Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Boey CY, Yee SY, Amir Hassan SZ, Yahya R, Hashim H
    Transplant Proc, 2022 Jan 24.
    PMID: 35086676 DOI: 10.1016/j.transproceed.2021.12.016
    INTRODUCTION: Accurate assessment of renal graft function in the early post-transplant period is crucial, as it influences clinical management and graft prognostication. However, there are limitations in current available modalities. MAG3 scintigraphy could contribute vital information on graft function.

    OBJECTIVES: This study aimed to determine the predictive value of parameters derived from MAG3 performed within 72 hours post transplant in detecting graft function. Delayed graft function (DGF), which is defined as dialysis requirement within the first week post transplant, is chosen as a surrogate measure of graft function.

    METHODOLOGY: All renal transplant recipients who underwent MAG3 within 72 hours post transplant from 2017 to 2019 were enrolled. Three MAG3 parameters, renogram grade, tubular injury severity score, and R20:3, were evaluated.

    RESULTS: A total of 117 patients were enrolled. The overall incidence of DGF was 16.2% with a significantly higher incidence amongst cadaveric graft recipients (53.6%) compared with living graft recipients (4.5%). Renogram grade ≥2, tubular injury severity score ≥4, and R20:3 > 1.31 significantly predicted DGF, P < .05 with high area under the curve for R20:3 of 0.97. Grafts with parameters above the cutoffs also showed significantly worse GFR at 1- and 3-months post-transplant. On multivariate analysis, prolonged cold ischemia time was associated with a higher risk of DGF, odds ratio 1.005 (95% confidence interval 1.003-1.007), P < .05.

    CONCLUSION: Baseline MAG3 accurately depicts early graft function and was also predictive of GFR at 1- and 3- months post-transplant. These baseline MAG3 scans could be particularly useful amongst deceased donor graft recipients owing to the higher risk of poor graft function.

  2. Abouloula CN, Rizwan M, Selvanathan V, Yahya R, Althubeiti K, Alkhammash HI, et al.
    Polymers (Basel), 2021 Oct 26;13(21).
    PMID: 34771242 DOI: 10.3390/polym13213685
    This study explores the possibility of transforming lignocellulose-rich agricultural waste materials into value-added products. Cellulose was extracted from an empty fruit bunch of oil palm and further modified into carboxymethyl cellulose (CMC), a water-soluble cellulose derivative. The CMC was then employed as the polymeric content in fabrication of solid polymer electrolyte (SPE) films incorporated with lithium iodide. To enhance the ionic conductivity of the solid polymer electrolytes, the compositions were optimized with different amounts of glycerol as a plasticizing agent. The chemical and physical effects of plasticizer content on the film composition were studied by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analysis. FTIR and XRD analysis confirmed the interaction plasticizer with the polymer matrix and the amorphous nature of fabricated SPEs. The highest ionic conductivity of 6.26 × 10-2 S/cm was obtained with the addition of 25 wt % of glycerol. By fabricating solid polymer electrolytes from oil palm waste-derived cellulose, the sustainability of the materials can be retained while reducing the dependence on fossil fuel-derived materials in electrochemical devices.
  3. Khor BH, Chinna K, Abdul Gafor AH, Morad Z, Ahmad G, Bavanandam S, et al.
    BMC Health Serv Res, 2018 Dec 04;18(1):939.
    PMID: 30514284 DOI: 10.1186/s12913-018-3702-9
    BACKGROUND: This study aimed to assess the situational capacity for nutrition care delivery in the outpatient hemodialysis (HD) setting in Malaysia by evaluating dietitian accessibility, nutrition practices and patients' outcomes.

    METHODS: A 17-item questionnaire was developed to assess nutrition practices and administered to dialysis managers of 150 HD centers, identified through the National Renal Registry. Nutritional outcomes of 4362 patients enabled crosscutting comparisons as per dietitian accessibility and center sector.

    RESULTS: Dedicated dietitian (18%) and visiting/shared dietitian (14.7%) service availability was limited, with greatest accessibility at government centers (82.4%) > non-governmental organization (NGO) centers (26.7%) > private centers (15.1%). Nutritional monitoring varied across HD centers as per albumin (100%) > normalized protein catabolic rate (32.7%) > body mass index (BMI, 30.7%) > dietary intake (6.0%). Both sector and dietitian accessibility was not associated with achieving albumin ≥40 g/L. However, NGO centers were 36% more likely (p = 0.030) to achieve pre-dialysis serum creatinine ≥884 μmol/L compared to government centers, whilst centers with dedicated dietitian service were 29% less likely (p = 0.017) to achieve pre-dialysis serum creatinine ≥884 μmol/L. In terms of BMI, private centers were 32% more likely (p = 0.022) to achieve BMI ≥ 25.0 kg/m2 compared to government centers. Private centers were 62% less likely (p 

  4. Abd Latif R, Yusof NA, Yahya R, Muda Z, Tengku Lih TB, Mohamed K, et al.
    Malays Fam Physician, 2022 Nov 30;17(3):43-52.
    PMID: 36606162 DOI: 10.51866/oal302
    INTRODUCTION: Gestational diabetes mellitus (GDM) is a known risk factor for diabetes mellitus (DM). The rising prevalence of GDM in the Asian population (11.7%) may explain the increasing incidence of DM in women. This study examined the prevalence of GDM, its associated factors and the foeto-maternal outcomes of women with GDM in Terengganu.

    METHOD: A cross-sectional study was conducted between April and September 2019 using secondary data from antenatal records in 40 health clinics in Terengganu for 2018. All pregnant women aged 25 years and above with or without risk factors for GDM were included in the study. Those with pre-existing type 1 or 2 DM were excluded. A total of 270 respondents were included. The prevalence of GDM and its associated factors were determined using descriptive statistics followed by multiple logistic regression.

    RESULTS: The prevalence of GDM in Terengganu was 27.3% (n=72). Logistic regression analysis found that BMI at booking (adjusted OR=4.51, 95% CI 2.13-9.55, p<0.001), history of GDM (adjusted OR=5.31, 95% CI 2.17-12.99, p<0.001) and family history of DM (adjusted OR=4.24, 95% CI 2.23-8.05, p<0.001) were the significant associated risk factors. Of women with GDM, 17.7% (n=11) had postpartum pre-diabetes based on modified oral glucose tolerance at 6 weeks postpartum. Univariate analysis using chi-square tests showed a significant association of neonatal jaundice and hypoglycaemia with GDM.

    CONCLUSION: Because the prevalence of GDM in Terengganu is high, surveillance of GDM in highrisk pregnancies and effective glycaemic management should be emphasised to prevent adverse foeto-maternal outcomes.

  5. Al-Mokaram AMAAA, Yahya R, Abdi MM, Mahmud HNME
    Nanomaterials (Basel), 2017 May 31;7(6).
    PMID: 28561760 DOI: 10.3390/nano7060129
    The performance of a modified electrode of nanocomposite films consisting of polypyrrole-chitosan-titanium dioxide (Ppy-CS-TiO₂) has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO₂ nanoparticles (NPs) and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO₂ NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS) spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO₂ in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV). The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS). The developed biosensors showed good sensitivity over a linear range of 1-14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO₂ nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.
  6. Selvanathan V, Azzahari AD, Abd Halim AA, Yahya R
    Carbohydr Polym, 2017 Jul 01;167:210-218.
    PMID: 28433156 DOI: 10.1016/j.carbpol.2017.03.023
    A first-of-its-kind, eco-friendly quasi-solid bioelectrolyte derived from potato starch was prepared. Starch was chemically modified via phthaloylation to synthesize amorphous, hydrophobic starch derivative and the attachment of the phthaloyl group was confirmed via FTIR which showed phthalate ester peak at 1715cm-1; and 1H NMR peaks between 7.30-7.90ppm attributed to the aromatic protons of the phthaloyl group. The resulting starch derivative was then infused with ternary natural deep eutectic solvent (NADES) made from different molar ratios of choline chloride, urea and glycerol. Electrochemical Impedance Spectroscopy (EIS) revealed that the highest ionic conductivity was obtained by the system consisting of NADES with choline chloride:urea:glycerol in molar ratios of 4:6:2, with a magnitude of 2.86mScm-1, hence validating the prospects of the materials to be further experimented as an alternative electrolyte in various electrochemical devices.
  7. Farhan N, Rageh Al-Maleki A, Ataei S, Muhamad Sarih N, Yahya R
    Bioorg Chem, 2023 Jun;135:106511.
    PMID: 37027951 DOI: 10.1016/j.bioorg.2023.106511
    Medication products from natural materials are preferred due to their minimal side effects. Extra-virgin olive oil (EVOO) is a highly acclaimed Mediterranean diet and a common source of lipids that lowers morbidity and disease severity. This study synthesised two fatty amides from EVOO: hydroxamic fatty acids (FHA) and fatty hydrazide hydrate (FHH). The Density Functional Theory (DFT) was applied to quantum mechanics computation. Nuclear magnetic resonance (NMR), Fourier transforms infrared (FTIR), and element analysis were used to characterise fatty amides. Likewise, the minimum inhibitory concentration (MIC) and timing kill assay were determined. The results revealed that 82 % for FHA and 80 % for FHH conversion were achieved. The amidation reagent/EVOO ratio (mmol: mmol) was 7:1, using the reaction time of 12 h and hexane as an organic solvent. The results further revealed that fatty amides have high antibacterial activity with low concentration at 0.04 μg/mL during eight h of FHA and 0.3 μg/mL during ten h of FHH. This research inferred that FHA and FHH could provide an alternative and effective therapeutic strategy for bacterial diseases. Current findings could provide the basis for the modernisation/introduction of novel and more effective antibacterial drugs derived from natural products.
  8. Farhan N, Al-Maleki AR, Sarih NM, Yahya R
    Bioorg Chem, 2023 Nov;140:106786.
    PMID: 37586131 DOI: 10.1016/j.bioorg.2023.106786
    Recent studies show that some metal ions, injure microbial cells in various ways due to membrane breakdown, protein malfunction, and oxidative stress. Metal complexes are suited for creating novel antibacterial medications due to their distinct mechanisms of action and the variety of three-dimensional geometries they can acquire. In this Perspective, the present study focused on new antibacterial strategies based on metal oleoyl amide complexes. Thus, oleoyl amides ligand (fatty hydroxamic acid and fatty hydrazide hydrate) with the transition metal ions named Ag (I), Co (II), Cu (II), Ni (II) and Sn (II) complexes were successfully synthesized in this study. The metals- oleoyl amide were characterized using elemental analysis, and fourier transforms infrared (FTIR) spectroscopy. The antibacterial effect of metals- oleoyl amide complexes was investigated for Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) by analysing minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and scanning electron microscopy (SEM). The results showed that metal-oleoyl amide complexes have high antibacterial activity at low concentrations. This study inferred that metal oleoyl amide complexes could be utilised as a promising therapeutic antibacterial agent.
  9. M Zawawi SM, Yahya R, Hassan A, Mahmud HN, Daud MN
    Chem Cent J, 2013;7(1):80.
    PMID: 23634962 DOI: 10.1186/1752-153X-7-80
    Metal tungstates have attracted much attention due to their interesting structural and photoluminescence properties. Depending on the size of the bivalent cation present, the metal tungstates will adopt structures with different phases. In this work, three different phases of metal tungstates MWO4 (M= Ba, Ni and Bi) were synthesized via the sucrose templated method.
  10. Yahya R, Bavanandan S, Yap YC, Jazilah W, Shaariah W, Wong HS, et al.
    Med J Malaysia, 2008 Sep;63 Suppl C:18-9.
    PMID: 19230242
  11. Huang XD, Liang JB, Tan HY, Yahya R, Long R, Ho YW
    J Agric Food Chem, 2011 Oct 12;59(19):10677-82.
    PMID: 21899359 DOI: 10.1021/jf201925g
    Depending on their source, concentration, chemical structure, and molecular weight, condensed tannins (CTs) form insoluble complexes with protein, which could lead to ruminal bypass protein, benefiting animal production. In this study, CTs from Leuceana leucocephala hybrid were fractionated into five fractions by a size exclusion chromatography procedure. The molecular weights of the CT fractions were determined using Q-TOF LC-MS, and the protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay with bovine serum albumin (BSA) as the standard protein. The calculated number-average molecular weights (M(n)) were 1348.6, 857.1, 730.1, 726.0, and 497.1, and b values (the b value represents the CT quantity that is needed to bind half of the maximum precipitable BSA) of the different molecular weight fractions were 0.381, 0.510, 0.580, 0.636, and 0.780 for fractions 1, 2, 3, 4, and 5, respectively. The results indicated that, in general, CTs of higher molecular weight fractions have stronger protein-binding affinity than those of lower molecular weights. However, the number of hydroxyl units within the structure of CT polymers also affects the protein-binding affinity.
  12. Rahbari, R., Hamdi, M., Farhudi, O., Yahya, R., Asmalina, M., Marzuki, Z.
    MyJurnal
    Self-propagating high-temperature synthesis (SHS) of powder compacts is a novel processing technique being developed as a route for the production of engineering ceramics and other advanced materials. The process, which is also referred to as combustion synthesis, provides energy- and cost-saving advantages over the more conventional processing routes for these materials. In the case of titanium or titanium alloy materials, prior researches employed powder metallurgy technology for preparing metal matrix composites, MMCs and laminated structures through the use of fine powders of an inert phase or phases (TiC, TiN, TiB and TiB2B ) dispersed in Ti or Ti alloy powders. The present research relates to manufacture of titanium-ceramic composites that are synthesized by combustion synthesis (SHS) and retains a multilayered composite microstructure comprising one or more titanium-based layers and one ceramic titanium carbide layers.
  13. Hammed WA, Rahman MS, Mahmud HNME, Yahya R, Sulaiman K
    Des Monomers Polym, 2017;20(1):368-377.
    PMID: 29491808 DOI: 10.1080/15685551.2016.1271086
    A soluble poly (n-vinyl carbazole)-polypyrrole (PNVC-Ppy) copolymer was prepared through oxidative chemical polymerization wherein dodecyl benzene sulfonic acid (DBSA) was used as a dopant to facilitate polymer-organic solvent interaction and ammonium persulfate (APS) was used as an oxidant. Compared with undoped PNVC-Ppy, the DBSA-doped PNVC-Ppy copolymer showed higher solubility in some selected organic solvents. The composition and structural characteristics of the DBSA-doped PNVC-Ppy were determined by Fourier transform infrared, ultraviolet-visible, and X-ray diffraction spectroscopic methods. Field emission scanning electron microscopic method was employed to observe the morphology of the DBSA-doped PNVC-Ppy copolymer. The electrical conductivity of the DBSA-doped PNVC-Ppy copolymer was measured at room temperature. The conductivity increased with increasing concentration of APS oxidant, and the highest conductivity was recorded at 0.004 mol/dm3APS at a polymerization temperature of -5 °C. The increased conductivity can be explained by the extended half-life of pyrrole free radical at a lower temperature and a gradual increase in chain length over a prolonged time due to the slow addition of APS. Furthermore, the obtained soluble copolymer exhibits unique optical and thermal properties different from those of PNVC and Ppy.
  14. Mansoor MA, Ismail A, Yahya R, Arifin Z, Tiekink ER, Weng NS, et al.
    Inorg Chem, 2013 May 20;52(10):5624-6.
    PMID: 23627942 DOI: 10.1021/ic302772b
    Perovskite-structured lead titanate thin films have been grown on FTO-coated glass substrates from a single-source heterometallic molecular complex, [PbTi(μ2-O2CCF3)4(THF)3(μ3-O)]2 (1), which was isolated in quantitative yield from the reaction of tetraacetatolead(IV), tetrabutoxytitanium(IV), and trifluoroacetic acid from a tetrahydrofuran solution. Complex 1 has been characterized by physicochemical methods such as melting point, microanalysis, FTIR, (1)H and (19)F NMR, thermal analysis, and single-crystal X-ray diffraction (XRD) analysis. Thin films of lead titanate having spherical particles of various sizes have been grown from 1 by aerosol-assisted chemical vapor deposition at 550 °C. The thin films have been characterized by powder XRD, scanning electron microscopy, and energy-dispersive X-ray analysis. An optical band gap of 3.69 eV has been estimated by UV-visible spectrophotometry.
  15. Selvanathan V, Yahya R, Ruslan MH, Sopian K, Amin N, Nour M, et al.
    Polymers (Basel), 2020 Feb 27;12(3).
    PMID: 32120814 DOI: 10.3390/polym12030516
    This work is a pioneer attempt to fabricate quasi-solid dye-sensitized solar cell (QSDDSC) based on organosoluble starch derivative. Rheological characterizations of the PhSt-HEC blend based gels exhibited viscoelastic properties favorable for electrolyte fabrication. From amplitude sweep and tack test analyses, it was evident that the inclusion of LiI improved the rigidity and tack property of the gels. On the other hand, the opposite was true for TPAI based gels, which resulted in less rigid and tacky electrolytes. The crystallinity of the gels was found to decline with increasing amount of salt in both systems. The highest photoconversion efficiency of 3.94% was recorded upon addition of 12.5 wt % TPAI and this value is one of the highest DSSC performance recorded for starch based electrolytes. From electrochemical impedance spectroscopy (EIS), it is deduced that the steric hindrance imposed by bulky cations aids in hindering recombination between photoanode and electrolyte.
  16. Rizwan M, Yahya R, Hassan A, Yar M, Abd Halim AA, Rageh Al-Maleki A, et al.
    J Mater Sci Mater Med, 2019 Jun 11;30(6):72.
    PMID: 31187295 DOI: 10.1007/s10856-019-6273-3
    The success of wound healing depends upon the proper growth of vascular system in time in the damaged tissues. Poor blood supply to wounded tissues or tissue engineered grafts leads to the failure of wound healing or rejection of grafts. In present paper, we report the synthesis of novel organosoluble and pro-angiogenic chitosan derivative (CSD) by the reaction of chitosan with 1,3-dimethylbarbituric acid and triethylorthoformate (TEOF). The synthesized material was characterized by FTIR and 13C-NMR to confirm the incorporated functional groups and new covalent connectivities. Biodegradability of the synthesized chitosan derivative was tested in the presence of lysozyme and was found to be comparable with CS. The cytotoxicity and apoptosis effect of new derivative was determined against gastric adenocarcinoma (AGS) cells and was found to be non-toxic. The CSD was found to be soluble in majority of organic solvents. It was blended with polycaprolactone (PCL) to form composite scaffolds. From an ex ovo CAM assay, it was noted that CSD stimulated the angiogenesis.
  17. Sahathevan S, Karupaiah T, Khor BH, Sadu Singh BK, Mat Daud ZA, Fiaccadori E, et al.
    Front Nutr, 2021;8:743324.
    PMID: 34977109 DOI: 10.3389/fnut.2021.743324
    Background: Muscle wasting, observed in patients with end-stage kidney disease and protein energy wasting (PEW), is associated with increased mortality for those on hemodialysis (HD). Oral nutritional supplementation (ONS) and nutrition counseling (NC) are treatment options for PEW but research targeting muscle status, as an outcome metric, is limited. Aim: We compared the effects of combined treatment (ONS + NC) vs. NC alone on muscle status and nutritional parameters in HD patients with PEW. Methods: This multi-center randomized, open label-controlled trial, registered under ClinicalTrials.gov (Identifier no. NCT04789031), recruited 56 HD patients identified with PEW using the International Society of Renal Nutrition and Metabolism criteria. Patients were randomly allocated to intervention (ONS + NC, n = 29) and control (NC, n = 27) groups. The ONS + NC received commercial renal-specific ONS providing 475 kcal and 21.7 g of protein daily for 6 months. Both groups also received standard NC during the study period. Differences in quadriceps muscle status assessed using ultrasound (US) imaging, arm muscle area and circumference, bio-impedance spectroscopy (BIS), and handgrip strength (HGS) methods were analyzed using the generalized linear model for repeated measures. Results: Muscle indices as per US metrics indicated significance (p < 0.001) for group × time interaction only in the ONS + NC group, with increases by 8.3 and 7.7% for quadriceps muscle thickness and 4.5% for cross-sectional area (all p < 0.05). This effect was not observed for arm muscle area and circumference, BIS metrics and HGS in both the groups. ONS + NC compared to NC demonstrated increased dry weight (p = 0.039), mid-thigh girth (p = 0.004), serum prealbumin (p = 0.005), normalized protein catabolic rate (p = 0.025), and dietary intakes (p < 0.001), along with lower malnutrition-inflammation score (MIS) (p = 0.041). At the end of the study, lesser patients in the ONS + NC group were diagnosed with PEW (24.1%, p = 0.008) as they had achieved dietary adequacy with ONS provision. Conclusion: Combination of ONS with NC was effective in treating PEW and contributed to a gain in the muscle status as assessed by the US, suggesting that the treatment for PEW requires nutritional optimization via ONS.
  18. Yahya R, Karjiban RA, Basri M, Rahman MB, Girardi M
    J Mol Model, 2014 Nov;20(11):2512.
    PMID: 25381172 DOI: 10.1007/s00894-014-2512-1
    Nonionic surfactants such as the Brij® series are important in the preparation of transdermal drug nanodelivery products using nanoemulsions because of their low toxicity and low irritancy. Here, Monte Carlo (MC) simulation was used to examine the physical behavior of the model deterministic system by using sampling procedures. Metropolis MC simulations were run on three mixtures of two different nonionic surfactants, Brij92 and Brij96, with different compositions in aqueous solution. The system was simulated in the canonical ensemble with constant temperature, volume and number of molecules. Hence, the acceptance ratio for single atom moves of the mixed surfactants increased as the concentration of surfactants increased from 0.494 to 0.591. The lowest total energy for the mixed surfactant systems was -99,039 kcal mol(-1) due to the interaction between all molecules in the system simulated. The physicochemical properties of models such as the radius of gyration and radial distribution function, were also determined. These observations indicate that the behavior and physicochemical of mixed surfactant and PKOEs nanoemulsion systems were described adequately during the simulation.
  19. Shahabudin N, Yahya R, Gan SN
    Polymers (Basel), 2016 Apr 06;8(4).
    PMID: 30979216 DOI: 10.3390/polym8040125
    One of the approaches to prolong the service lifespan of polymeric material is the development of self-healing ability by means of embedded microcapsules containing a healing agent. In this work, poly(melamine-urea-formaldehyde) (PMUF) microcapsules containing a palm oil-based alkyd were produced by polymerization of melamine resin, urea and formaldehyde that encapsulated droplets of the suspended alkyd particles. A series of spherical and free-flowing microcapsules were obtained. The chemical properties of core and shell materials were characterized by Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and proton nuclear magnetic resonance spectroscopy (¹H-NMR). Differential scanning calorimetry (DSC) analysis showed a glass transition around -15 °C due to the alkyd, and a melting temperature at around 200 °C due to the shell. Thermogravimetric analysis (TGA) results showed that the core and shell thermally degraded within the temperature range of 200⁻600 °C. Field emission scanning electron microscope (FESEM) examination of the ruptured microcapsule showed smooth inner and rough outer surfaces of the shell. Flexural strength and microhardness (Vickers) of the cured epoxy compound were not affected with the incorporation of 1%⁻3% of the microcapsules. The viability of the healing reactions was demonstrated by blending small amounts of alkyd with epoxy and hardener at different ratios. The blends could readily cure to non-sticky hard solids at room temperature and the reactions could be verified by ATR-FTIR.
  20. Tan MH, Yee SY, Yahya R
    Clin Med (Lond), 2022 Mar;22(2):169-171.
    PMID: 38589183 DOI: 10.7861/clinmed.2021-0789
    Carbamazepine remains a first-line antiepileptic medication for the treatment of partial seizures. Despite its widespread use, carbamazepine has significant neurotoxicity and hypersensitivity reactions. We report a case of a patient post-kidney transplant who was on regular carbamazepine for childhood epilepsy and developed nystagmus, diplopia and a broad-base gait after receiving diltiazem. Understanding of the interaction between diltiazem and carbamazepine is necessary to prevent the neurotoxic effects.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links