Displaying publications 1 - 20 of 106 in total

Abstract:
Sort:
  1. Ang LF, Darwis Y, Koh RY, Gah Leong KV, Yew MY, Por LY, et al.
    Pharmaceutics, 2019 May 01;11(5).
    PMID: 31052413 DOI: 10.3390/pharmaceutics11050205
    Curcuminoids have been used for the management of burns and wound healing in traditional Chinese medicine practices but the wide application of curcuminoids as a healing agent for wounds has always been a known problem due to their poor solubility, bioavailability, colour staining properties, as well as due to their intense photosensitivity and the need for further formulation approaches to maximise their various properties in order for them to considerably contribute towards the wound healing process. In the present study, a complex coacervation microencapsulation was used to encapsulate curcuminoids using gelatin B and chitosan. This study also focused on studying and confirming the potential of curcuminoids in a microencapsulated form as a wound healing agent. The potential of curcuminoids for wound management was evaluated using an in vitro human keratinocyte cell (HaCaT) model and the in vivo heater-inflicted burn wound model, providing evidence that the antioxidant activities of both forms of curcuminoids, encapsulated or not, are higher than those of butylated hydroxyanisole and butylated hydroxytoluene in trolox equivalent antioxidant capacity (TEAC) and (2,2-diphenyl-1-picryl-hydrazyl-hydrate) (DPPH) studies. However, curcuminoids did not have much impact towards cell migration and proliferation in comparison with the negative control in the in vitro HaCaT study. The micoencapsulation formulation was shown to significantly influence wound healing in terms of increasing the wound contraction rate, hydroxyproline synthesis, and greater epithelialisation, which in turn provides strong justification for the incorporation of the microencapsulated formulation of curcuminoids as a topical treatment for burns and wound healing management as it has the potential to act as a crucial wound healing agent in healthcare settings.
  2. Tan CS, Ch'ng YS, Loh YC, Zaini Asmawi M, Ahmad M, Yam MF
    J Ethnopharmacol, 2017 Mar 06;199:149-160.
    PMID: 28161542 DOI: 10.1016/j.jep.2017.02.001
    ETHNOPHARMACOLOGICAL RELEVANCE: Glycyrrhiza uralensis (G. uralensis) is one of the herbs used in traditional Chinese medicine (TCM) and serves as an envoy medicinal. Since G. uralensis plays a major role in the anti-hypertensive TCM formulae, we believe that G. uralensis might possess vasorelaxation activity.

    AIM OF THE STUDY: This study is designed to investigate the vasorelaxation effect of G. uralensis from various extracts and to study its pharmacology effect.

    MATERIALS AND METHODS: The vasorelaxation effect of G. uralensis extracts were evaluated on thoracic aortic rings isolated from Sprague Dawley rats.

    RESULTS: Among these three extracts of G. uralensis, 50% ethanolic extract (EFG) showed the strongest vasorelaxation activity. EFG caused the relaxation of the aortic rings pre-contracted with phenylephrine either in the presence or absence of endothelium and pre-contracted with potassium chloride in endothelium-intact aortic ring. Nω-nitro-L-arginine methyl ester, methylene blue, or 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one inhibit the vasorelaxation effect of EFG in the presence of endothelium. On the other hand, in the presence of the potassium channel blockers (tetraethylammonium and barium chloride), the vasorelaxation effect of EFG was not affected, but glibenclamide and 4-aminopyridine did inhibit the vasorelaxation effect of EFG. With indomethacin, atropine and propranolol, the vasorelaxation effect by EFG was significantly reduced. EFG was also found to be effective in reducing Ca(2+) release from sarcoplasmic reticulum and the blocking of calcium channels.

    CONCLUSIONS: The results obtained suggest that EFG is involved in the NO/sGC/cGMP pathway.

  3. Ch'ng YS, Tan CS, Loh YC, Ahmad M, Zaini Asmawi M, Yam MF
    J Pharmacopuncture, 2016 Jun;19(2):145-54.
    PMID: 27386148 DOI: 10.3831/KPI.2016.19.016
    The aim of this paper is to investigate the activities of Malaysian local herbs (Clinacanthus nutans Lindau, Strobilanthes crispus, Murdannia bracteata, Elephantopus scaber Linn., Pereskia bleo, Pereskia grandifolia Haw., Vernonia amygdalina, and Swietenia macrophylla King) for anti-hypertensive and vasorelaxant activity. An infrared (IR) macro-fingerprinting technique consisting of conventional fourier transform IR (FTIR), second-derivative IR (SD-IR), and two-dimensional correlation IR (2D-correlation IR) analyses were used to determine the main constituents and the fingerprints of the Malaysian local herbs.
  4. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    Pharm Biol, 2017 Dec;55(1):2083-2094.
    PMID: 28832263 DOI: 10.1080/13880209.2017.1357735
    CONTEXT: Vernonia amygdalina Del. (VA) (Asteraceae) is commonly used to treat hypertension in Malaysia.

    OBJECTIVE: This study investigates the vasorelaxant mechanism of VA ethanol extract (VAE) and analyzes its tri-step FTIR spectroscopy fingerprint.

    MATERIALS AND METHODS: Dried VA leaves were extracted with ethanol through maceration and concentrated using rotary evaporator before freeze-dried. The vasorelaxant activity and the underlying mechanisms of VAE using the cumulative concentration (0.01-2.55 mg/mL at 20-min intervals) were evaluated on aortic rings isolated from Sprague Dawley rats in the presence of antagonists.

    RESULTS: The tri-step FTIR spectroscopy showed that VAE contains alkaloids, flavonoids, and saponins. VAE caused the relaxation of pre-contracted aortic rings in the presence and absence of endothelium with EC50 of 0.057 ± 0.006 and 0.430 ± 0.196 mg/mL, respectively. In the presence of Nω-nitro-l-arginine methyl ester (EC50 0.971 ± 0.459 mg/mL), methylene blue (EC50 1.203 ± 0.426 mg/mL), indomethacin (EC50 2.128 ± 1.218 mg/mL), atropine (EC50 0.470 ± 0.325 mg/mL), and propranolol (EC50 0.314 ± 0.032 mg/mL), relaxation stimulated by VAE was significantly reduced. VAE acted on potassium channels, with its vasorelaxation effects significantly reduced by tetraethylammonium, 4-aminopyridine, barium chloride, and glibenclamide (EC50 0.548 ± 0.184, 0.158 ± 0.012, 0.847 ± 0.342, and 0.304 ± 0.075 mg/mL, respectively). VAE was also found to be active in reducing Ca2+ released from the sarcoplasmic reticulum and blocking calcium channels.

    CONCLUSIONS: The vasorelaxation effect of VAE involves upregulation of NO/cGMP and PGI2 signalling pathways, and modulation of calcium/potassium channels, and muscarinic and β2-adrenergic receptor levels.

  5. Yam MF, Tan CS, Shibao R
    Hypertens Res, 2018 Oct;41(10):787-797.
    PMID: 30111856 DOI: 10.1038/s41440-018-0083-8
    Orthosiphon stamineus Benth. (Lambiaceae) is an important traditional plant for the treatment of hypertension. Previous studies have demonstrated that the sinensetin content in O. stamineus is correlated with its vasorelaxant activity. However, there is still very little information regarding the vasorelaxant effect of sinensetin due to a lack of scientific studies. Therefore, the present study was designed to investigate the underlying mechanism of action of sinensetin in vasorelaxation using an in vitro precontraction aortic ring assay. The changes in the tension of the aortic ring preparations were recorded using a force-displacement transducer and the PowerLab system. The mechanisms of the vasorelaxant effect of sinensetin were determined in the presence of antagonists. Sinensetin caused relaxation of the aortic ring precontracted with PE in the presence and absence of the endothelium and with potassium chloride in endothelium-intact aortic rings. In the presence of Nω-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), methylene blue (cyclic guanosine monophosphate lowering agent), ODQ (selective soluble guanylate cyclase inhibitor), indomethacin (a nonselective cyclooxygenase inhibitor), tetraethylammonium (nonselective calcium activator K+ channel blocker), 4-aminopyridine (voltage-dependent K+ channel blocker), barium chloride (inwardly rectifying Kir channel blocker), glibenclamide (nonspecific ATP-sensitive K+ channel blocker), atropine (muscarinic receptor blocker), or propranolol (β-adrenergic receptor blocker), the relaxation stimulated by sinensetin was significantly reduced. Sinensetin was also active in reducing Ca2+ release from the sarcoplasmic reticulum (via IP3R) and in blocking calcium channels (VOCC). The present study demonstrates the vasorelaxant effect of sinensetin, which involves the NO/sGC/cGMP and indomethacin pathways, calcium and potassium channels, and muscarinic and beta-adrenergic receptors.
  6. Tan CS, Tew WY, Jingying C, Yam MF
    Chem Biol Interact, 2021 Oct 01;348:109620.
    PMID: 34411564 DOI: 10.1016/j.cbi.2021.109620
    Naringenin is a naturally occurring flavanone (flavonoid) known to have bioactive effects on human health. It has been reported to show cardiovascular effects. This study aimed to investigate the possible vasorelaxant effect of naringenin and the mechanism behind it by using a Sprague Dawley rat aortic ring assay model. Naringenin caused significant vasorelaxation of endothelium-intact aortic rings precontracted with phenylephrine (pD2 = 4.27 ± 0.05; Rmax = 121.70 ± 4.04%) or potassium chloride (pD2 = 4.00 ± 0.04; Rmax = 103.40 ± 3.82%). The vasorelaxant effect decreased in the absence of an endothelium (pD2 = 3.34 ± 0.10; Rmax = 62.29 ± 2.73%). The mechanisms of the vasorelaxant effect of naringenin in the presence of antagonists were also investigated. Indomethacin, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, atropine, 4-aminopyridine, Nω-nitro-l-arginine methyl ester, glibenclamide and propranolol significantly reduced the relaxation stimulated by naringenin in the presence of endothelium. Besides that, the effect of naringenin on the voltage-operated calcium channel (VOCC) in the endothelium-intact aortic ring was studied, as was intracellular Ca2+ release from the sarcoplasmic reticulum (SR) in the endothelium-denuded aortic ring. The results showed that naringenin also significantly blocked the entry of Ca2+ via the VOCC, SERCA/SOCC and suppressed the release of Ca2+ from the SR. Thus, the vasorelaxant effect shown by naringenin mostly involve the COX pathway, the endothelium-dependent pathway via NO/sGC/prostaglandin, calcium and potassium channels.
  7. Tan CS, Loh YC, Tew WY, Yam MF
    Inflammopharmacology, 2020 Aug;28(4):869-875.
    PMID: 31925617 DOI: 10.1007/s10787-019-00682-6
    Resveratrol is found in numerous plant-based foods and beverages and is known to have an impact on the cardiovascular system. The aim of this study was to investigate the vasorelaxant effect of resveratrol and its underlying mechanisms by employing an aortic ring assay model. Resveratrol caused relaxation of aortic rings that had been precontracted with phenylephrine in the presence of endothelium or with potassium chloride in endothelium-intact aortic rings. The vasorelaxant effect was decreased in the absence of an endothelium. The mechanisms underlying the vasorelaxant effect of resveratrol were determined through the addition of antagonists. In the presence of the endothelium, indomethacin (a nonselective cyclooxygenase inhibitor), methylene blue (cyclic guanosine monophosphate lowering agent), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, selective soluble guanylate cyclase inhibitor), Nω-nitro-L-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor), tetraethylammonium (TEA, nonselective calcium activator potassium channel blocker), 4-aminopyridine (4-AP, voltage-dependent K+ channel blocker), barium chloride (BaCl2, inwardly rectifying K+ channel blocker), glibenclamide (non-specific ATP-sensitive K+ channel blocker) and propranolol (β-adrenergic receptor blocker) led to a significant reduction in the vasorelaxation effect induced by resveratrol. Resveratrol was also found to reduce Ca2+ release from the sarcoplasmic reticulum and block calcium channels. In conclusion, resveratrol targets multiple signalling pathways for exerting its vasorelaxant effects in the rat aortic ring model in both the presence and absence of endothelium.
  8. Tan CS, Loh YC, Ch'ng YS, Ng CH, Yeap ZQ, Ahmad M, et al.
    J Ethnopharmacol, 2019 Mar 25;232:135-144.
    PMID: 30543913 DOI: 10.1016/j.jep.2018.12.014
    ETHNOPHARMACOLOGICAL RELEVANCE: Citrus reticulatae Pericarpium (Chen pi) was widely used as an important ingredient in the prescription of TCM to treat phlegm fluid retention type hypertension. Since Chen pi is involved in treatment as antihypertensive TCM formula, we have reasonable expectation in believing that it might possess vasorelaxant activity.

    AIM OF THE STUDY: This study is designed to investigate the vasorelaxant effect of Chen pi and to study its pharmacology effects.

    MATERIALS AND METHODS: The vasorelaxant effect of water extract of Chen pi (CRW) were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. The fingerprint of Chen pi and the extracts were developed with quantification of hesperidin content by HPTLC.

    RESULTS: CRW exhibited the strongest vasorelaxant activity. CRW caused the relaxation of the phenylephrine pre-contracted aortic rings in the presence and absence of endothelium as well as in potassium chloride pre-contracted endothelium-intact aortic ring. The incubation of propranolol (β-adrenergic receptor blocker), atropine (muscarinic receptor blocker), Nω-nitro-L-arginine methyl ester (NO synthase inhibitor), ODQ (sGC inhibitor), indomethacin (COX inhibitor), 4-aminopyridine (KV blocker), barium chloride (Kir blocker), and glibenclamide (KATP blocker) significantly reduced the vasorelaxant effects of CRW. CRW was also found to be active in reducing Ca2+ releases from the sarcoplasmic reticulum and suppressing the voltage-operated calcium channels.

    CONCLUSION: The vasorelaxant effect of CRW on rat aorta involves NO/sGC, calcium and potassium channels, muscarinic and β-adrenergic receptors.

  9. Yam MF, Tan CS, Ahmad M, Ruan S
    Am J Chin Med, 2016;44(7):1413-1439.
    PMID: 27785939
    Orthosiphon stamineus Benth. (Lamiaceae) is an important plant in traditional folk medicine that is used to treat hypertension and kidney stones. In humans, this plant has been tested as an addition regiment for antihypertensive treatment. Among the treatments for hypertension, O. stamineus had been to have diuretic and vasorelaxant effects in animal models. There is still very little information regarding the vasorelaxant effect of O. stamineus. Therefore, the present study was designed to investigate the vasorelaxant activity and mechanism of action of the fractions of O. stamineus. The vasorelaxant activity and the underlying mechanisms of the chloroform fraction of the 50% methanolic extract of O. stamineus (CF) was evaluated on thoracic aortic rings isolated from Sprague Dawley rats. CF caused relaxation of the aortic ring pre-contracted with phenylephrine in the presence and absence of endothelium, and pre-contracted with potassium chloride in endothelium-intact aortic ring. In the presence of endothelium, both indomethacin (a nonselective cyclooxygenase inhibitor) and [Formula: see text]-[1,2,4]Oxadiazolo[4,3-[Formula: see text]]quinoxalin-1-one (ODQ, selective soluble guanylate cyclase inhibitor) had a small effect on the vasorelaxation response. On the other hand, in the presence of Nω-nitro-L-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor), methylene blue (cyclic guanosine monophosphate lowering agent), tetraethylammonium ([Formula: see text], nonselective calcium activator [Formula: see text] channel blocker), 4-aminopyridine (4-AP, voltage-dependent [Formula: see text] channel blocker), barium chloride ([Formula: see text], inwardly rectifying [Formula: see text] channel blocker), glibenclamide (nonspecific ATP-sensitive [Formula: see text] channel blocker), atropine (muscarinic receptor blocker) and propranolol (β-adrenergic receptor blocker), the vasorelaxant effect significantly reduced the relaxation stimulated by CF. CF was also found to be active in reducing [Formula: see text] release from the sarcoplasmic reticulum and blocking calcium channels.
  10. Loh YC, Tan CS, Ch'ng YS, Ahmad M, Asmawi MZ, Yam MF
    J Med Food, 2017 Mar;20(3):265-278.
    PMID: 28296594 DOI: 10.1089/jmf.2016.3836
    Recently, a new syndromic disease combination theory of traditional Chinese medicine (TCM) for hypertensive treatment has been introduced. In the wake of this new concept, a new science-based TCM formula that counteracts various syndromes is needed. The objective of this study was to develop such a formula. Five of the most clinically prescribed TCM herbs that work on different syndromes, namely Gastrodia elata, Uncaria rhynchophylla, Pueraria thomsonii, Panax notoginseng, and Alisma orientale, were selected for this study. The fingerprints of these five herbs were analyzed by tri-step Fourier transform infrared spectroscopy. Three different solvents, 95% ethanol, 50% ethanol, and distilled water, were used for the maceration of the herbs and their vasodilatory effects were studied using in vitro precontracted aortic ring model. Among these, the 50% ethanolic extracts of G. elata (GE50) and A. orientale (AO50), and 95% ethanolic extracts of U. rhynchophylla (UR95), P. thomsonii (PT95), and P. notoginseng (PN95) were found to be the most effective for eliciting vasodilation. Thus, these five extracts were used for orthogonal stimulus-response compatibility group studies by using L25 (5(5)) formula. The best combination ratio for GE50, UR95, PT95, PN95, and AO50, which was assigned as Formula 1 (F1), was found at EC0, EC25, EC20, EC20, and EC10, respectively. The vasodilatory effect of the extracts prepared from different extraction methods using F1 ratio was also studied. From the results, the EC50 and Rmax of total 50% ethanolic extract of five herbs using F1 ratio (F1-2) were 0.028 ± 0.005 mg/mL and 101.71% ± 3.64%, with better values than F1 (0.104 ± 0.014 mg/mL and 97.80% ± 3.12%, respectively). In conclusion, the optimum ratio and appropriate extraction method (F1-2) for the new TCM formula were revealed.
  11. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    J Med Food, 2018 Mar;21(3):289-301.
    PMID: 29420109 DOI: 10.1089/jmf.2017.4008
    The seeds of Swietenia macrophylla King (SM) (Meliaceae) are used as a folk medicine for the treatment of hypertension in Malaysia. However, the antihypertensive and vasorelaxant effects of SM seeds are still not widely studied. Thus, this study was designed to investigate the in vivo antihypertensive effects and in vitro mechanism of vasorelaxation of a 50% ethanolic SM seed extract (SM50) and the fingerprint of SM50 was developed through tri-step Fourier transform infrared (FTIR) spectroscopy. The vasorelaxant activity and the underlying mechanisms of SM50 were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats in the presence of antagonists. The pharmacological effect of SM50 was investigated by oral administration of spontaneously hypertensive rats (SHRs) with three different doses of SM50 (1000, 500, and 250 mg/kg/day) for 4 weeks and their systolic blood pressure (SBP) and diastolic blood pressure (DBP) values were measured weekly using tail-cuff method. The tri-step FTIR macro-fingerprint of SM50 showed that SM50 contains stachyose, flavonoids, limonoids, and ester, which may contribute to its vasorelaxant effect. The results showed that the vasorelaxant activity of SM50 was mostly attributed to channel-linked receptors pathways through the blockage of voltage-operated calcium channels (VOCC). SM50 also acts as both potassium channels opener and inositol triphosphate receptor (IP3R) inhibitor, followed by β2-adrenergic pathway, and ultimately mediated through the nitric oxide/soluble guanylyl cyclase/cyclic 3',5'-guanosine monophosphate (NO/sGC/cGMP) signaling pathways. The treatment of SM50 also significantly decreased the SBP and DBP in SHRs. In conclusion, the antihypertensive mechanism of SM50 was mediated by VOCC, K+ channels, IP3R, G-protein-coupled β2-adrenergic receptor, and followed by NO/sGC/cGMP signaling mechanism pathways in descending order. The data suggested that SM50 has the potential to be used as a herbal medicament to treat hypertension.
  12. Tew WY, Tan CS, Asmawi MZ, Yam MF
    Eur J Pharmacol, 2020 Aug 05;880:173123.
    PMID: 32335091 DOI: 10.1016/j.ejphar.2020.173123
    Morin (3,5,7,2',4'-pentahydroxyflavone) is a yellow coloured natural flavonoid found in plants of the Moraceae family. This favonoid is easily sources from readily available fruits, vegetables and eve certain beverages. Among the sources that was identified, it is clear that morin is most abundantly found in almond, old fustic, Indian guava, and Osage orange. Multiple studies have suggested that morin has multiple therapeutic actions and possess potential to be a functional potent drug. Previous studies demonstrated that morin is capable of resolving deoxycorticosterone acetate-salt-induced hypertension and possess strong vasorelaxant properties. However, the exact mechanisms remains unknown. Therefore, this study is designed to investigate the in vitro mechanism of morin-induced vasorelaxant effects. The underlying mechanisms of morin's vasorelaxant activities were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats. Results from the study demonstrated morin causing vasodilatory reaction in phenylephrine and potassium chloride pre-contracted endothelium-intact aortic rings with the effect being significantly affected in endothelium-denuded aortic rings. Pre-incubation of the aortic rings with ODQ (selective cGMP-independent sGC inhibitor), indomethacin (nonselective COX inhibitor), L-NAME (endothelial nitric oxide inhibitor), propranolol (β2-adrenegic receptors blocker), and atropine (muscarinic receptors blocker) significantly reduced the vasorelaxant effect of morin. It was also found to be able to reduce the intracellular calcium level by blocking VOCC and calcium intake from the extracellular environment and the intracellular release of calcium from the sarcoplasmic reticulum. The present study showed that the vasorelaxant effect of morin potentially involves the NO/sGC, muscarinic receptors, β2-adrenegic receptors, and calcium channels.
  13. Mohamed EA, Lim CP, Ebrika OS, Asmawi MZ, Sadikun A, Yam MF
    J Ethnopharmacol, 2011 Jan 27;133(2):358-63.
    PMID: 20937371 DOI: 10.1016/j.jep.2010.10.008
    The present investigation was carried out to evaluate the safety of standardised 50% ethanol extract of Orthosiphon stamineus plant by determining its potential toxicity after acute and subchronic administration in rats.
  14. Abdulkarim MF, Abdullah GZ, Chitneni M, Salman IM, Ameer OZ, Yam MF, et al.
    Int J Nanomedicine, 2010 Nov 04;5:915-24.
    PMID: 21116332 DOI: 10.2147/IJN.S13305
    INTRODUCTION: During recent years, there has been growing interest in use of topical vehicle systems to assist in drug permeation through the skin. Drugs of interest are usually those that are problematic when given orally, such as piroxicam, a highly effective anti-inflammatory, anti-pyretic, and analgesic, but with the adverse effect of causing gastrointestinal ulcers. The present study investigated the in vitro and in vivo pharmacodynamic activity of a newly synthesized palm oil esters (POEs)-based nanocream containing piroxicam for topical delivery.

    METHODS: A ratio of 25:37:38 of POEs: external phase: surfactants (Tween 80:Span 20, in a ratio 80:20), respectively was selected as the basic composition for the production of a nanocream with ideal properties. Various nanocreams were prepared using phosphate-buffered saline as the external phase at three different pH values. The abilities of these formulae to deliver piroxicam were assessed in vitro using a Franz diffusion cell fitted with a cellulose acetate membrane and full thickness rat skin. These formulae were also evaluated in vivo by comparing their anti-inflammatory and analgesic activities with those of the currently marketed gel.

    RESULTS: After eight hours, nearly 100% of drug was transferred through the artificial membrane from the prepared formula F3 (phosphate-buffered saline at pH 7.4 as the external phase) and the marketed gel. The steady-state flux through rat skin of all formulae tested was higher than that of the marketed gel. Pharmacodynamically, nanocream formula F3 exhibited the highest anti- inflammatory and analgesic effects as compared with the other formulae.

    CONCLUSION: The nanocream containing the newly synthesized POEs was successful for trans-dermal delivery of piroxicam.

  15. Aminu N, Yam MF, Chan SY, Bello I, Umar NM, Nuhu T, et al.
    Saudi Dent J, 2021 Nov;33(7):554-559.
    PMID: 34803300 DOI: 10.1016/j.sdentj.2020.08.008
    Purpose: To evaluate therapeutic effectiveness of antibacterial triclosan (TCS) and anti-inflammatory flurbiprofen (FLB)-loaded nanogels system in ligature-induced experimental periodontitis in rats.

    Methodology: A total of 72 Sprague-Dawley rats were used in this study. Four groups (n = 18 each) were randomly created: Group 1 - neither subjected to experimental periodontitis nor to any treatment; Group 2 - subjected to experimental periodontitis but not treated; Group 3 - subjected to experimental periodontitis and then treated with the developed nanogels; Group 4 - subjected to experimental periodontitis and then placed on a mixture of pure TCS and FLB treatment. The experimental periodontitis was induced on the lower incisors by applying a ligature which was kept for 14 days. Treatment was done for 7 days, and sampling was done at 7, 14, and 28 day of the post-induction experimental period. Morphometric analysis was conducted to assess the clinical outcomes and healing effect.

    Results: The morphometric findings showed that the group treated with the developed TCS and FLB-loaded nanogels recovered better and faster than a mixture of pure TCS and FLB. At 28 day of the experimental period, there was no significant difference (p > 0.05) between the baseline control group and the nanogels treated group.

    Conclusions: The developed TCS and FLB-loaded nanogels was found to be effective in the treatment of experimental periodontitis in rats. The used experimental periodontitis model was found to be simple and easily reproducible.

  16. Lim YH, Oo CW, Koh RY, Voon GL, Yew MY, Yam MF, et al.
    Drug Dev Res, 2020 Jul 28.
    PMID: 32720715 DOI: 10.1002/ddr.21715
    In recent years, chalcones and their derivatives have become the focus of global scientists due to increasing evidence reported towards their potency in antitumor and anti-cancer. Here, the chalcones designed and synthesized in our present study were derived from the derivatives of naphthaldehyde and acetophenone. Both these precursors have been reported in demonstrating a certain degree of anticancer property. Also, the substituents on these precursors such as hydroxyl, methoxy, prenyl, and chloro were shown able to enhance the anticancer efficiency. Hence, it is the interest of the current study to investigate the anticancer potential of the hybrid molecules (chalcones) consisting of these precursors with different alkoxy substituents and with or without the fluorine moiety. Two series of chalcone derivatives were designed, synthesized, and characterized using the elemental analysis, IR, 1 H and 13 C NMR spectroscopy, subsequently evaluated for their anti-cancer activity. Interestingly, the results showed that the fluorinated chalcones 11-15 exhibited stronger cytotoxic activity towards the breast cancer cell lines (4T1) compared to non-fluorinated chalcone derivatives. Remarkably, the selectivity index obtained for these fluorinated chalcones derivatives against the breast cancer 4T1 cell line was higher than those exhibited by cisplatin, which is one of the most frequently deployed chemotherapy agents in current medical practice. These findings could provide an insight towards the potential of fluorinated chalcones being developed as an anti-cancer agent with moderate activity towards breast cancer cell and low inhibition of fibroblast cell at a concentration of 100 μM.
  17. Ang LF, Por LY, Yam MF
    PLoS One, 2013;8(8):e70597.
    PMID: 23940599 DOI: 10.1371/journal.pone.0070597
    Two chitosan samples (medium molecular weight (MMCHI) and low molecular weight (LMCHI)) were investigated as an enzyme immobilization matrix for the fabrication of a glucose biosensor. Chitosan membranes prepared from acetic acid were flexible, transparent, smooth and quick-drying. The FTIR spectra showed the existence of intermolecular interactions between chitosan and glucose oxidase (GOD). Higher catalytic activities were observed on for GOD-MMCHI than GOD-LMCHI and for those crosslinked with glutaraldehyde than using the adsorption technique. Enzyme loading greater than 0.6 mg decreased the activity. Under optimum conditions (pH 6.0, 35°C and applied potential of 0.6 V) response times of 85 s and 65 s were observed for medium molecular weight chitosan glucose biosensor (GOD-MMCHI/PT) and low molecular weight chitosan glucose biosensor (GOD-LMCHI/PT), respectively. The apparent Michaelis-Menten constant ([Formula: see text]) was found to be 12.737 mM for GOD-MMCHI/PT and 17.692 mM for GOD-LMCHI/PT. This indicated that GOD-MMCHI/PT had greater affinity for the enzyme. Moreover, GOD-MMCHI/PT showed higher sensitivity (52.3666 nA/mM glucose) when compared with GOD-LMCHI/PT (9.8579 nA/mM glucose) at S/N>3. Better repeatability and reproducibility were achieved with GOD-MMCHI/PT than GOD-LMCHI/PT regarding glucose measurement. GOD-MMCHI/PT was found to give the highest enzymatic activity among the electrodes under investigation. The extent of interference encountered by GOD-MMCHI/PT and GOD-LMCHI/PT was not significantly different. Although the Nafion coated biosensor significantly reduced the signal due to the interferents under study, it also significantly reduced the response to glucose. The performance of the biosensors in the determination of glucose in rat serum was evaluated. Comparatively better accuracy and recovery results were obtained for GOD-MMCHI/PT. Hence, GOD-MMCHI/PT showed a better performance when compared with GOD-LMCHI/PT. In conclusion, chitosan membranes shave the potential to be a suitable matrix for the development of glucose biosensors.
  18. Abdulkarim MF, Abdullah GZ, Chitneni M, Yam MF, Mahdi ES, Salman IM, et al.
    Pak J Pharm Sci, 2012 Apr;25(2):429-33.
    PMID: 22459473
    The surface activity of some non-steroidal anti-inflammatory agents like ibuprofen was investigated extensively. This fact has attracted the researchers to extend this behavior to other agents like piroxicam. Piroxicam molecules are expected to orient at the interface of oil and aqueous phase. The aim of this study was, firstly, to assess the surface and interfacial tension behaviour of newly synthesised palm oil esters and various pH phosphate buffers. Furthermore, the surface and interfacial tension activity of piroxicam was studied. All the measurements of surface and interfacial tension were made using the tensiometer. The study revealed that piroxicam has no effect on surface tension values of all pH phosphate buffers and palm oil esters. Similarly, various concentrations of piroxicam did not affect the interfacial tensions between the oil phase and the buffer phases. Accordingly, the interfacial tension values of all mixtures of oil and phosphate buffers were considerably high which indicates the immiscibility. It could be concluded that piroxicam has no surface activity. Additionally, there is no surface pressure activity of piroxicam at the interface of plam oil esters and phosphate buffers in the presence of Tweens and Spans.
  19. Farsi E, Ahmad M, Hor SY, Ahamed MB, Yam MF, Asmawi MZ, et al.
    BMC Complement Altern Med, 2014 07 04;14:220.
    PMID: 24993916 DOI: 10.1186/1472-6882-14-220
    BACKGROUND: Recently, there has been increasing interest in Ficus deltoidea Jack. (Moraceae) due to its chemical composition and the potential health benefits. The present study was undertaken to investigate the effect of extracts of F. deltoidea leaves on diabetes.

    METHODS: The petroleum ether, chloroform and methanol extracts of F. deltoidea were prepared and subjected to standardization using preliminary phytochemical and HPLC analysis. Dose selection was made on the basis of acute oral toxicity study (50-5000 mg/kg b. w.) as per OECD guidelines. Diabetes mellitus was induced with streptozotocin and rats found diabetic were orally administered with the extract (250, 500 and 1000 mg/kg) for 14 days. Levels of blood glucose and insulin were measured in control as well as diabetic rats on 0, 7 and 14th day. In addition, glucose metabolism regulating gene expression was assessed using RT-PCR.

    RESULTS: HPLC analysis revealed that the methanol extract is enriched with C-glycosylflavones particularly, vitexin and isovitexin. In oral glucose tolerance test, oral administration of the methanol extract increased the glucose tolerance. The methanol extract showed significant (P 

  20. Yam MF, Ahmad M, Por LY, Ang LF, Basir R, Asmawi MZ
    Sensors (Basel), 2012;12(7):9603-12.
    PMID: 23012561
    The stepping forces of normal and Freund Complete Adjuvant (FCA)-induced arthritic rats were studied in vivo using a proposed novel analgesic meter. An infrared charge-coupled device (CCD) camera and a data acquisition system were incorporated into the analgesic meter to determine and measure the weight of loads on the right hind paw before and after induction of arthritis by FCA injection into the paw cavity. FCA injection resulted in a significant reduction in the stepping force of the affected hind paw. The stepping force decreased to the minimum level on day 4 after the injection and then gradually increased up to day 25. Oral administration of prednisolone significantly increased the stepping forces of FCA-induced arthritic rats on days 14 and 21. These results suggest that the novel device is an effective tool for measuring the arthritic pain in in vivo studies even though walking is a dynamic condition.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links