Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Mussa ZH, Al-Qaim FF, Jawad AH, Scholz M, Yaseen ZM
    Toxics, 2022 Oct 10;10(10).
    PMID: 36287878 DOI: 10.3390/toxics10100598
    Non-steroidal anti-inflammatory drugs (NSAIDs) (concentration
  2. Alavi J, Ewees AA, Ansari S, Shahid S, Yaseen ZM
    PMID: 34741267 DOI: 10.1007/s11356-021-17190-2
    Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.
  3. Hameed MM, Mohd Razali SF, Wan Mohtar WHM, Ahmad Alsaydalani MO, Yaseen ZM
    Heliyon, 2024 Jan 15;10(1):e22942.
    PMID: 38187234 DOI: 10.1016/j.heliyon.2023.e22942
    Drought is a hazardous natural disaster that can negatively affect the environment, water resources, agriculture, and the economy. Precise drought forecasting and trend assessment are essential for water management to reduce the detrimental effects of drought. However, some existing drought modeling techniques have limitations that hinder precise forecasting, necessitating the exploration of suitable approaches. This study examines two forecasting models, Long Short-Term Memory (LSTM) and a hybrid model integrating regularized extreme learning machine and Snake algorithm, to forecast hydrological droughts for one to six months in advance. Using the Multivariate Standardized Streamflow Index (MSSI) computed from 58 years of streamflow data for two drier Malaysian stations, the models forecast droughts and were compared to classical models such as gradient boosting regression and K-nearest model for validation purposes. The RELM-SO model outperformed other models for forecasting one month ahead at station S1, with lower root mean square error (RMSE = 0.1453), mean absolute error (MAE = 0.1164), and a higher Nash-Sutcliffe efficiency index (NSE = 0.9012) and Willmott index (WI = 0.9966). Similarly, at station S2, the hybrid model had lower (RMSE = 0.1211 and MAE = 0.0909), and higher (NSE = 0.8941 and WI = 0.9960), indicating improved accuracy compared to comparable models. Due to significant autocorrelation in the drought data, traditional statistical metrics may be inadequate for selecting the optimal model. Therefore, this study introduced a novel parameter to evaluate the model's effectiveness in accurately capturing the turning points in the data. Accordingly, the hybrid model significantly improved forecast accuracy from 19.32 % to 21.52 % when compared with LSTM. Besides, the reliability analysis showed that the hybrid model was the most accurate for providing long-term forecasts. Additionally, innovative trend analysis, an effective method, was used to analyze hydrological drought trends. The study revealed that October, November, and December experienced higher occurrences of drought than other months. This research advances accurate drought forecasting and trend assessment, providing valuable insights for water management and decision-making in drought-prone regions.
  4. Bobaker AM, Alakili I, Sarmani SB, Al-Ansari N, Yaseen ZM
    PMID: 31159472 DOI: 10.3390/ijerph16111957
    Henna and walnut tree bark are widely used by Libyan women as cosmetics. They may contain lead (Pb), cadmium (Cd) and arsenic (As), which, in turn, pose a high risk to their health. This study aims to determine the levels of Pb, Cd and As in henna and walnut tree bark products sold in Libyan markets. The products were analyzed for their Pb, Cd and As content by using inductively coupled plasma mass spectrometry (ICP-MS) after a microwave acid digestion. The results showed a significant difference between the henna and walnut tree bark samples in terms of their heavy metals content (p < 0.05). The highest heavy metal concentrations were observed in the walnut tree bark samples whereas the lowest was observed in the henna samples. In addition, 60% of the henna and 90% of the walnut tree bark samples contained Pb levels and approximately 80% of the henna and 90% the walnut tree bark samples contained Cd levels, which are much higher than the tolerance limit. However, As concentrations in all the samples were lower. The results indicated that such cosmetics expose consumers to high levels of Pb and Cd and hence, to potential health risks. Thus, studying the sources and effects of heavy metals in such cosmetics is strongly recommended.
  5. Tao H, Bobaker AM, Ramal MM, Yaseen ZM, Hossain MS, Shahid S
    Environ Sci Pollut Res Int, 2019 Jan;26(1):923-937.
    PMID: 30421367 DOI: 10.1007/s11356-018-3663-x
    Surface and ground water resources are highly sensitive aquatic systems to contaminants due to their accessibility to multiple-point and non-point sources of pollutions. Determination of water quality variables using mathematical models instead of laboratory experiments can have venerable significance in term of the environmental prospective. In this research, application of a new developed hybrid response surface method (HRSM) which is a modified model of the existing response surface model (RSM) is proposed for the first time to predict biochemical oxygen demand (BOD) and dissolved oxygen (DO) in Euphrates River, Iraq. The model was constructed using various physical and chemical variables including water temperature (T), turbidity, power of hydrogen (pH), electrical conductivity (EC), alkalinity, calcium (Ca), chemical oxygen demand (COD), sulfate (SO4), total dissolved solids (TDS), and total suspended solids (TSS) as input attributes. The monthly water quality sampling data for the period 2004-2013 was considered for structuring the input-output pattern required for the development of the models. An advance analysis was conducted to comprehend the correlation between the predictors and predictand. The prediction performances of HRSM were compared with that of support vector regression (SVR) model which is one of the most predominate applied machine learning approaches of the state-of-the-art for water quality prediction. The results indicated a very optimistic modeling accuracy of the proposed HRSM model to predict BOD and DO. Furthermore, the results showed a robust alternative mathematical model for determining water quality particularly in a data scarce region like Iraq.
  6. Shiri N, Shiri J, Yaseen ZM, Kim S, Chung IM, Nourani V, et al.
    PLoS One, 2021;16(5):e0251510.
    PMID: 34043648 DOI: 10.1371/journal.pone.0251510
    Groundwater is one of the most important freshwater resources, especially in arid and semi-arid regions where the annual amounts of precipitation are small with frequent drought durations. Information on qualitative parameters of these valuable resources is very crucial as it might affect its applicability from agricultural, drinking, and industrial aspects. Although geo-statistics methods can provide insight about spatial distribution of quality factors, applications of advanced artificial intelligence (AI) models can contribute to produce more accurate results as robust alternative for such a complex geo-science problem. The present research investigates the capacity of several types of AI models for modeling four key water quality variables namely electrical conductivity (EC), sodium adsorption ratio (SAR), total dissolved solid (TDS) and Sulfate (SO4) using dataset obtained from 90 wells in Tabriz Plain, Iran; assessed by k-fold testing. Two different modeling scenarios were established to make simulations using other quality parameters and the geographical information. The obtained results confirmed the capabilities of the AI models for modeling the well groundwater quality variables. Among all the applied AI models, the developed hybrid support vector machine-firefly algorithm (SVM-FFA) model achieved the best predictability performance for both investigated scenarios. The introduced computer aid methodology provided a reliable technology for groundwater monitoring and assessment.
  7. Mhana KH, Norhisham SB, Katman HYB, Yaseen ZM
    Heliyon, 2023 Sep;9(9):e19413.
    PMID: 37809986 DOI: 10.1016/j.heliyon.2023.e19413
    Developments in the transportation field are emerging because of the growing worldwide demand and upgrading requirements. This study measured the transportation development, shortage distance, and decadal land transformation of Kuala Lumpur and Madrid using various remote sensing and GIS approaches. The kernel density estimation (KDE) tool was applied for road and railway density analysis, and hotspot information increased the knowledge about assessable areas. Landsat datasets were used (1991-2021) for land transformation and related analyses. The built-up land increased by 1327.27 and 404.09 km2 in Kuala Lumpur and Madrid, respectively. In the last thirty years, the temperature increased 6.45 °C in Kuala Lumpur and 4.15 °C in Madrid owing to urban expansion and road construction. Chamberi, Retiro, Moratalaz, Salama, Wangsa Maju, Titiwangsa, Bukit Bintang, and Seputeh have very high road densities. KDE measurements showed that the road densities in Kuala Lumpur (4498.34) and Madrid (9099.15) were high in the central parts of the city, and the railway densities were 348.872 and 2197.87, respectively. The observed P values were 0.99 and 0.96 for traffic signals and 0.98 and 0.99 for bus stops, respectively. The information provided by this study can support local planners, administrators, scientists, and researchers in understanding the global transportation issues that require implementation strategies for ensuring sustainable livelihoods.
  8. Sah SS, Maulud KNA, Karim OA, Sharil S, Yaseen ZM
    Sci Total Environ, 2023 Jan 18.
    PMID: 36681338 DOI: 10.1016/j.scitotenv.2023.161585
    Global warming has led to sea levels raise (SLRs) and Malaysia is no exception to this problem. Especially for low-lying coastal areas including the Kuala Kedah area which is active in agricultural and fisheries activities. Farmers have had to bear up to 75 % of yield losses due to seawater breaches since 2016. Therefore, this study is designed to assess the impact of seawater encroachment on water quality through spatial technology approaches and hydrodynamic modeling related to the growth of paddy trees. The study was conducted during two different paddy cultivation seasons namely Season 1-2019 and Season 2-2019 which take place in the southwest and northeast monsoon in Kuala Kedah, Malaysia. The study involved three phases, which are the assessment of salinity and pH concentration levels, the assessment of the health of paddy crops through multispectral image analysis involving three plant indices (VI), namely Normalized Difference Vegetation Index (NDVI), Blue Normalized Difference Vegetation Index (BNDVI) and Normalized Difference Red Edge (NDRE), and finally, the assessment of the impact of SLR through the numerical method in MIKE 21 for hydrodynamic modeling considering two conditions that are without mitigation factor (K1) and with existing mitigating factor (K2). According to the findings, the salinity concentration trend is decreasing across the growth stage during Season 1-2019, whereas it is the contrary during Season 2-2019. It was discovered that during the study period for both tidal events, 73 % of the 44 sampling points in Season 1-2019, as opposed to just 3 % in Season 2-2019, were categorized as Class 4 and Class 5. Even though there were fluctuations throughout the observation, the pH reading is still within the allowed range of 6.5 to 9.0 for the estuary area. Following that, the ANOVA analysis proved that salinity concentration a statistically significant difference with tidal variations and pH levels. Moreover, the multispectral image analysis findings revealed that the VI value was correlated with both the yield and the health of the rice crop, with R-square values of 0.842 compared to 0.706 and 0.575 for NDVI and BNDVI values, respectively. It confirmed that NDRE granted a more accurate and reliable measurements. Additionally, the hydrodynamic simulation results demonstrated that, if the mitigation factors were considered in the modeling, overflow seawater to the mainland could be reduced by up to 20 %, reducing the impact of coastal flooding on the local area as well as the nearby rice cultivation area. Ultimately, these three elements-water quality, vegetation index, and hydrodynamic modeling-can assist in identifying the underlying cause of the problem and develop short and long-term solutions.
  9. Al Zand AW, Ali MM, Al-Ameri R, Badaruzzaman WHW, Tawfeeq WM, Hosseinpour E, et al.
    Materials (Basel), 2021 Oct 23;14(21).
    PMID: 34771860 DOI: 10.3390/ma14216334
    The flexural strength of Slender steel tube sections is known to achieve significant improvements upon being filled with concrete material; however, this section is more likely to fail due to buckling under compression stresses. This study investigates the flexural behavior of a Slender steel tube beam that was produced by connecting two pieces of C-sections and was filled with recycled-aggregate concrete materials (CFST beam). The C-section's lips behaved as internal stiffeners for the CFST beam's cross-section. A static flexural test was conducted on five large scale specimens, including one specimen that was tested without concrete material (hollow specimen). The ABAQUS software was also employed for the simulation and non-linear analysis of an additional 20 CFST models in order to further investigate the effects of varied parameters that were not tested experimentally. The numerical model was able to adequately verify the flexural behavior and failure mode of the corresponding tested specimen, with an overestimation of the flexural strength capacity of about 3.1%. Generally, the study confirmed the validity of using the tubular C-sections in the CFST beam concept, and their lips (internal stiffeners) led to significant improvements in the flexural strength, stiffness, and energy absorption index. Moreover, a new analytical method was developed to specifically predict the bending (flexural) strength capacity of the internally stiffened CFST beams with steel stiffeners, which was well-aligned with the results derived from the current investigation and with those obtained by others.
  10. Yaseen ZM, Ali M, Sharafati A, Al-Ansari N, Shahid S
    Sci Rep, 2021 Feb 09;11(1):3435.
    PMID: 33564055 DOI: 10.1038/s41598-021-82977-9
    A noticeable increase in drought frequency and severity has been observed across the globe due to climate change, which attracted scientists in development of drought prediction models for mitigation of impacts. Droughts are usually monitored using drought indices (DIs), most of which are probabilistic and therefore, highly stochastic and non-linear. The current research investigated the capability of different versions of relatively well-explored machine learning (ML) models including random forest (RF), minimum probability machine regression (MPMR), M5 Tree (M5tree), extreme learning machine (ELM) and online sequential-ELM (OSELM) in predicting the most widely used DI known as standardized precipitation index (SPI) at multiple month horizons (i.e., 1, 3, 6 and 12). Models were developed using monthly rainfall data for the period of 1949-2013 at four meteorological stations namely, Barisal, Bogra, Faridpur and Mymensingh, each representing a geographical region of Bangladesh which frequently experiences droughts. The model inputs were decided based on correlation statistics and the prediction capability was evaluated using several statistical metrics including mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R), Willmott's Index of agreement (WI), Nash Sutcliffe efficiency (NSE), and Legates and McCabe Index (LM). The results revealed that the proposed models are reliable and robust in predicting droughts in the region. Comparison of the models revealed ELM as the best model in forecasting droughts with minimal RMSE in the range of 0.07-0.85, 0.08-0.76, 0.062-0.80 and 0.042-0.605 for Barisal, Bogra, Faridpur and Mymensingh, respectively for all the SPI scales except one-month SPI for which the RF showed the best performance with minimal RMSE of 0.57, 0.45, 0.59 and 0.42, respectively.
  11. Tiyasha T, Tung TM, Bhagat SK, Tan ML, Jawad AH, Mohtar WHMW, et al.
    Mar Pollut Bull, 2021 Sep;170:112639.
    PMID: 34273614 DOI: 10.1016/j.marpolbul.2021.112639
    Dissolved oxygen (DO) is an important indicator of river health for environmental engineers and ecological scientists to understand the state of river health. This study aims to evaluate the reliability of four feature selector algorithms i.e., Boruta, genetic algorithm (GA), multivariate adaptive regression splines (MARS), and extreme gradient boosting (XGBoost) to select the best suited predictor of the applied water quality (WQ) parameters; and compare four tree-based predictive models, namely, random forest (RF), conditional random forests (cForest), RANdom forest GEneRator (Ranger), and XGBoost to predict the changes of dissolved oxygen (DO) in the Klang River, Malaysia. The total features including 15 WQ parameters from monitoring site data and 7 hydrological components from remote sensing data. All predictive models performed well as per the features selected by the algorithms XGBoost and MARS in terms applied statistical evaluators. Besides, the best performance noted in case of XGBoost predictive model among all applied predictive models when the feature selected by MARS and XGBoost algorithms, with the coefficient of determination (R2) values of 0.84 and 0.85, respectively, nonetheless the marginal performance came up by Boruta-XGBoost model on in this scenario.
  12. Yaseen ZM, Melini Wan Mohtar WH, Homod RZ, Alawi OA, Abba SI, Oudah AY, et al.
    Chemosphere, 2024 Jan 29;352:141329.
    PMID: 38296204 DOI: 10.1016/j.chemosphere.2024.141329
    This study proposes different standalone models viz: Elman neural network (ENN), Boosted Tree algorithm (BTA), and f relevance vector machine (RVM) for modeling arsenic (As (mg/kg)) and zinc (Zn (mg/kg)) in marine sediments owing to anthropogenic activities. A heuristic algorithm based on the potential of RVM and a flower pollination algorithm (RVM-FPA) was developed to improve the prediction performance. Several evaluation indicators and graphical methods coupled with visualized cumulative probability function (CDF) were used to evaluate the accuracy of the models. Akaike (AIC) and Schwarz (SCI) information criteria based on Dickey-Fuller (ADF) and Philip Perron (PP) tests were introduced to check the reliability and stationarity of the data. The prediction performance in the verification phase indicated that RVM-M2 (PBAIS = -o.0465, MAE = 0.0335) and ENN-M2 (PBAIS = 0.0043, MAE = 0.0322) emerged as the best model for As (mg/kg) and Zn (mg/kg), respectively. In contrast with the standalone approaches, the simulated hybrid RVM-FPA proved merit and the most reliable, with a 5 % and 18 % predictive increase for As (mg/kg) and Zn (mg/kg), respectively. The study's findings validated the potential for estimating complex HMs through intelligent data-driven models and heuristic optimization. The study also generated valuable insights that can inform the decision-makers and stockholders for environmental management strategies.
  13. Kashi E, Surip SN, Khadiran T, Nawawi WI, De Luna Y, Yaseen ZM, et al.
    Int J Biol Macromol, 2024 Feb;259(Pt 1):129147.
    PMID: 38181921 DOI: 10.1016/j.ijbiomac.2023.129147
    A composite of chitosan biopolymer with microalgae and commercial carbon-doped titanium dioxide (kronos) was modified by grafting an aromatic aldehyde (salicylaldehyde) in a hydrothermal process for the removal of brilliant green (BG) dye. The resulting Schiff's base Chitosan-Microalgae-TiO2 kronos/Salicylaldehyde (CsMaTk/S) material was characterised using various analytical methods (conclusive of physical properties using BET surface analysis method, elemental analysis, FTIR, SEM-EDX, XRD, XPS and point of zero charge). Box Behnken Design was utilised for the optimisation of the three input variables, i.e., adsorbent dose, pH of the media and contact time. The optimum conditions appointed by the optimisation process were further affirmed by the desirability test and employed in the equilibrium studies in batch mode and the results exhibited a better fit towards the pseudo-second-order kinetic model as well as Freundlich and Langmuir isotherm models, with a maximum adsorption capacity of 957.0 mg/g. Furthermore, the reusability study displayed the adsorptive performance of CsMaTk/S remains effective throughout five adsorption cycles. The possible interactions between the dye molecules and the surface of the adsorbent were derived based on the analyses performed and the electrostatic attractions, H-bonding, Yoshida-H bonding, π-π and n-π interactions are concluded to be the responsible forces in this adsorption process.
  14. Afan HA, Allawi MF, El-Shafie A, Yaseen ZM, Ahmed AN, Malek MA, et al.
    Sci Rep, 2020 03 13;10(1):4684.
    PMID: 32170078 DOI: 10.1038/s41598-020-61355-x
    In nature, streamflow pattern is characterized with high non-linearity and non-stationarity. Developing an accurate forecasting model for a streamflow is highly essential for several applications in the field of water resources engineering. One of the main contributors for the modeling reliability is the optimization of the input variables to achieve an accurate forecasting model. The main step of modeling is the selection of the proper input combinations. Hence, developing an algorithm that can determine the optimal input combinations is crucial. This study introduces the Genetic algorithm (GA) for better input combination selection. Radial basis function neural network (RBFNN) is used for monthly streamflow time series forecasting due to its simplicity and effectiveness of integration with the selection algorithm. In this paper, the RBFNN was integrated with the Genetic algorithm (GA) for streamflow forecasting. The RBFNN-GA was applied to forecast streamflow at the High Aswan Dam on the Nile River. The results showed that the proposed model provided high accuracy. The GA algorithm can successfully determine effective input parameters in streamflow time series forecasting.
  15. Dastan D, Mohammed MKA, Al-Mousoi AK, Kumar A, Salih SQ, JosephNg PS, et al.
    Sci Rep, 2023 Jun 05;13(1):9076.
    PMID: 37277466 DOI: 10.1038/s41598-023-36427-3
    According to recent reports, planar structure-based organometallic perovskite solar cells (OPSCs) have achieved remarkable power conversion efficiency (PCE), making them very competitive with the more traditional silicon photovoltaics. A complete understanding of OPSCs and their individual parts is still necessary for further enhancement in PCE. In this work, indium sulfide (In2S3)-based planar heterojunction OPSCs were proposed and simulated with the SCAPS (a Solar Cell Capacitance Simulator)-1D programme. Initially, OPSC performance was calibrated with the experimentally fabricated architecture (FTO/In2S3/MAPbI3/Spiro-OMeTAD/Au) to evaluate the optimum parameters of each layer. The numerical calculations showed a significant dependence of PCE on the thickness and defect density of the MAPbI3 absorber material. The results showed that as the perovskite layer thickness increased, the PCE improved gradually but subsequently reached a maximum at thicknesses greater than 500 nm. Moreover, parameters involving the series resistance as well as the shunt resistance were recognized to affect the performance of the OPSC. Most importantly, a champion PCE of over 20% was yielded under the optimistic simulation conditions. Overall, the OPSC performed better between 20 and 30 °C, and its efficiency rapidly decreases above that temperature.
  16. Fu M, Le C, Fan T, Prakapovich R, Manko D, Dmytrenko O, et al.
    Environ Sci Pollut Res Int, 2021 Dec;28(45):64818-64829.
    PMID: 34318419 DOI: 10.1007/s11356-021-15574-y
    The atmospheric particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) is one of the key indicators of air pollutants. Accurate prediction of PM2.5 concentration is very important for air pollution monitoring and public health management. However, the presence of noise in PM2.5 data series is a major challenge of its accurate prediction. A novel hybrid PM2.5 concentration prediction model is proposed in this study by combining complete ensemble empirical mode decomposition (CEEMD) method, Pearson's correlation analysis, and a deep long short-term memory (LSTM) method. CEEMD was employed to decompose historical PM2.5 concentration data to different frequencies in order to enhance the timing characteristics of data. Pearson's correlation was used to screen the different frequency intrinsic-mode functions of decomposed data. Finally, the filtered enhancement data were inputted to a deep LSTM network with multiple hidden layers for training and prediction. The results evidenced the potential of the CEEMD-LSTM hybrid model with a prediction accuracy of approximately 80% and model convergence after 700 training epochs. The secondary screening of Pearson's correlation test improved the model (CEEMD-Pearson) accuracy up to 87% but model convergence after 800 epochs. The hybrid model combining CEEMD-Pearson with the deep LSTM neural network showed a prediction accuracy of nearly 90% and model convergence after 650 interactions. The results provide a clear indication of higher prediction accuracy of PM2.5 with less computation time through hybridization of CEEMD-Pearson with deep LSTM models and its potential to be employed for air pollution monitoring.
  17. Bhagat SK, Tiyasha T, Kumar A, Malik T, Jawad AH, Khedher KM, et al.
    J Environ Manage, 2022 Feb 16;309:114711.
    PMID: 35182982 DOI: 10.1016/j.jenvman.2022.114711
    Heavy metals (HMs) such as Lead (Pb) have played a vital role in increasing the sediments of the Australian bay's ecosystem. Several meteorological parameters (i.e., minimum, maximum and average temperature (Tmin, Tmax and TavgoC), rainfall (Rn mm) and their interactions with the other batch HMs, are hypothesized to have high impact for the decision-making strategies to minimize the impacts of Pb. Three feature selection (FS) algorithms namely the Boruta method, genetic algorithm (GA) and extreme gradient boosting (XGBoost) were investigated to select the highly important predictors for Pb concentration in the coastal bay sediments of Australia. These FS algorithms were statistically evaluated using principal component analysis (PCA) Biplot along with the correlation metrics describing the statistical characteristics that exist in the input and output parameter space of the models. To ensure a high accuracy attained by the applied predictive artificial intelligence (AI) models i.e., XGBoost, support vector machine (SVM) and random forest (RF), an auto-hyper-parameter tuning process using a Grid-search approach was also implemented. Cu, Ni, Ce, and Fe were selected by all the three applied FS algorithms whereas the Tavg and Rn inputs remained the essential parameters identified by GA and Boruta. The order of the FS outcome was XGBoost > GA > Boruta based on the applied statistical examination and the PCA Biplot results and the order of applied AI predictive models was XGBoost-SVM > GA-SVM > Boruta-SVM, where the SVM model remained at the top performance among the other statistical metrics. Based on the Taylor diagram for model evaluation, the RF model was reflected only marginally different so overall, the proposed integrative AI model provided an evidence a robust and reliable predictive technique used for coastal sediment Pb prediction.
  18. Tao H, Jawad AH, Shather AH, Al-Khafaji Z, Rashid TA, Ali M, et al.
    Environ Int, 2023 May;175:107931.
    PMID: 37119651 DOI: 10.1016/j.envint.2023.107931
    This study uses machine learning (ML) models for a high-resolution prediction (0.1°×0.1°) of air fine particular matter (PM2.5) concentration, the most harmful to human health, from meteorological and soil data. Iraq was considered the study area to implement the method. Different lags and the changing patterns of four European Reanalysis (ERA5) meteorological variables, rainfall, mean temperature, wind speed and relative humidity, and one soil parameter, the soil moisture, were used to select the suitable set of predictors using a non-greedy algorithm known as simulated annealing (SA). The selected predictors were used to simulate the temporal and spatial variability of air PM2.5 concentration over Iraq during the early summer (May-July), the most polluted months, using three advanced ML models, extremely randomized trees (ERT), stochastic gradient descent backpropagation (SGD-BP) and long short-term memory (LSTM) integrated with Bayesian optimizer. The spatial distribution of the annual average PM2.5 revealed the population of the whole of Iraq is exposed to a pollution level above the standard limit. The changes in temperature and soil moisture and the mean wind speed and humidity of the month before the early summer can predict the temporal and spatial variability of PM2.5 over Iraq during May-July. Results revealed the higher performance of LSTM with normalized root-mean-square error and Kling-Gupta efficiency of 13.4% and 0.89, compared to 16.02% and 0.81 for SDG-BP and 17.9% and 0.74 for ERT. The LSTM could also reconstruct the observed spatial distribution of PM2.5 with MapCurve and Cramer's V values of 0.95 and 0.91, compared to 0.9 and 0.86 for SGD-BP and 0.83 and 0.76 for ERT. The study provided a methodology for forecasting spatial variability of PM2.5 concentration at high resolution during the peak pollution months from freely available data, which can be replicated in other regions for generating high-resolution PM2.5 forecasting maps.
  19. Hameed MM, Razali SFM, Mohtar WHMW, Rahman NA, Yaseen ZM
    PLoS One, 2023;18(10):e0290891.
    PMID: 37906556 DOI: 10.1371/journal.pone.0290891
    The Great Lakes are critical freshwater sources, supporting millions of people, agriculture, and ecosystems. However, climate change has worsened droughts, leading to significant economic and social consequences. Accurate multi-month drought forecasting is, therefore, essential for effective water management and mitigating these impacts. This study introduces the Multivariate Standardized Lake Water Level Index (MSWI), a modified drought index that utilizes water level data collected from 1920 to 2020. Four hybrid models are developed: Support Vector Regression with Beluga whale optimization (SVR-BWO), Random Forest with Beluga whale optimization (RF-BWO), Extreme Learning Machine with Beluga whale optimization (ELM-BWO), and Regularized ELM with Beluga whale optimization (RELM-BWO). The models forecast droughts up to six months ahead for Lake Superior and Lake Michigan-Huron. The best-performing model is then selected to forecast droughts for the remaining three lakes, which have not experienced severe droughts in the past 50 years. The results show that incorporating the BWO improves the accuracy of all classical models, particularly in forecasting drought turning and critical points. Among the hybrid models, the RELM-BWO model achieves the highest level of accuracy, surpassing both classical and hybrid models by a significant margin (7.21 to 76.74%). Furthermore, Monte-Carlo simulation is employed to analyze uncertainties and ensure the reliability of the forecasts. Accordingly, the RELM-BWO model reliably forecasts droughts for all lakes, with a lead time ranging from 2 to 6 months. The study's findings offer valuable insights for policymakers, water managers, and other stakeholders to better prepare drought mitigation strategies.
  20. Halder B, Ahmadianfar I, Heddam S, Mussa ZH, Goliatt L, Tan ML, et al.
    Sci Rep, 2023 May 17;13(1):7968.
    PMID: 37198391 DOI: 10.1038/s41598-023-34774-9
    Climatic condition is triggering human health emergencies and earth's surface changes. Anthropogenic activities, such as built-up expansion, transportation development, industrial works, and some extreme phases, are the main reason for climate change and global warming. Air pollutants are increased gradually due to anthropogenic activities and triggering the earth's health. Nitrogen Dioxide (NO2), Carbon Monoxide (CO), and Aerosol Optical Depth (AOD) are truthfully important for air quality measurement because those air pollutants are more harmful to the environment and human's health. Earth observational Sentinel-5P is applied for monitoring the air pollutant and chemical conditions in the atmosphere from 2018 to 2021. The cloud computing-based Google Earth Engine (GEE) platform is applied for monitoring those air pollutants and chemical components in the atmosphere. The NO2 variation indicates high during the time because of the anthropogenic activities. Carbon Monoxide (CO) is also located high between two 1-month different maps. The 2020 and 2021 results indicate AQI change is high where 2018 and 2019 indicates low AQI throughout the year. The Kolkata have seven AQI monitoring station where high nitrogen dioxide recorded 102 (2018), 48 (2019), 26 (2020) and 98 (2021), where Delhi AQI stations recorded 99 (2018), 49 (2019), 37 (2020), and 107 (2021). Delhi, Kolkata, Mumbai, Pune, and Chennai recorded huge fluctuations of air pollutants during the study periods, where ~ 50-60% NO2 was recorded as high in the recent time. The AOD was noticed high in Uttar Pradesh in 2020. These results indicate that air pollutant investigation is much necessary for future planning and management otherwise; our planet earth is mostly affected by the anthropogenic and climatic conditions where maybe life does not exist.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links