Displaying all 4 publications

Abstract:
Sort:
  1. Ye M, Lin L, Yang W, Gopinath SCB
    PMID: 33769582 DOI: 10.1002/bab.2152
    This study demonstrated the terminated sialo-sugar chains (Neu5Acα2,6Gal and Neu5Acα2,3Gal) mediated specificity enhancement of influenza virus and chicken red blood cell (RBC) by hemagglutination assay. These glycan chains were immobilized on the gold nanoparticle (GNP) to withhold the higher numbers. With the preliminary optimization, a clear button formation with 0.5% RBC was visualized. On the other hand, intact B/Tokio/53/99 with 750 nM hemagglutinin (HA) displayed a nice hemagglutination. The interference on the specificity of RBC and influenza virus was observed by anti-influenza aptamer at the concentration 31 nM, however, there is no hemagglutination prevention was noticed in the presence of complementary aptamer sequences. Spiking GNP conjugated Neu5Acα2,6Gal or Neu5Acα2,3Gal or a mixture of these two to the reaction promoted the hemagglutination to 63 folds higher with 12 nM virus, whereas under the same condition the heat inactivated viruses were lost the hemagglutination. Neuraminidases from Clostridium perfringens and Arthrobacter ureafaciens at 0.0025 neuraminidase units are able to abolish the hemagglutination. Other enzymes, Glycopeptidase F (Elizabethkingia meningoseptica) and Endoglycosidase H (Streptomyces plicatus) did not show the changes with agglutination. Obviously, sialyl-Gal-terminated glycan conjugated GNP amendment has enhanced the specificity of erythrocyte-influenza virus and able to be controlled by aptamer or neuraminidases. This article is protected by copyright. All rights reserved.
  2. Wu M, Li M, Yuan J, Liang S, Chen Z, Ye M, et al.
    Pharmacol Res, 2020 05;155:104693.
    PMID: 32057896 DOI: 10.1016/j.phrs.2020.104693
    Hormone therapy continues to be a favourable option in the management of menopausal symptomatology, but the associated risk-benefit ratios with respect to neurodegenerative diseases remain controversial. The study aim was to determine the relation between menopausal hormone therapy and Alzheimer's disease, dementia, and Parkinson's disease in human subjects. A literature search was performed in PubMed/Medline, Cochrane collaboration, and Scopus databases from onset of the database to September 2019. Random-effects model was used to estimate pooled odd ratio (OR) and 95 % confidence intervals (CI). Subgroup analysis was performed based on the type and formulation of hormone. In addition, the time-response effect of this relationship was also assessed based on duration of hormone therapy. Associations between hormone therapy and Alzheimer's disease, dementia, and Parkinson's disease in menopausal women were reported in 28 studies. Pooled results with random effect model showed a significant association between hormone therapy and Alzheimer's disease (OR 1.08, 95 % CI 1.03-1.14, I2: 69 %). This relationship was more pronounced in patients receiving the combined estrogen-progestogen formulation. Moreover, a significant non-linear time-response association between hormone therapy and Alzheimer's disease was also identified (Coef1 = 0.0477, p1<0.001; Coef2 = -0.0932, p2<0.001). Similarly, pooled analysis revealed a significant association between hormone therapy and all-cause dementia (OR 1.16, 95 % CI 1.02-1.31, I2: 19 %). Interestingly, no comparable relationship was uncovered between hormone therapy as a whole and Parkinson's disease (OR 1.14, 95 % CI 0.95-1.38, I2: 65 %); however, sub-group analysis revealed a significant relationship between the disease and progestogen (OR 3.41, 95 % CI 1.23-9.46) or combined estrogen-progestogen formulation use (OR 1.49, 95 % CI 1.34-1.65). Indeed, this association was also found to be driven by duration of exposure (Coef1 = 0.0626, p1 = 0.04). This study reveals a significant direct relationship between the use of certain hormonal therapies and Alzheimer's disease, all-cause dementia, and Parkinson's disease in menopausal women. However, the association appears to shift in direct after five years in the context of Alzheimer's disease, adding further weight to the critical window or timing hypothesis of neurodegeneration and neuroprotection.
  3. Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M
    Mass Spectrom Rev, 2021 07;40(4):309-333.
    PMID: 32491218 DOI: 10.1002/mas.21636
    Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
  4. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links