) that allow simple, rapid identification and quantification of various chemicals from microliter size samples with the aid of a handheld multimeter. PCSs are low-cost parallel-plate capacitors (~$0.01 per sensor) assembled from layers of aluminum foil and filter paper via double-sided tape. The developed PCSs can identify different kinds of fluids (e.g., organic chemicals) and quantify diverse concentrations of substances (e.g., heavy metal ions) based on differences in dielectric properties, including capacitance, frequency spectrum, and dielectric loss tangent. The PCS-based method enables chemical identification and quantification to take place much cheaply, simply, and quickly at the point-of-care (POC), holding great promise for environmental monitoring in resource-limited settings.
  17. Lou J, Wu C, Wang H, Cao S, Wei Y, Chen Y, et al.
    Food Chem, 2023 May 15;408:135185.
    PMID: 36525725 DOI: 10.1016/j.foodchem.2022.135185
    The effect of melatonin treatment on the carotenoid metabolism in broccoli florets during storage was explored. The results indicated that 100 µmol/L of melatonin maintained the sensory quality of broccoli florets, which retarded the increase of the L* value and the decrease of the H value. Melatonin treatment increased the activities of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT), leading to the enrichment of endogenous melatonin content in broccoli florets. Meanwhile, the treatment inhibited the concentrations of β-carotene, β-cryptoxanthin, zeaxanthin and lutein, which was beneficial in delaying the yellowing of broccoli. In addition, a series of carotenoid biosynthetic genes such as BoPSY, BoPDS, BoZDS, BoLCYβ and BoZEP was also suppressed by melatonin. Further analysis revealed that the lower carotenoid content and the down-regulated BoNCED expression in treated broccoli resulted in less accumulation of abscisic acid precursors, inhibiting abscisic acid production during the yellowing process.
  18. Yong KW, Li Y, Huang G, Lu TJ, Safwani WK, Pingguan-Murphy B, et al.
    Am J Physiol Heart Circ Physiol, 2015 Aug 15;309(4):H532-42.
    PMID: 26092987 DOI: 10.1152/ajpheart.00299.2015
    Cardiac myofibroblast differentiation, as one of the most important cellular responses to heart injury, plays a critical role in cardiac remodeling and failure. While biochemical cues for this have been extensively investigated, the role of mechanical cues, e.g., extracellular matrix stiffness and mechanical strain, has also been found to mediate cardiac myofibroblast differentiation. Cardiac fibroblasts in vivo are typically subjected to a specific spatiotemporally changed mechanical microenvironment. When exposed to abnormal mechanical conditions (e.g., increased extracellular matrix stiffness or strain), cardiac fibroblasts can undergo myofibroblast differentiation. To date, the impact of mechanical cues on cardiac myofibroblast differentiation has been studied both in vitro and in vivo. Most of the related in vitro research into this has been mainly undertaken in two-dimensional cell culture systems, although a few three-dimensional studies that exist revealed an important role of dimensionality. However, despite remarkable advances, the comprehensive mechanisms for mechanoregulation of cardiac myofibroblast differentiation remain elusive. In this review, we introduce important parameters for evaluating cardiac myofibroblast differentiation and then discuss the development of both in vitro (two and three dimensional) and in vivo studies on mechanoregulation of cardiac myofibroblast differentiation. An understanding of the development of cardiac myofibroblast differentiation in response to changing mechanical microenvironment will underlie potential targets for future therapy of cardiac fibrosis and failure.
  19. Choi JR, Yong KW, Tang R, Gong Y, Wen T, Yang H, et al.
    Adv Healthc Mater, 2017 Jan;6(1).
    PMID: 27860384 DOI: 10.1002/adhm.201600920
    Paper-based devices have been broadly used for the point-of-care detection of dengue viral nucleic acids due to their simplicity, cost-effectiveness, and readily observable colorimetric readout. However, their moderate sensitivity and functionality have limited their applications. Despite the above-mentioned advantages, paper substrates are lacking in their ability to control fluid flow, in contrast to the flow control enabled by polymer substrates (e.g., agarose) with readily tunable pore size and porosity. Herein, taking the benefits from both materials, the authors propose a strategy to create a hybrid substrate by incorporating agarose into the test strip to achieve flow control for optimal biomolecule interactions. As compared to the unmodified test strip, this strategy allows sensitive detection of targets with an approximately tenfold signal improvement. Additionally, the authors showcase the potential of functionality improvement by creating multiple test zones for semi-quantification of targets, suggesting that the number of visible test zones is directly proportional to the target concentration. The authors further demonstrate the potential of their proposed strategy for clinical assessment by applying it to their prototype sample-to-result test strip to sensitively and semi-quantitatively detect dengue viral RNA from the clinical blood samples. This proposed strategy holds significant promise for detecting various targets for diverse future applications.
  20. Dai K, Wei Y, Jiang S, Xu F, Wang H, Zhang X, et al.
    Foods, 2021 Dec 31;11(1).
    PMID: 35010225 DOI: 10.3390/foods11010099
    Thinned peach polyphenols (TPPs) were extracted by ultrasonic disruption and purified using macroporous resin. Optimized extraction conditions resulted in a TPPs yield of 1.59 ± 0.02 mg GAE/g FW, and optimized purification conditions resulted in a purity of 43.86% with NKA-9 resin. TPPs composition was analyzed by UPLC-ESI-QTOF-MS/MS; chlorogenic acid, catechin, and neochlorogenic acid were the most abundant compounds in thinned peaches. Purified TPPs exhibited scavenging activity on DPPH, ABTS, hydroxyl radical, and FRAP. TPPs inhibited α-amylase and α-glucosidase by competitive and noncompetitive reversible inhibition, respectively. TPPs also exhibited a higher binding capacity for bile acids than cholestyramine. In summary, TPPs from thinned peaches are potentially valuable because of their high antioxidant, hypoglycemic, and hypolipidemic capacities, and present a new incentive for the comprehensive utilization of thinned peach fruit.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links