Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Hu N, Li S, Li L, Xu H
    Front Psychol, 2021;12:759094.
    PMID: 35140652 DOI: 10.3389/fpsyg.2021.759094
    In children's learning subjects, English courses has its relative particularity compared with Chinese courses and the mathematics. Children's English teaching is often inefficient because of the lack of students' timely consolidation after class. Given this, the present work starts with the analysis of the current situation of children's learning, and introduces the film-assisted English teaching. In the specific teaching links, English teaching is carried out in a three-dimensional teaching mode. Before that, topics of the films are selected for the English teaching, and the films are edited and processed. Initially, the present work expounds the English children's films and their educational functions. Then, children can obtain teaching effect from the films. An English questionnaire is designed to analyze the application effect of English films in children's English teaching. The results show that the film teaching mode improves children's learning interest and motivation, and English film teaching can stimulate students' learning interest. Students are also more active to participate in teaching activities, thus improving their language skills. Under the teaching in the scenes of films, students can perceive the functions of language in certain contexts. Comprehensible language input promotes students' English listening ability and oral expression ability. The films can intuitively show the humanistic style, historical geography, cultures, and customs of English countries, and then cultivate students' western cultural literacy. Practice has proved that the method proposed here can achieve good teaching effect, and it provides certain references for children's English education.
  2. Xu H, Nghia DT, Nam NH
    Heliyon, 2023 Feb;9(2):e13105.
    PMID: 36755617 DOI: 10.1016/j.heliyon.2023.e13105
    This study examines determinants of Vietnamese agricultural exports to the APEC and whether there was an export gap between Vietnam and each APEC trading partner in the period 1998-2018, using the stochastic frontier gravity model. The empirical results affirm the consistency of the gravity model for Vietnamese agricultural exports. The new findings imply that the government should concentrate on designing a policy framework to encourage export enterprises to invest more in the technology factor, especially for large and high-demand markets such as the USA, Japan, and Korea. In practice, export enterprises should focus on several key action points. First, find partners to expand the distribution network of agricultural products within the four largest markets. Second, pay attention to updating information on the technical requirements of China, the largest import market. Third, conduct research to build up competitively strategic products that can be exported to potential new markets, such as Russia, Australia, and Malaysia.
  3. Qian J, Xie J, Lakshmipriya T, Gopinath SCB, Xu H
    Curr Med Imaging, 2020;16(5):534-544.
    PMID: 32484087 DOI: 10.2174/1573405615666190130164037
    Cardiovascular death is one of the leading causes worldwide; an accurate identification followed by diagnosing the cardiovascular disease increases the chance of a better recovery. Among different demonstrated strategies, imaging on cardiac infections yields a visible result and highly reliable compared to other analytical methods. Two-dimensional spot tracking imaging is the emerging new technology that has been used to study the function and structure of the heart and test the deformation and movement of the myocardium. Particularly, it helps to capture the images of each segment in different directions of myocardial strain values, such as valves of radial strain, longitudinal strain, and circumferential strain. In this overview, we discussed the imaging of infections in the heart by using the two-dimensional spot tracking.
  4. Dai R, Liu M, Nik Nabil WN, Xi Z, Xu H
    Molecules, 2021 Feb 19;26(4).
    PMID: 33669877 DOI: 10.3390/molecules26041113
    Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccharides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medicinal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mushrooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti-cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mechanisms underlying the potent bioactivities of several representative mushrooms in the Kingdom Fungi against various types of tumour.
  5. Teo BW, Toh QC, Chan XW, Xu H, Li JL, Lee EJ
    Asia Pac J Clin Nutr, 2014;23(4):619-25.
    PMID: 25516320 DOI: 10.6133/apjcn.2014.23.4.01
    Clinical practice guidelines recommend objective nutritional assessments in managing chronic kidney disease (CKD) patients but were developed while referencing to a North-American population. Specific recommendations for assessing muscle mass were suggested (mid-arm circumference, MAC; corrected mid-arm muscle area, cAMA; mid-arm muscle circumference, MAMC). This study aimed to assess correlation and association of these assessments with dietary protein intake in a multi-ethnic Asian population of healthy and CKD patients.
  6. Idros N, Ho MY, Pivnenko M, Qasim MM, Xu H, Gu Z, et al.
    Sensors (Basel), 2015;15(6):12891-905.
    PMID: 26046595 DOI: 10.3390/s150612891
    This proof-of-concept study proposes a novel sensing mechanism for selective and label-free detection of 2,4,6-trinitrotoluene (TNT). It is realized by surface chemistry functionalization of silica nanoparticles (NPs) with 3-aminopropyl-triethoxysilane (APTES). The primary amine anchored to the surface of the silica nanoparticles (SiO2-NH2) acts as a capturing probe for TNT target binding to form Meisenheimer amine-TNT complexes. A colorimetric change of the self-assembled (SAM) NP samples from the initial green of a SiO2-NH2 nanoparticle film towards red was observed after successful attachment of TNT, which was confirmed as a result of the increased separation between the nanoparticles. The shift in the peak wavelength of the reflected light normal to the film surface and the associated change of the peak width were measured, and a merit function taking into account their combined effect was proposed for the detection of TNT concentrations from 10-12 to 10-4 molar. The selectivity of our sensing approach is confirmed by using TNT-bound nanoparticles incubated in AptamerX, with 2,4-dinitrotoluene (DNT) and toluene used as control and baseline, respectively. Our results show the repeatable systematic color change with the TNT concentration and the possibility to develop a robust, easy-to-use, and low-cost TNT detection method for performing a sensitive, reliable, and semi-quantitative detection in a wide detection range.
  7. Basheva ES, Danov KD, Radulova GM, Kralchevsky PA, Xu H, Ung YW, et al.
    J Colloid Interface Sci, 2019 Mar 07;538:660-670.
    PMID: 30572230 DOI: 10.1016/j.jcis.2018.12.034
    HYPOTHESES: The micellar solutions of sulfonated methyl esters (SME) are expected to form stratifying foam films that exhibit stepwise thinning. From the height of the steps, which are engendered by micellar layers confined in the films, we could determine the micelle aggregation number, surface electric potential, and ionization degree. Moreover, addition of the zwitterionic surfactant cocamidopropyl betaine (CAPB) is expected to transform the small spherical micelles of SME into giant wormlike aggregates.

    EXPERIMENTS: Stratifying films from SME solutions are formed and the heights of the steps are recorded. The viscosity of mixed SME + CAPB solutions is measured at various concentrations and weight ratios of the two surfactants.

    FINDINGS: By theoretical analysis of the foam film data, we established that at 30-100 mM SME spherical micelles are formed and their aggregation number was determined. The addition of calcium ions, as in hard water, does not produce significant effect. However, SME and CAPB exhibit a strong synergism with respect to micelle growth as indicated by the high solution's viscosity. For this reason, the SME + CAPB mixtures represent a promising system for formulations in personal-care and house-hold detergency, having in mind also other useful properties of SME, such as high hard water tolerance, biodegradability and skin compatibility.

  8. Yavrukova VI, Radulova GM, Danov KD, Kralchevsky PA, Xu H, Ung YW, et al.
    Adv Colloid Interface Sci, 2020 Jan;275:102062.
    PMID: 31718784 DOI: 10.1016/j.cis.2019.102062
    This is a review article on the rheological properties of mixed solutions of sulfonated methyl esters (SME) and cocamidopropyl betaine (CAPB), which are related to the synergistic growth of giant micelles. Effects of additives, such as fatty alcohols, cocamide monoethanolamine (CMEA) and salt, which are expected to boost the growth of wormlike micelles, are studied. We report and systematize the most significant observed effects with an emphasis on the interpretation at molecular level and understanding the rheological behavior of these systems. The experiments show that the mixing of SME and CAPB produces a significant rise of viscosity, which is greater than in the mixed solutions of sodium dodecyl sulfate and CAPB. The addition of fatty alcohols, CMEA and cationic polymer, leads to broadening of the synergistic peak in viscosity without any pronounced effect on its height. The addition of NaCl leads to a typical salt curve with high maximum, but in the presence of dodecanol this maximum is much lower. At lower salt concentrations, the fatty alcohol acts as a thickener, whereas at higher salt concentrations - as a thinning agent. Depending on the shape of the frequency dependences of the measured storage and loss moduli, G' and G", the investigated micellar solutions behave as systems of standard or nonstandard rheological behavior. The systems with standard behavior obey the Maxwell viscoelastic model (at least) up to the crossover point (G' = G") and can be analyzed in terms of the Cates reptation-reaction model. The systems with nonstandard rheological behavior obey the Maxwell model only in a restricted domain below the crossover frequency; they can be analyzed in the framework of an augmented version of the Maxwell model. The methodology for data analysis and interpretation could be applied to any other viscoelastic micellar system.
  9. Xu H, Thomas RK, Penfold J, Li PX, Ma K, Welbourne RJL, et al.
    J Colloid Interface Sci, 2018 Feb 15;512:231-238.
    PMID: 29073464 DOI: 10.1016/j.jcis.2017.10.064
    The methyl ester sulfonates represent a promising group of anionic surfactants which have the potential for improved performance and biocompatibility in a range of applications. Their solution properties, in particular their tolerance to hard water, suggests that surface ordering may occur in the presence of multi-valent counterion. Understanding their adsorption properties in a range of different circumstances is key to the exploitation of their potential. Neutron reflectivity and surface tension have been used to characterise the adsorption at the air-aqueous solution interface of the anionic surfactant sodium tetradecanoic 2-sulfo 1-methyl ester, C14MES, in the absence of electrolyte and in the presence of mono, di, and tri-valent counterions, Na+, Ca2+, and Al3+. In particular the emphasis has been on exploring the tendency to form layered structures at the interface. In the absence of electrolyte and in the presence of NaCl and CaCl2 and AlCl3 at low concentrations monolayer adsorption is observed, and the addition of electrolyte results in enhanced adsorption. In the presence of NaCl and CaCl2 only monolayer adsorption is observed. However at higher AlCl3 concentrations surface multilayer formation is observed, in which the number of bilayers at the surface depends upon the surfactant and AlCl3 concentrations.
  10. Ling W, Liew G, Li Y, Hao Y, Pan H, Wang H, et al.
    Adv Mater, 2018 Jun;30(23):e1800917.
    PMID: 29633379 DOI: 10.1002/adma.201800917
    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10-6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs.
  11. Teo BW, Bagchi S, Xu H, Toh QC, Li J, Lee EJ
    Singapore Med J, 2014 Dec;55(12):652-5.
    PMID: 25630320
    INTRODUCTION: Clinical practice guidelines recommend using creatinine-based equations to estimate glomerular filtration rates (GFRs). While these equations were formulated for Caucasian-American populations and have adjustment coefficients for African-American populations, they are not validated for other ethnicities. The Chronic Kidney Disease-Epidemiology Collaborative Group (CKD-EPI) recently developed a new equation that uses both creatinine and cystatin C. We aimed to assess the accuracy of this equation in estimating the GFRs of participants (healthy and with chronic kidney disease [CKD]) from a multiethnic Asian population.

    METHODS: Serum samples from the Asian Kidney Disease Study and the Singapore Kidney Function Study were used. GFR was measured using plasma clearance of 99mTc-DTPA. GFR was estimated using the CKD-EPI equations. The performance of GFR estimation equations were examined using median and interquartile range values, and the percentage difference from the measured GFR.

    RESULTS: The study comprised 335 participants (69.3% with CKD; 38.5% Chinese, 29.6% Malays, 23.6% Indians, 8.3% others), with a mean age of 53.5 ± 15.1 years. Mean standardised serum creatinine was 127 ± 86 μmol/L, while mean standardised serum cystatin C and mean measured GFR were 1.43 ± 0.74 mg/L and 67 ± 33 mL/min/1.73 m2, respectively. The creatinine-cystatin C CKD-EPI equation performed the best, with an estimated GFR of 67 ± 35 mL/min/1.73 m2.

    CONCLUSION: The new creatinine-cystatin C equation estimated GFR with little bias, and had increased precision and accuracy in our multiethnic Asian population. This two-biomarker equation may increase the accuracy of population studies on CKD, without the need to consider ethnicity.
  12. Xing Y, Wang K, Zhang M, Law CL, Lei H, Wang J, et al.
    Food Chem, 2023 Oct 30;424:136456.
    PMID: 37267648 DOI: 10.1016/j.foodchem.2023.136456
    This study investigated the digestive stability of anthocyanins (ACNs) and their interaction with three pectin fractions-water-soluble pectin (WSP), cyclohexanetrans-1,2-diamine tetra-acetic acid-soluble pectin (CSP), and sodium carbonate-soluble pectin (NSP)-in strawberry pulp processed by pasteurization (PS), ultrasound (US), electron beam (EB) irradiation, and high pressure (HP). Compared with the control group, the ACNs content increased to the highest level (312.89 mg/mL), but the retention rate of ACNs in the simulated intestine decreased significantly after US treatment. The monosaccharide compositions indicated that the WSP and CSP possessed more homogalacturonan (HG) domains than the NSP, which contains more rhamngalacturonan-I (RG-I) domains. The microstructure of US-treated pectin was damaged and fragmented. Comprehensive analysis showed that the retention rate of ACNs was closely related to the pectin structure, primarily reflected by the degree of linearity and the integrity of structure. These results revealed the structure-activity relationship between ACNs and pectin during pulp processing.
  13. Ren H, Dai R, Nik Nabil WN, Xi Z, Wang F, Xu H
    Biomed Pharmacother, 2023 Dec;168:115643.
    PMID: 37839111 DOI: 10.1016/j.biopha.2023.115643
    Vascular remodelling is an adaptive response to physiological and pathological stimuli that leads to structural and functional changes in the vascular intima, media, and adventitia. Pathological vascular remodelling is a hallmark feature of numerous vascular diseases, including atherosclerosis, hypertension, abdominal aortic aneurysm, pulmonary hypertension and preeclampsia. Autophagy is critical in maintaining cellular homeostasis, and its dysregulation has been implicated in the pathogenesis of various diseases, including vascular diseases. However, despite emerging evidence, the role of autophagy and its dual effects on vascular remodelling has garnered limited attention. Autophagy can exert protective and detrimental effects on the vascular intima, media and adventitia, thereby substantially influencing the course of vascular remodelling and its related vascular diseases. Currently, there has not been a review that thoroughly describes the regulation of autophagy in vascular remodelling and its impact on related diseases. Therefore, this review aimed to bridge this gap by focusing on the regulatory roles of autophagy in diseases related to vascular remodelling. This review also summarizes recent advancements in therapeutic agents targeting autophagy to regulate vascular remodelling. Additionally, this review offers an overview of recent breakthroughs in therapeutic agents targeting autophagy to regulate vascular remodelling. A deeper understanding of how autophagy orchestrates vascular remodelling can drive the development of targeted therapies for vascular diseases.
  14. Qiu Z, Zhao J, Xie D, de Cruz CR, Zhao J, Xu H, et al.
    Aquac Nutr, 2023;2023:6628805.
    PMID: 37266415 DOI: 10.1155/2023/6628805
    The dietary effects of replacing fish meal with enzymatic cottonseed protein (ECP) on the growth performance, immunity, antioxidant, and intestinal health of Chinese soft-shelled turtles have not been explored. An eight-week feeding trial was conducted with a quadruplicated group of turtles (3.44 ± 0.01 g) that were randomly assigned to 16 cages (0.6 m × 0.6 m × 0.6 m) with 30 turtles that were stocked in each cage. Four dietary groups were fed with diets supplemented with 0, 2%, 4%, and 6% (ECP0 group (control group), ECP2 group, ECP4 group, ECP6 group) of enzymatic cottonseed protein replacing fishmeal. The present study illustrated that the final weight and WG in the ECP2 and ECP4 groups were significantly increased (P < 0.05) compared with the control group. The ECP2, ECP4, and ECP6 groups significantly reduced the feed coefficient (P < 0.05) and significantly increased the SGR (P < 0.05). The serum TP and ALB of the ECP4 group were significantly increased (P < 0.05). The ECP2, ECP4, and ECP6 groups significantly increased the activity of intestinal pepsin (P < 0.05), and the activity of intestinal lipase of the EPC4 group was significantly increased (P < 0.05). The intestinal villus height of the EPC4 group and EPC6 group, the villus width of the EPC2 group and EPC4 group, and the intestinal muscle thickness of the EPC4 group were significantly increased (P < 0.05). At the same time, replacing fishmeal with enzymatic cottonseed protein also affected the intestinal inflammation-related genes compared with the control group. Besides that, the expression of the IL-10 gene in the experimental group was significantly upregulated (P < 0.05). Nevertheless, the expression of TNF-α and IL-8 genes in the ECP2 group and TNF-α and IL-1β genes in the ECP4 group was significantly downregulated (P < 0.05). In summary, replacing fish meal with enzymatic cottonseed protein positively affects the growth, immunity, and intestinal health of Chinese soft-shelled turtles. The appropriate proportion of enzymatic cottonseed protein to replace fish meal in turtle feed is 4%.
  15. Zhou Z, Zhao J, de Cruz CR, Xu H, Wang L, Xu Q
    Fish Physiol Biochem, 2023 Oct;49(5):951-965.
    PMID: 37665506 DOI: 10.1007/s10695-023-01234-0
    The study investigated the alleviated effects of Alpha-ketoglutaric acid (AKG) on the intestinal health of mirror carp (Cyprinus carpio Songpu) caused by soy antigenic protein. The diets were formulated from fishmeal (CON), 50% soybean meal (SBM), the mixture of glycinin and β-conglycinin (11 + 7S) and adding 1% AKG in the 11 + 7S (AKG). Carp (~ 4 g) in triplicate (30 fish per tank) was fed to apparent satiation thrice a day for six weeks. Compared with CON, SBM treatment resulted in significantly poor growth performance (P  0.05). Gene expression of tumor necrosis factor (TNF-α) and interleukin-1 β (IL-1β) in proximal intestines (PI) and distal intestines (DI) were increased (P 
  16. Xu H, Zhang F, Li W, Shi J, Johnson BA, Tan ML
    Environ Monit Assess, 2023 Dec 27;196(1):94.
    PMID: 38150164 DOI: 10.1007/s10661-023-12249-8
    This study analyzed the spatial-temporal change pattern and underlying factors in production-living-ecological space (PLES) of Nanchong City, China, over the past 20 years using historical land use data (2000, 2010, 2020). A land use transfer matrix was calculated from the historical land use maps, and spatial analysis was conducted to analyze changes in the land use dynamics degree, standard deviation ellipse, and center of gravity. The results showed that there was a rapid spatial evolution of the PLES in Nanchong from 2000 to 2010, followed by a stabilization in the second decade. The transfer of ecological-production space occurred mainly in the Jialing and Yilong River basins, while the reduction of production space and the increase of living space were most prominent in the intersection of three districts (Shunqing, Jialing, and Gaoping districts). The return of production-ecological space was observed in the south and northeast of Yingshan, and there was little notable transfer of other types. The distribution of production space in Nanchong evolved in a north-south to east-west trend, with the center of gravity moving from Yilong to Peng'an County. The living space and production space expanded in a north-south direction, and the center of gravity position was in Nanbu, indicating a more balanced growth or decrease in the last 20 years. The changes in the spatial-temporal pattern of PLES in Nanchong were attributed to the intertwined factors of national policies, economic development, population growth, and the natural environment. This study introduced a novel approach towards rational planning of land resources in Nanchong, which may facilitate more sustainable urban planning and development.
  17. Du Y, Lin X, Shao X, Zhao J, Xu H, de Cruz CR, et al.
    Front Immunol, 2024;15:1319698.
    PMID: 38646543 DOI: 10.3389/fimmu.2024.1319698
    This study explored the impacts of supplementation of different levels of coated methionine (Met) in a high-plant protein diet on growth, blood biochemistry, antioxidant capacity, digestive enzymes activity and expression of genes related to TOR signaling pathway in gibel carp (Carassius auratus gibeilo). A high-plant protein diet was formulated and used as a basal diet and supplemented with five different levels of coated Met at 0.15, 0.30, 0.45, 0.60 and 0.75%, corresponding to final analyzed Met levels of 0.34, 0.49, 0.64, 0.76, 0.92 and 1.06%. Three replicate groups of fish (initial mean weight, 11.37 ± 0.02 g) (20 fish per replicate) were fed the test diets over a 10-week feeding period. The results indicated that with the increase of coated Met level, the final weight, weight gain (WG) and specific growth rate initially boosted and then suppressed, peaking at 0.76% Met level (P< 0.05). Increasing dietary Met level led to significantly increased muscle crude protein content (P< 0.05) and reduced serum alanine aminotransferase activity (P< 0.05). Using appropriate dietary Met level led to reduced malondialdehyde concentration in hepatopancreas (P< 0.05), improved superoxide dismutase activity (P< 0.05), and enhanced intestinal amylase and protease activities (P< 0.05). The expression levels of genes associated with muscle protein synthesis such as insulin-like growth factor-1, protein kinase B, target of rapamycin and eukaryotic initiation factor 4E binding protein-1 mRNA were significantly regulated, peaking at Met level of 0.76% (P< 0.05). In conclusion, supplementing optimal level of coated Met improved on fish growth, antioxidant capacity, and the expression of TOR pathway related genes in muscle. The optimal dietary Met level was determined to be 0.71% of the diet based on quadratic regression analysis of WG.
  18. Danov KD, Stanimirova RD, Kralchevsky PA, Slavova TG, Yavrukova VI, Ung YW, et al.
    J Colloid Interface Sci, 2021 Nov;601:474-485.
    PMID: 34090025 DOI: 10.1016/j.jcis.2021.05.147
    HYPOTHESIS: Many ionic surfactants with wide applications in personal-care and house-hold detergency show limited water solubility at lower temperatures (Krafft point). This drawback can be overcome by using mixed solutions, where the ionic surfactant is incorporated in mixed micelles with another surfactant, which is soluble at lower temperatures.

    EXPERIMENTS: The solubility and electrolytic conductivity for a binary surfactant mixture of anionic methyl ester sulfonates (MES) with nonionic alkyl polyglucoside and alkyl polyoxyethylene ether at 5 °C during long-term storage were measured. Phase diagrams were established; a general theoretical model for their explanation was developed and checked experimentally.

    FINDINGS: The binary and ternary phase diagrams for studied surfactant mixtures include phase domains: mixed micelles; micelles + crystallites; crystallites, and molecular solution. The proposed general methodology, which utilizes the equations of molecular thermodynamics at minimum number of experimental measurements, is convenient for construction of such phase diagrams. The results could increase the range of applicability of MES-surfactants with relatively high Krafft temperature, but with various useful properties such as excellent biodegradability and skin compatibility; stability in hard water; good wetting and cleaning performance.

  19. Blonder B, Both S, Jodra M, Xu H, Fricker M, Matos IS, et al.
    New Phytol, 2020 12;228(6):1796-1810.
    PMID: 32712991 DOI: 10.1111/nph.16830
    Leaf venation networks evolved along several functional axes, including resource transport, damage resistance, mechanical strength, and construction cost. Because functions may depend on architectural features at different scales, network architecture may vary across spatial scales to satisfy functional tradeoffs. We develop a framework for quantifying network architecture with multiscale statistics describing elongation ratios, circularity ratios, vein density, and minimum spanning tree ratios. We quantify vein networks for leaves of 260 southeast Asian tree species in samples of up to 2 cm2 , pairing multiscale statistics with traits representing axes of resource transport, damage resistance, mechanical strength, and cost. We show that these multiscale statistics clearly differentiate species' architecture and delineate a phenotype space that shifts at larger scales; functional linkages vary with scale and are weak, with vein density, minimum spanning tree ratio, and circularity ratio linked to mechanical strength (measured by force to punch) and elongation ratio and circularity ratio linked to damage resistance (measured by tannins); and phylogenetic conservatism of network architecture is low but scale-dependent. This work provides tools to quantify the function and evolution of venation networks. Future studies including primary and secondary veins may uncover additional insights.
  20. Xu H, Li P, Ma K, Welbourn RJL, Penfold J, Thomas RK, et al.
    J Colloid Interface Sci, 2019 Jan 01;533:154-160.
    PMID: 30153592 DOI: 10.1016/j.jcis.2018.08.061
    The strong binding of Al3+ trivalent counterions to the anionic surfactants sodium polyethylene glycol monoalkyl ether sulfate and α-methyl ester sulfonate results in surface multilayer formation at the air-water interface. In contrast the divalent and monovalent counterions Ca2+ and Na+ result only in monolayer adsorption. Competitive counterion adsorption has been extensively studied in the context of surfactant precipitation and re-dissolution, but remains an important feature in understanding this surface ordering and how it can be manipulated. The α-methyl ester sulfonate surfactants are a promising class of anionic surfactants which have much potential for improved performance in many applications, greater tolerance to extreme solvent conditions such as water hardness, biocompatibility and sustainable production. Hence in this study we have used neutron reflectivity to extend previous studies on the surface ordering of the α-methyl ester sulfonate surfactant, sodium tetradecanoic 2-sulfo 1-methyl ester, in the presence of electrolyte to investigate the role of binary mixtures of electrolytes, AlCl3/CaCl2, and AlCl3/MgCl2. In the mixed electrolytes the evolution of the surface structure, from monolayer to multilayer with increasing AlCl3 concentration, is observed. It is broadly similar to that reported for the addition of only AlCl3. However with increasing CaCl2 concentration the structural evolution is shifted progressively to higher AlCl3 concentrations. Similar observations occur for the AlCl3/MgCl2 mixtures. However the presence of the MgCl2 results in an additional phenomenon; the partial co-adsorption of a more compact lamellar structure which exists until the highest AlCl3 concentrations. The results demonstrate the importance of the competitive adsorption of different counterions in driving and controlling the formation of surface multilayer structures with anionic surfactants. Furthermore it offers a facile route to the manipulation of these surface structures.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links