Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Zhu J, Fang Y, Wakisaka M, Saadiah Hafid H, Yang Z, Yin Y, et al.
    Food Chem X, 2024 Mar 30;21:101181.
    PMID: 38357373 DOI: 10.1016/j.fochx.2024.101181
    The massive production of food waste and plastic pollution necessitates innovative solutions. This study reports the first fabrication of a flexible chitosan (CH) film reinforced with lignosulfonate (LS) derived from pulping byproduct as a sustainable alternative to synthetic food packaging. The CH/LS composite film was prepared by a simple casting method with varying LS contents of 1 % and 2 %. Compared to CH film, the addition of 2 % LS increased the tensile strength by over 4 times and decreased water vapor permeability by 11 %. Moreover, the CH/LS film exhibited excellent UV-shielding properties. This novel use of LS to reinforce CH film presents an eco-friendly active packaging material. When used to package cherry tomatoes for 2 weeks, the CH/LS film effectively maintained fruit freshness and hardness while minimizing weight loss. This work provides new scientific evidence on the optimized preparation and application of CH/LS composite films from renewable resources for food preservation.
  2. Yang Z, Cui J, Yun Y, Xu Y, Tan CP, Zhang W
    J Sci Food Agric, 2024 Jan 29.
    PMID: 38284624 DOI: 10.1002/jsfa.13338
    BACKGROUND: The inherent properties of coconut oil (CO), including its elevated saturated fatty acid content and low melting point, make it suitable for application in plastic fat processing. The present study explores the physicochemical characteristics, micromorphology and oxidative stability of oleogels produced from CO using various gelators [ethylcellulose (EC), β-sitosterol/γ-oryzanol (PS) and glyceryl monostearate (MG)] to elucidate the formation mechanisms of coconut oleogels (EC-COO, PS-COO and MG-COO).

    RESULTS: Three oleogel systems exhibited a solid-like behavior, with the formation of crystalline forms dominated by β and β'. Among them, PS-COO exhibited enhanced capability with respect to immobilizing liquid oils, resulting in solidification with high oil-binding capacity, moderate hardness and good elasticity. By contrast, MG-COO demonstrated inferior stability compared to PS-COO and EC-COO. Furthermore, MG-COO and PS-COO demonstrated antioxidant properties against CO oxidation, whereas EC-COO exhibited the opposite effect. PS-COO and EC-COO exhibited superior thermodynamic behavior compared to MG-COO.

    CONCLUSION: Three oleogels based on CO were successfully prepared. The mechanical strength, storage modulus and thermodynamic stability of the CO oleogel exhibited concentration dependence with increasing gelling agent addition. PS-COO demonstrated relatively robust oil-binding capacity and oxidative stability, particularly with a 15% PS addition. This information contributes to a deeper understanding of CO-based oleogels and offers theoretical insights for their application in food products. © 2024 Society of Chemical Industry.

  3. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  4. Cui J, Yang Z, Xu Y, Tan CP, Zhang W
    Food Res Int, 2023 Dec;174(Pt 2):113653.
    PMID: 37981374 DOI: 10.1016/j.foodres.2023.113653
    Searching for green and ecofriendly solvents to replace classical solvents for industrial scale extraction of coconut oil is of great interest. To explore these possibilities, this study performed comprehensive comparative analyses of lipid profiles and phytosterol compositions in coconut oils obtained by extraction with n-hexane, absolute ethyl alcohol, deep eutectic solvent/n-hexane, dimethyl carbonate (DME) and cyclopentyl methyl ether (CPME) using a foodomics approach. Results indicated that CPME (64.23 g/100 g dry matter) and DME (65.64 g/100 g dry matter) showed comparable capacity for total lipid extraction of total lipids to classical solvents (63.5-65.66 g/100 g dry matter). Considering the phytosterol yield, CPME (644.26 mg/kg) exhibited higher selectivity than other solvents (535.64-622.13 mg/kg). No significant difference was observed in the fatty acid composition of coconut oil by the different solvents assayed. Additionally, total 468 lipid molecules were identified in the samples. For glycerolipid and sphingolipid, the five solvents showed comparable extraction capabilities. However, CPME exhibited higher extraction efficiency of polar lipids (glycerophospholipid and saccharolipid) than other solvents. Overall, these results may be a useful guide for the application of green solvents in industrial production of coconut oil.
  5. Zhu J, Cai Y, Wakisaka M, Yang Z, Yin Y, Fang W, et al.
    Sci Total Environ, 2023 Oct 20;896:165200.
    PMID: 37400020 DOI: 10.1016/j.scitotenv.2023.165200
    Microalgae have been recognized as emerging cell factories due to the high value-added bio-products. However, the balance between algal growth and the accumulation of metabolites is always the main contradiction in algal biomass production. Hence, the security and effectiveness of regulating microalgal growth and metabolism simultaneously have drawn substantial attention. Since the correspondence between microalgal growth and reactive oxygen species (ROS) level has been confirmed, improving its growth under oxidative stress and promoting biomass accumulation under non-oxidative stress by exogenous mitigators is feasible. This paper first introduced ROS generation in microalgae and described the effects of different abiotic stresses on the physiological and biochemical status of microalgae from these aspects associated with growth, cell morphology and structure, and antioxidant system. Secondly, the role of exogenous mitigators with different mechanisms in alleviating abiotic stress was concluded. Finally, the possibility of exogenous antioxidants regulating microalgal growth and improving the accumulation of specific products under non-stress conditions was discussed.
  6. Wu Y, Lewis W, Wai JL, Xiong M, Zheng J, Yang Z, et al.
    Chemistry (Basel), 2023 Sep;5(3):1745-1759.
    PMID: 38371491 DOI: 10.3390/chemistry5030119
    While fluorescent sensors have been developed for monitoring metal ions in health and diseases, they are limited by the requirement of an excitation light source that can lead to photobleaching and a high autofluorescence background. To address these issues, bioluminescence resonance energy transfer (BRET)-based protein or small molecule sensors have been developed; however, most of them are not highly selective nor generalizable to different metal ions. Taking advantage of the high selectivity and generalizability of DNAzymes, we report herein DNAzyme-based ratiometric sensors for Zn2+ based on BRET. The 8-17 DNAzyme was labeled with luciferase and Cy3. The proximity between luciferase and Cy3 permiQed BRET when coelenterazine, the substrate for luciferase, was introduced. Adding samples containing Zn2+ resulted in a cleavage of the substrate strand, causing dehybridization of the DNAzyme construct, thus increasing the distance between Cy3 and luciferase and changing the BRET signals. Using these sensors, we detected Zn2+ in serum samples and achieved Zn2+ detection with a smartphone camera. Moreover, since the BRET pair is not the component that determines the selectivity of the sensors, this sensing platform has the potential to be adapted for the detection of other metal ions with other metal-dependent DNAzymes.
  7. Qin D, Gong Q, Li X, Gao Y, Gopinath SCB, Chen Y, et al.
    Biotechnol Appl Biochem, 2023 Apr;70(2):553-559.
    PMID: 35725894 DOI: 10.1002/bab.2377
    Mycoplasma pneumoniae is a highly infectious bacterium and the major cause of pneumonia especially in school-going children. Mycoplasma pneumoniae affects the respiratory tract, and 25% of patients experience health-related problems. It is important to have a suitable method to detect M. pneumoniae, and gold nanoparticle (GNP)-based colorimetric biosensing was used in this study to identify the specific target DNA for M. pneumoniae. The color of GNPs changes due to negatively charged GNPs in the presence of positively charged monovalent (Na+ ) ions from NaCl. This condition is reversed in the presence of a single-stranded oligonucleotide, as it attracts GNPs but not in the presence of double-stranded DNA. Single standard capture DNA was mixed with optimal target DNA that cannot be adsorbed by GNPs; under this condition, GNPs are not stabilized and aggregate at high ionic strength (from 100 mM). Without capture DNA, the GNPs that were stabilized by capture DNA (from 1 μM) became more stable under high ionic conditions and retaining their red color. The GNPs turned blue in the presence of target DNA at concentrations of 1 pM, and the GNPs retained a red color when there was no target in the solution. This method is useful for the simple, easy, and accurate identification of M. pneumoniae target DNA at higher discrimination and without involving sophisticated equipment, and this method provides a diagnostic for M. pneumoniae.
  8. Cao Y, Chen L, Chen H, Cun Y, Dai X, Du H, et al.
    Natl Sci Rev, 2023 Apr;10(4):nwac287.
    PMID: 37089192 DOI: 10.1093/nsr/nwac287
  9. Li R, Zhang P, Lu J, Zhuang J, Wang M, Fang H, et al.
    Front Neurol, 2023;14:1244192.
    PMID: 38046582 DOI: 10.3389/fneur.2023.1244192
    BACKGROUND: Functional restoration of hemiplegic upper limbs is a difficult area in the field of neurological rehabilitation. Electrical stimulation is one of the treatments that has shown promising advancements and functional improvements. Most of the electrical stimulations used in clinical practice are surface stimulations. In this case, we aimed to investigate the feasibility of a minimally invasive, ultrasound-guided median nerve electrical stimulation (UG-MNES) in improving the upper limb motor function and activity of a patient with right-sided hemiparesis.

    CASE PRESENTATION: A 65-year-old male recovering from a left massive intracerebral hemorrhage after open debridement hematoma removal had impaired right limb movement, right hemianesthesia, motor aphasia, dysphagia, and complete dependence on his daily living ability. After receiving 3 months of conventional rehabilitation therapy, his cognitive, speech, and swallowing significantly improved but the Brunnstrom Motor Staging (BMS) of his right upper limb and hand was at stage I-I. UG-MNES was applied on the right upper limb for four sessions, once per week, together with conventional rehabilitation. Immediate improvement in the upper limb function was observed after the first treatment. To determine the effect of UG-MNES on long-term functional recovery, assessments were conducted a week after the second and fourth intervention sessions, and motor function recovery was observed after 4-week of rehabilitation. After completing the full rehabilitation course, his BMS was at stage V-IV, the completion time of Jebsen Hand Function Test (JHFT) was shortened, and the scores of Fugl-Meyer Assessment for upper extremity (FMA-UE) and Modified Barthel Index (MBI) were increased. Overall, the motor function of the hemiplegic upper limb had significantly improved, and the right hand was the utility hand. Electromyography (EMG) and nerve conduction velocity (NCV) tests were normal before and after treatment.

    CONCLUSION: The minimally invasive, UG-MNES could be a new alternative treatment in stroke rehabilitation for functional recovery of the upper limbs.

  10. Luo C, Wang Q, Guo R, Zhang J, Zhang J, Zhang R, et al.
    Virus Res, 2022 Dec;322:198937.
    PMID: 36174845 DOI: 10.1016/j.virusres.2022.198937
    Outbreaks of Pseudorabies (PR) by numerous highly virulent and antigenic variant Pseudorabies virus (PRV) strains have been causing severe economic losses to the pig industry in China since 2011. However, current commercial vaccines are often unable to induce thorough protective immunity. In this study, a TK/gI/gE deleted recombinant PRV expressing GM-CSF was developed by using the HDR-CRISPR/Cas9 system. Here, a four-sgRNA along with the Cas9D10A targeting system was utilized for TK/gI/gE gene deletion and GM-CSF insertion. Our study showed that the four-sgRNA targeting system appeared to have higher knock-in efficiency for PRVs editing. The replication of the recombinant PRVs were slightly lower than that of the parental strain, but they appeared to have similar properties in terms of growth curves and plaque morphology. The mice vaccinated with the recombinant PRV expressing GM-CSF via intramuscular injection showed no obvious clinical symptoms, milder pathological lesions, and were completely protected against wild-type PRV challenge. When compared to the triple gene-deleted PRV, the gB antibodies and neutralizing antibody titers were improved and the immunized mice appeared to have lower viral load and higher mRNA levels of IL-2, IL-4, IL-6, and IFN-γ in spleens. Our study offers a novel approach for recombinant PRV construction, and the triple gene-deleted PRV expressing GM-CSF could serve as a promising vaccine candidate for PR control.
  11. Yang Z, Purba FD, Shafie AA, Igarashi A, Wong EL, Lam H, et al.
    Qual Life Res, 2022 Feb 18.
    PMID: 35181827 DOI: 10.1007/s11136-021-03075-x
    INTRODUCTION: Many countries have established their own EQ-5D value sets proceeding on the basis that health preferences differ among countries/populations. So far, published studies focused on comparing value set using TTO data. This study aims to compare the health preferences among 11 Asian populations using the DCE data collected in their EQ-5D-5L valuation studies.

    METHODS: In the EQ-VT protocol, 196 pairs of EQ-5D-5L health states were valued by a general population sample using DCE method for all studies. DCE data were obtained from the study PI. To understand how the health preferences are different/similar with each other, the following analyses were done: (1) the statistical difference between the coefficients; (2) the relative importance of the five EQ-5D dimensions; (3) the relative importance of the response levels.

    RESULTS: The number of statistically differed coefficients between two studies ranged from 2 to 16 (mean: 9.3), out of 20 main effects coefficients. For the relative importance, there is not a universal preference pattern that fits all studies, but with some common characteristics, e.g. mobility is considered the most important; the relative importance of levels are approximately 20% for level 2, 30% for level 3, 70% for level 4 for all studies.

    DISCUSSION: Following a standardized study protocol, there are still considerable differences in the modeling and relative importance results in the EQ-5D-5L DCE data among 11 Asian studies. These findings advocate the use of local value set for calculating health state utility.

  12. Wang P, Ma X, Zhang R, Zhao Y, Hu R, Luo C, et al.
    Front Microbiol, 2022;13:1022481.
    PMID: 36338035 DOI: 10.3389/fmicb.2022.1022481
    The widespread and endemic circulation of porcine reproductive and respiratory syndrome virus (PRRSV) cause persistent financial losses to the swine industry worldwide. In 2017, NADC34-like PRRSV-2 emerged in northeastern China and spread rapidly. The dynamics analysis of immune perturbations associated with novel PRRSV lineage is still incomplete. This study performed a time-course transcriptome sequencing of NADC34-like PRRSV strain YC-2020-infected porcine alveolar macrophages (PAMs) and compared them with JXA1-infected PAMs. The results illustrated dramatic changes in the host's differentially expressed genes (DEGs) presented at different timepoints after PRRSV infection, and the expression profile of YC-2020 group is distinct from that of JXA1 group. Functional enrichment analysis showed that the expression of many inflammatory cytokines was up-regulated following YC-2020 infection but at a significantly lower magnitude than JXA1 group, in line with the trends for most interferon-stimulated genes (ISGs) and their regulators. Meanwhile, numerous components of histocompatibility complex (MHC) class II and phagosome presented a stronger transcription suppression after the YC-2020 infection. All results imply that YC-2020 may induce milder inflammatory responses, weaker antiviral processes, and more severe disturbance of antigen processing and presentation compared with HP-PRRSV. Additionally, LAPTM4A, GLMP, and LITAF, which were selected from weighted gene co-expression network analysis (WGCNA), could significantly inhibit PRRSV proliferation. This study provides fundamental data for understanding the biological characteristics of NADC34-like PRRSV and new insights into PRRSV evolution and prevention.
  13. Wang S, Su S, Yu C, Gopinath SCB, Yang Z
    Biotechnol Appl Biochem, 2021 Aug;68(4):726-731.
    PMID: 32621620 DOI: 10.1002/bab.1981
    The urinary C-terminal telopeptide fragment of type II collagen (uCTX-II) has been reported as the efficient blood-based biomarker for osteoarthritis, which affects knees, hands, spine, and hips. This study reports a sensing strategy with antibody-conjugated gold nanoparticles (GNP) on an interdigitated electrode (IDE) to determine uCTX-II. The GNP-antibody complex was chemically immobilized on the IDE surface through the amine linker. uCTX-II was determined by monitoring the alteration in current upon interacting the GNP-complexed antibody. This strategy was improved the detection by attracting higher uCTX-II molecules, and the detection limit falls in the range of 10-100 pM with an acceptable regression value [y = 0.6254x - 0.4073, R² = 0.9787]. The sensitivity of the detection was recognized at 10 pM. Additionally, upon increasing the uCTX-II concentration, the current changes were increased in a linear fashion. Control detection with nonimmune antibody and control protein do not increase the current level, confirming the specific detection of uCTX-II. This method of detection helps in diagnosing osteoarthritis and its follow-up treatment.
  14. Cheng T, Shuang W, Ye D, Zhang W, Yang Z, Fang W, et al.
    Cell Signal, 2021 08;84:110013.
    PMID: 33901578 DOI: 10.1016/j.cellsig.2021.110013
    Clear cell renal cell carcinoma (ccRCC) is a common subtype of renal cell carcinoma (RCC) and causes many deaths. Numerous medical studies have suggested that long noncoding RNAs (lncRNAs) exert their biological functions on ccRCC. Herein, functions of lncRNA SNHG16 in ccRCC cells and the mechanism mediated by SNHG16 were investigated. The expression levels of SNHG16 and its downstream genes in ccRCC cells and RCC tissues were examined utilizing reverse transcription quantitative polymerase chain reaction analyses. Cell counting kit-8 and 5-Ethynyl-2'-deoxyuridine assays were performed to evaluate the proliferation of ccRCC cells, and flow cytometry analyses were employed to determine the apoptosis of ccRCC cells. Western blot analysis was applied to examine protein levels associated with cell proliferation and apoptosis. The combination between SNHG16 and miRNA as well as miRNA and its target gene were explored by luciferase reporter, RNA pull down, and RNA immunoprecipitation assays. The significant upregulation of SNHG16 was observed in RCC tissues and ccRCC cells. SNHG16 downregulation inhibited the proliferation and promoted the apoptosis of ccRCC cells. In addition, SNHG16 served as a competing endogenous RNA for miR-1301-3p, and STARD9 was a target gene of miR-1301-3p in ccRCC cells. SNHG16 upregulated STARD9 expression by binding with miR-1301-3p in ccRCC cells. Rescue assays validated that SNHG16 promoted ccRCC cell promotion and induced ccRCC cell apoptosis by upregulating STARD9 expression. In conclusions, SNHG16 promotes ccRCC cell proliferation and suppresses ccRCC cell apoptosis via interaction with miR-1301-3p to upregulate STARD9 expression in ccRCC cells.
  15. Ahsan N, Rao RSP, Wilson RS, Punyamurtula U, Salvato F, Petersen M, et al.
    Proteomics, 2021 05;21(10):e2000279.
    PMID: 33860983 DOI: 10.1002/pmic.202000279
    While protein-protein interaction is the first step of the SARS-CoV-2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)-based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS-CoV-2-mediated infections in humans. Comparative analysis of cell-lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS-CoV-2 infection is still incomplete and the tissue-specific response to SARS-CoV-2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross-comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K-Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS-CoV-2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS-CoV-2 responsive age-, gender-dependent, tissue-specific protein targets.
  16. Chen T, Yang Z, Choudhury AK, Al Mahtab M, Li J, Chen Y, et al.
    Hepatol Int, 2019 Nov;13(6):695-705.
    PMID: 31650510 DOI: 10.1007/s12072-019-09992-x
    BACKGROUND AND AIM: Cirrhosis is a controversial determinant of mortality in HBV-related acute-on-chronic liver failure (HBV-ACLF). The present study aimed to explore the effects of cirrhosis and the associated risk factors, especially its complications, on the outcome of HBV-ACLF.

    METHODS: A prospective-retrospective cohort of 985 patients was identified from the APASL-ACLF Research Consortium (AARC) database and the Chinese Study Group. Complications of ACLF (ascites, infection, hepatorenal syndrome, hepatic encephalopathy, upper gastrointestinal bleeding) as well as cirrhosis and the current main prognostic models were measured for their predictive ability for 28- or 90-day mortality.

    RESULTS: A total of 709 patients with HBV-ACLF as defined by the AARC criteria were enrolled. Among these HBV-ACLF patients, the cirrhotic group showed significantly higher mortality and complications than the non-cirrhotic group. A total of 36.1% and 40.1% of patients met the European Association for the Study of Liver (EASL)-Chronic Liver Failure consortium (CLIF-C) criteria in the non-cirrhotic and cirrhotic groups, respectively; these patients had significantly higher rates of mortality and complications than those who did not satisfy the CLIF-C criteria. Furthermore, among patients who did not meet the CLIF-C criteria, the cirrhotic group exhibited higher mortality and complication rates than the non-cirrhotic group, without significant differences in organ failure. The Tongji prognostic predictor model score (TPPMs), which set the number of complications as one of the determinants, showed comparable or superior ability to the Chinese Group on the Study of Severe Hepatitis B-ACLF score (COSSH-ACLFs), APASL-ACLF Research Consortium score (AARC-ACLFs), CLIF-C organ failure score (CLIF-C OFs), CLIF-C-ACLF score (CLIF-C-ACLFs), Model for End-Stage Liver Disease score (MELDs) and MELD-sodium score (MELD-Nas) in HBV-ACLF patients, especially in cirrhotic HBV--ACLF patients. Patients with two (OR 4.70, 1.88) or three (OR 8.27, 2.65) complications had a significantly higher risk of 28- or 90-day mortality, respectively.

    CONCLUSION: The presence of complications is a major risk factor for mortality in HBV-ACLF patients. TPPM possesses high predictive ability in HBV-ACLF patients, especially in cirrhotic HBV-ACLF patients.

  17. Wang P, Liu GG, Jo MW, Purba FD, Yang Z, Gandhi M, et al.
    Expert Rev Pharmacoecon Outcomes Res, 2019 Aug;19(4):445-451.
    PMID: 30523723 DOI: 10.1080/14737167.2019.1557048
    Objectives: To compare the time trade-off (TTO) utility values of EQ-5D-5L health states elicited from different general populations in Asia. Methods: We analyzed the TTO data from seven Asian EQ-5D-5L valuation studies in which utility values of 86 EQ-5D-5L health states were elicited from general population samples. An eight-parameter multiplicative regression model including five dimension parameters (mobility [MO], self-care, usual activities [UA], pain/discomfort, anxiety/depression) and three level parameters (level 2 [L2], level 3 [L3], and level 4 [L4]) was used to model the data from each of the populations. The model coefficients were compared to understand how the valuations of EQ-5D-5L health states differ. Results: For dimension parameters, Korea and Indonesia generally had the highest and lowest values among the populations, respectively; UA and MO commonly had the highest and lowest values among the parameters, respectively. For level parameters, Singapore and Korea generally had the highest and lowest values, respectively; L2 showed less variance compared to L3 and L4. Koreans, Indonesians, and Singaporeans appeared to have different health preferences compared with other populations. Conclusion: Utility values of EQ-5D-5L health states differ among Asian populations, suggesting that each health system should establish and use its own value set.
  18. Yang Z, Cui Q, Zhou W, Qiu L, Han B
    Mol Genet Genomic Med, 2019 06;7(6):e680.
    PMID: 30968607 DOI: 10.1002/mgg3.680
    BACKGROUND: Thalassemia is a common genetic disorder. High prevalence of thalassemia is found in South China, Southeast Asia, India, the Middle East, and the Mediterranean regions. Thalassemia was thought to exist only in southern China, but an increasing number of cases from northern China have been recently reported.

    METHODS: During 2012 to 2017, suspected thalassemia people were detected for common α- and β-thalassemia mutations by gap-Polymerase Chain Reaction (PCR) and reverse dot blot (RDB) analysis in Peking Union Medical College Hospital. One thousand and fifty-nine people with thalassemia mutations were analyzed retrospectively. We picked mutated individuals who originally came from northern areas, and conducted telephone follow-up survey in order to collect their ancestral information. Besides, we used "thalassemia", "mutation", and "Southeast Asian countries" as keywords to search the relevant studies in PubMed and Embase databases.

    RESULTS: All carriers included in our study were resided in northern China. Among them, 17.3% were native northerners and 82.7% were immigrants from southern China. Although substantial difference was found in α- and β-thalassemia ratio and detailed spectrum of α- and β-globin mutation spectrum between our data and data obtained from a previous meta-analysis literature focused on southern China, the most common gene mutations were the same. Similar β-thalassemia mutation spectrum was found among Thai, Malaysian Chinese, and Guangdong people, however, no other similarities in gene profile were found between Chinese and other ethnic groups in Southeast Asia.

    CONCLUSION: Chinese people in different areas had similar gene mutation, whereas they had significantly different mutation spectrums from other ethnic groups in Southeast Asia.

  19. Zhu L, Kim Y, Yang Z
    J Acupunct Meridian Stud, 2018 Dec;11(6):343-354.
    PMID: 30195824 DOI: 10.1016/j.jams.2018.08.209
    Auriculotherapy has been extensively used for chronic spontaneous urticaria in China. However, the evidence of its effectiveness and safety for the treatment of chronic spontaneous urticaria is insufficient. Hence, we conducted this study to compare auriculotherapy or auriculotherapy joint treatment with Western medicine for the cure of chronic spontaneous urticaria. This meta-analysis of seven randomized controlled trials showed that auriculotherapy or auriculotherapy joint treatment was significantly superior to Western medicine in curing clinical signs and symptoms of chronic spontaneous urticaria [odds ration (OR), 2.61; 95% confidence interval (CI), 1.54-4.43; p = 0.0004) and also better in total effect rate (OR, 3.81; 95% CI, 2.07-7.01; p<0.0001). But, auriculotherapy or auriculotherapy joint treatment was similar to Western medicine in improving clinical signs and symptoms of chronic spontaneous urticaria (OR, 0.74; 95% CI, 0.35-1.56; p = 0.42). Auriculotherapy or auriculotherapy joint treatment was safer than Western medicine for curing chronic spontaneous urticaria (OR, 0.26; 95% CI, 0.09-0.80; p = 0.02). Auriculotherapy alone or auriculotherapy joint treatment appears to be more effective and safer than Western medicine that contains antihistamines in the treatment of chronic spontaneous urticaria. However, these findings should be interpreted with caution due to the unclear risk bias of methodological quality, and further studies with large-scale, better, and more rigorously designed protocol are necessary to prove these findings.
  20. Yu J, Lv X, Yang Z, Gao S, Li C, Cai Y, et al.
    Viruses, 2018 10 19;10(10).
    PMID: 30347642 DOI: 10.3390/v10100572
    Nipah disease is a highly fatal zoonosis which is caused by the Nipah virus. The Nipah virus is a BSL-4 virus with fruit bats being its natural host. It is mainly prevalent in Southeast Asia. The virus was first discovered in 1997 in Negeri Sembilan, Malaysia. Currently, it is mainly harmful to pigs and humans with a high mortality rate. This study describes the route of transmission of the Nipah virus in different countries and analyzes the possibility of the primary disease being in China and the method of its transmission to China. The risk factors are analyzed for different susceptible populations to Nipah disease. The aim is to improve people's risk awareness and prevention and control of the disease and reduce its risk of occurring and spreading in China.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links