Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  2. Padmanabhan H, Mariapun S, Lee SY, Hassan NT, Lee DS, Meiser B, et al.
    J Genet Couns, 2023 Feb;32(1):43-56.
    PMID: 35913122 DOI: 10.1002/jgc4.1619
    Cascade testing for families with BRCA pathogenic variants is important to identify relatives who are carriers. These relatives can benefit from appropriate risk management and preventative strategies arising from an inherited increased risk of breast, ovarian, prostate, melanoma, and pancreatic cancers. Cascade testing has the potential to enable cost-effective cancer control even in low- and middle-income settings, but few studies have hitherto evaluated the psychosocial impact of cascade testing in an Asian population, where the cultural and religious beliefs around inheritance and destiny have previously been shown to influence perception and attitudes toward screening. In this study, we evaluated the short- and long-term psychosocial impact of genetic testing among unaffected relatives of probands identified through the Malaysian Breast Cancer Genetics Study and the Malaysian Ovarian Cancer Study, using validated questionnaires (Hospital Anxiety and Depression Scale and Cancer Worry Scale) administered at baseline, and 1-month and 2-year post-disclosure of results. Of the 305 unaffected relatives from 98 independent families who were offered cascade testing, 256 (84%) completed predictive testing and family history of cancers was the only factor significantly associated with uptake of predictive testing. We found that the levels of anxiety, depression, and cancer worry among unaffected relatives decreased significantly after result disclosure and remained low 2-year post-result disclosure. Younger relatives and relatives of Malay descent had higher cancer worry at both baseline and after result disclosure compared to those of Chinese and Indian descent, whereas relatives of Indian descent and those with family history of cancers had higher anxiety and depression levels post-result disclosure. Taken together, the results from this Asian cohort highlight the differences in psychosocial needs in different communities and inform the development of culture-specific genetic counseling strategies.
  3. Lee DS, Meiser B, Mariapun S, Hassan T, Yip CH, Mohd Taib NA, et al.
    J Genet Couns, 2021 Jun;30(3):720-729.
    PMID: 33245177 DOI: 10.1002/jgc4.1360
    The vast majority of studies assessing communication of BRCA1/2 results with relatives and family uptake of BRCA1/2 testing have been conducted in Western societies, and a dearth of studies have been conducted in Asia among relatives of diverse carriers of pathogenic BRCA1/2 germline variants. This study aimed to present rates of BRCA1/2 result disclosure by probands and probands' motivators and barriers of family communication and predictive testing uptake among eligible relatives. It also examined patterns of disclosure and testing uptake among different types of relatives. Eighty-seven carriers with either breast or ovarian cancer, who had previously been found to be carriers of a pathogenic variant in BRCA1/2, were interviewed over the phone using a semi-structured interview guide. Fifty-six percent of patients were Chinese, 21% were Indian, and 23% were Malay. It was found that 62.0% of eligible first- and second-degree relatives were informed by the proband about the testing result and that 11.5% of eligible first- and second-degree relatives had genetic testing. First-degree relatives were more likely to have been informed and tested compared to second-degree relatives, as were sisters compared to brothers. The low rates of family communication and testing uptake documented in this study suggest that interventions should focus on encouraging probands to inform male and second-degree relatives and targeting such relatives to increase informed decisions and accessibility to testing. Promotion strategies should be culturally sensitive to optimize outcomes.
  4. Padmanabhan H, Hassan NT, Wong SW, Lee YQ, Lim J, Hasan SN, et al.
    PLoS One, 2022;17(2):e0263675.
    PMID: 35167615 DOI: 10.1371/journal.pone.0263675
    There is an increasing number of cancer patients undertaking treatment-focused genetic testing despite not having a strong family history or high a priori risk of being carriers because of the decreasing cost of genetic testing and development of new therapies. There are limited studies on the psychosocial outcome of a positive result among breast cancer patients who are at low a priori risk, particularly in women of Asian descent. Breast cancer patients enrolled under the Malaysian Breast Cancer Genetic Study between October 2002 and February 2018 were tested for BRCA1, BRCA2 and PALB2 genes. All 104 carriers identified were invited by a research genetic counsellor for result disclosure. Of the 104 carriers, 64% (N = 66) had low a priori risk as determined by PENN II scores. Psychosocial, risk perception and health behaviour measures survey were conducted at baseline (pre-result disclosure), and at two to six weeks after result disclosure. At baseline, younger carriers with high a priori risk had higher Cancer Worry Scale scores than those with low a priori risk but all scores were within acceptable range. Around 75% and 55% of high a priori risk carriers as well as 80% and 67% of low a priori risk carriers had problems in the "living with cancer" and "children" psychosocial domains respectively. All carriers regardless of their a priori risk demonstrated an improved risk perception that also positively influenced their intent to undergo risk management procedures. This study has shown that with sufficient counselling and support, low a priori risk carriers are able to cope psychologically, have improved perceived risk and increased intent for positive health behaviour despite having less anticipation from a family history prior to knowing their germline carrier status.
  5. Abacan M, Alsubaie L, Barlow-Stewart K, Caanen B, Cordier C, Courtney E, et al.
    Eur J Hum Genet, 2019 Feb;27(2):183-197.
    PMID: 30291341 DOI: 10.1038/s41431-018-0252-x
    The profession of genetic counseling (also called genetic counselling in many countries) began nearly 50 years ago in the United States, and has grown internationally in the past 30 years. While there have been many papers describing the profession of genetic counseling in individual countries or regions, data remains incomplete and has been published in diverse journals with limited access. As a result of the 2016 Transnational Alliance of Genetic Counseling (TAGC) conference in Barcelona, Spain, and the 2017 World Congress of Genetic Counselling in the UK, we endeavor to describe as fully as possible the global state of genetic counseling as a profession. We estimate that in 2018 there are nearly 7000 genetic counselors with the profession established or developing in no less than 28 countries.
  6. Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, et al.
    J Clin Oncol, 2020 03 01;38(7):674-685.
    PMID: 31841383 DOI: 10.1200/JCO.19.01907
    PURPOSE: To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized.

    METHODS: We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes.

    RESULTS: We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 × 10-2). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer.

    CONCLUSION: These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.

  7. Phuah SY, Lee SY, Kang P, Kang IN, Yoon SY, Thong MK, et al.
    PLoS One, 2013;8(8):e73638.
    PMID: 23977390 DOI: 10.1371/journal.pone.0073638
    The partner and localizer of breast cancer 2 (PALB2) is responsible for facilitating BRCA2-mediated DNA repair by serving as a bridging molecule, acting as the physical and functional link between the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) proteins. Truncating mutations in the PALB2 gene are rare but are thought to be associated with increased risks of developing breast cancer in various populations.
  8. Toh GT, Kang P, Lee SS, Lee DS, Lee SY, Selamat S, et al.
    PLoS One, 2008;3(4):e2024.
    PMID: 18431501 DOI: 10.1371/journal.pone.0002024
    BACKGROUND: In Asia, breast cancer is characterised by an early age of onset: In Malaysia, approximately 50% of cases occur in women under the age of 50 years. A proportion of these cases may be attributable, at least in part, to genetic components, but to date, the contribution of genetic components to breast cancer in many of Malaysia's ethnic groups has not been well-characterised.
    METHODOLOGY: Given that hereditary breast carcinoma is primarily due to germline mutations in one of two breast cancer susceptibility genes, BRCA1 and BRCA2, we have characterised the spectrum of BRCA mutations in a cohort of 37 individuals with early-onset disease (
  9. Tan MM, Ho WK, Yoon SY, Mariapun S, Hasan SN, Lee DS, et al.
    PLoS One, 2018;13(9):e0203469.
    PMID: 30216346 DOI: 10.1371/journal.pone.0203469
    BACKGROUND: Breast cancer risk factors have been examined extensively in Western setting and more developed Asian cities/countries. However, there are limited data on developing Asian countries. The purpose of this study was to examine breast cancer risk factors and the change of selected risk factors across birth cohorts in Malaysian women.

    METHODS: An unmatched hospital based case-control study was conducted from October 2002 to December 2016 in Selangor, Malaysia. A total of 3,683 cases and 3,980 controls were included in this study. Unconditional logistic regressions, adjusted for potential confounding factors, were conducted. The breast cancer risk factors were compared across four birth cohorts by ethnicity.

    RESULTS: Ever breastfed, longer breastfeeding duration, a higher soymilk and soy product intake, and a higher level of physical activity were associated with lower risk of breast cancer. Chinese had the lowest breastfeeding rate, shortest breastfeeding duration, lowest parity and highest age of first full term pregnancy.

    CONCLUSIONS: Our study shows that breastfeeding, soy intake and physical activity are modifiable risk factors for breast cancer. With the increasing incidence of breast cancer there is an urgent need to educate the women about lifestyle intervention they can take to reduce their breast cancer risk.

  10. Wen WX, Allen J, Lai KN, Mariapun S, Hasan SN, Ng PS, et al.
    J Med Genet, 2018 02;55(2):97-103.
    PMID: 28993434 DOI: 10.1136/jmedgenet-2017-104947
    BACKGROUND: Genetic testing for BRCA1 and BRCA2 is offered typically to selected women based on age of onset and family history of cancer. However, current internationally accepted genetic testing referral guidelines are built mostly on data from cancer genetics clinics in women of European descent. To evaluate the appropriateness of such guidelines in Asians, we have determined the prevalence of germ line variants in an unselected cohort of Asian patients with breast cancer and healthy controls.

    METHODS: Germ line DNA from a hospital-based study of 2575 unselected patients with breast cancer and 2809 healthy controls were subjected to amplicon-based targeted sequencing of exonic and proximal splice site junction regions of BRCA1 and BRCA2 using the Fluidigm Access Array system, with sequencing conducted on a Illumina HiSeq2500 platform. Variant calling was performed with GATK UnifiedGenotyper and were validated by Sanger sequencing.

    RESULTS: Fifty-five (2.1%) BRCA1 and 66 (2.6%) BRCA2 deleterious mutations were identified among patients with breast cancer and five (0.18%) BRCA1 and six (0.21%) BRCA2 mutations among controls. One thousand one hundred and eighty-six (46%) patients and 97 (80%) carriers fulfilled the National Comprehensive Cancer Network guidelines for genetic testing.

    CONCLUSION: Five per cent of unselected Asian patients with breast cancer carry deleterious variants in BRCA1 or BRCA2. While current referral guidelines identified the majority of carriers, one in two patients would be referred for genetic services. Given that such services are largely unavailable in majority of low-resource settings in Asia, our study highlights the need for more efficient guidelines to identify at-risk individuals in Asia.

  11. Lee DS, Yoon SY, Looi LM, Kang P, Kang IN, Sivanandan K, et al.
    Breast Cancer Res, 2012;14(2):R66.
    PMID: 22507745
    Germline TP53 mutations cause an increased risk to early-onset breast cancer in Li-Fraumeni syndrome (LFS) families and the majority of carriers identified through breast cancer cohorts have LFS or Li-Fraumeni-like (LFL) features. However, in Asia and in many low resource settings, it is challenging to obtain accurate family history and we, therefore, sought to determine whether the presence of early-onset breast cancer is an appropriate selection criteria for germline TP53 testing.
  12. Thirthagiri E, Lee SY, Kang P, Lee DS, Toh GT, Selamat S, et al.
    Breast Cancer Res, 2008;10(4):R59.
    PMID: 18627636 DOI: 10.1186/bcr2118
    The cost of genetic testing and the limited knowledge about the BRCA1 and BRCA2 genes in different ethnic groups has limited its availability in medium- and low-resource countries, including Malaysia. In addition, the applicability of many risk-assessment tools, such as the Manchester Scoring System and BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) which were developed based on mutation rates observed primarily in Caucasian populations using data from multiplex families, and in populations where the rate of breast cancer is higher, has not been widely tested in Asia or in Asians living elsewhere. Here, we report the results of genetic testing for mutations in the BRCA1 or BRCA2 genes in a series of families with breast cancer in the multi-ethnic population (Malay, Chinese and Indian) of Malaysia.
  13. Kang PC, Phuah SY, Sivanandan K, Kang IN, Thirthagiri E, Liu JJ, et al.
    Breast Cancer Res Treat, 2014 Apr;144(3):635-42.
    PMID: 24578176 DOI: 10.1007/s10549-014-2894-x
    Although the breast cancer predisposition genes BRCA1 and BRCA2 were discovered more than 20 years ago, there remains a gap in the availability of genetic counselling and genetic testing in Asian countries because of cost, access and inaccurate reporting of family history of cancer. In order to improve access to testing, we developed a rapid test for recurrent mutations in our Asian populations. In this study, we designed a genotyping assay with 55 BRCA1 and 44 BRCA2 mutations previously identified in Asian studies, and validated this assay in 267 individuals who had previously been tested by full sequencing. We tested the prevalence of these mutations in additional breast cancer cases. Using this genotyping approach, we analysed recurrent mutations in 533 Malaysian breast cancer cases with <10 % a priori risk, and found 1 BRCA1 (0.2 %) and 5 BRCA2 (0.9 %) carriers. Testing in a hospital-based unselected cohort of 532 Singaporean breast cancer cases revealed 6 BRCA1 (1.1 %) and 3 BRCA2 (0.6 %) carriers. Overall, 2 recurrent BRCA1 and 1 BRCA2 mutations in Malays, 3 BRCA1 and 2 BRCA2 mutations in Chinese and 1 BRCA1 mutation in Indians account for 60, 24 and 20 % of carrier families, respectively. By contrast, haplotype analyses suggest that a recurrent BRCA2 mutation (c.262_263delCT) found in 5 unrelated Malay families has at least 3 distinct haplotypes. Taken together, our data suggests that panel testing may help to identify carriers, particularly Asian BRCA2 carriers, who do not present with a priori strong family history characteristics.
  14. Kang P, Mariapun S, Phuah SY, Lim LS, Liu J, Yoon SY, et al.
    Breast Cancer Res Treat, 2010 Nov;124(2):579-84.
    PMID: 20617377 DOI: 10.1007/s10549-010-1018-5
    Early studies of genetic predisposition due to the BRCA1 and BRCA2 genes have focused largely on sequence alterations, but it has now emerged that 4-28% of inherited mutations in the BRCA genes may be due to large genomic rearrangements of these genes. However, to date, there have been relatively few studies of large genomic rearrangements in Asian populations. We have conducted a full sequencing and large genomic rearrangement analysis (using Multiplex Ligation-dependent Probe Amplification, MLPA) of 324 breast cancer patients who were selected from a multi-ethnic hospital-based cohort on the basis of age of onset of breast cancer and/or family history. Three unrelated individuals were found to have large genomic rearrangements: 2 in BRCA1 and 1 in BRCA2, which accounts for 2/24 (8%) of the total mutations detected in BRCA1 and 1/23 (4%) of the mutations in BRCA2 detected in this cohort. Notably, the family history of the individuals with these mutations is largely unremarkable suggesting that family history alone is a poor predictor of mutation status in Asian families. In conclusion, this study in a multi-ethnic (Malay, Chinese, Indian) cohort suggests that large genomic rearrangements are present at a low frequency but should nonetheless be included in the routine testing for BRCA1 and BRCA2.
  15. Ng PS, Wen WX, Fadlullah MZ, Yoon SY, Lee SY, Thong MK, et al.
    Clin Genet, 2016 10;90(4):315-23.
    PMID: 26757417 DOI: 10.1111/cge.12735
    Although an association between protein-truncating variants and breast cancer risk has been established for 11 genes, only alterations in BRCA1, BRCA2, TP53 and PALB2 have been reported in Asian populations. Given that the age of onset of breast cancer is lower in Asians, it is estimated that inherited predisposition to breast cancer may be more significant. To determine the potential utility of panel testing, we investigated the prevalence of germline alterations in 11 established and 4 likely breast cancer genes in a cross-sectional hospital-based cohort of 108 moderate to high-risk breast cancer patients using targeted next generation sequencing. Twenty patients (19%) were identified to carry deleterious mutations, of whom 13 (12%) were in the BRCA1 or BRCA2, 6 (6%) were in five other known breast cancer predisposition genes and 1 patient had a mutation in both BRCA2 and BARD1. Our study shows that BRCA1 and BRCA2 account for the majority of genetic predisposition to breast cancer in our cohort of Asian women. Although mutations in other known breast cancer genes are found, the functional significance and breast cancer risk have not yet been determined, thus limiting the clinical utility of panel testing in Asian populations.
  16. Yoon SY, Thong MK, Taib NA, Yip CH, Teo SH
    Fam Cancer, 2011 Jun;10(2):199-205.
    PMID: 21318382 DOI: 10.1007/s10689-011-9420-7
    Genetic counseling (GC) and genetic testing are vital risk management strategies in hereditary breast and ovarian cancer (HBOC) syndromes. Hitherto, cancer genetic testing amongst Asians has been described only in developed and high-income Asian countries. We studied the uptake and acceptance of GC and genetic testing services to Asian BRCA carriers in a middle-income country. A total of 363 patients were tested by full sequencing and large rearrangement analysis of both BRCA1 and BRCA2 genes in the Malaysian Breast Cancer (MyBrCa) Genetic Study. Of these, 49 index patients (13.5%) were found to carry deleterious mutations. GC pre- and post- result disclosures were provided and these groups of patients and their families were studied. GC and genetic testing were accepted by 82% of Malaysian patients at high risk for HBOC syndromes. However, risk assessment was limited by large, geographically dispersed, often polygamous or polyandrous families, and the lack of complete cancer registry. Cultural taboos about cancer diagnoses, social marginalization and lack of regulatory control of genetic discrimination were significant concerns. Only 78% of index patients informed their families of their risks and 11% of relatives came forward when offered free counseling and testing. Even when GC and genetic testing are provided at no cost, there remain significant societal and regulatory barriers to effective cancer genetic services in this underserved Asian population. Families believe there is a need for regulatory protection against genetic discrimination. Further studies are needed in the area of increasing awareness about the potential benefits of GC and genetic testing in Asians.
  17. Yoon SY, Wong SW, Lim J, Ahmad S, Mariapun S, Padmanabhan H, et al.
    J Med Genet, 2022 Mar;59(3):220-229.
    PMID: 33526602 DOI: 10.1136/jmedgenet-2020-107416
    BACKGROUND: Identifying patients with BRCA mutations is clinically important to inform on the potential response to treatment and for risk management of patients and their relatives. However, traditional referral routes may not meet clinical needs, and therefore, mainstreaming cancer genetics has been shown to be effective in some high-income and high health-literacy settings. To date, no study has reported on the feasibility of mainstreaming in low-income and middle-income settings, where the service considerations and health literacy could detrimentally affect the feasibility of mainstreaming.

    METHODS: The Mainstreaming Genetic Counselling for Ovarian Cancer Patients (MaGiC) study is a prospective, two-arm observational study comparing oncologist-led and genetics-led counselling. This study included 790 multiethnic patients with ovarian cancer from 23 sites in Malaysia. We compared the impact of different method of delivery of genetic counselling on the uptake of genetic testing and assessed the feasibility, knowledge and satisfaction of patients with ovarian cancer.

    RESULTS: Oncologists were satisfied with the mainstreaming experience, with 95% indicating a desire to incorporate testing into their clinical practice. The uptake of genetic testing was similar in the mainstreaming and genetics arm (80% and 79%, respectively). Patient satisfaction was high, whereas decision conflict and psychological impact were low in both arms of the study. Notably, decisional conflict, although lower than threshold, was higher for the mainstreaming group compared with the genetics arm. Overall, 13.5% of patients had a pathogenic variant in BRCA1 or BRCA2, and there was no difference between psychosocial measures for carriers in both arms.

    CONCLUSION: The MaGiC study demonstrates that mainstreaming cancer genetics is feasible in low-resource and middle-resource Asian setting and increased coverage for genetic testing.

  18. Ang BH, Ho WK, Wijaya E, Kwan PY, Ng PS, Yoon SY, et al.
    J Clin Oncol, 2022 May 10;40(14):1542-1551.
    PMID: 35143328 DOI: 10.1200/JCO.21.01647
    PURPOSE: With the development of poly (ADP-ribose) polymerase inhibitors for treatment of patients with cancer with an altered BRCA1 or BRCA2 gene, there is an urgent need to ensure that there are appropriate strategies for identifying mutation carriers while balancing the increased demand for and cost of cancer genetics services. To date, the majority of mutation prediction tools have been developed in women of European descent where the age and cancer-subtype distributions are different from that in Asian women.

    METHODS: In this study, we built a new model (Asian Risk Calculator) for estimating the likelihood of carrying a pathogenic variant in BRCA1 or BRCA2 gene, using germline BRCA genetic testing results in a cross-sectional population-based study of 8,162 Asian patients with breast cancer. We compared the model performance to existing mutation prediction models. The models were evaluated for discrimination and calibration.

    RESULTS: Asian Risk Calculator included age of diagnosis, ethnicity, bilateral breast cancer, tumor biomarkers, and family history of breast cancer or ovarian cancer as predictors. The inclusion of tumor grade improved significantly the model performance. The full model was calibrated (Hosmer-Lemeshow P value = .614) and discriminated well between BRCA and non-BRCA pathogenic variant carriers (area under receiver operating curve, 0.80; 95% CI, 0.75 to 0.84). Addition of grade to the existing clinical genetic testing criteria targeting patients with breast cancer age younger than 45 years reduced the proportion of patients referred for genetic counseling and testing from 37% to 33% (P value = .003), thereby improving the overall efficacy.

    CONCLUSION: Population-specific customization of mutation prediction models and clinical genetic testing criteria improved the accuracy of BRCA mutation prediction in Asian patients.

  19. Ho WK, Hassan NT, Yoon SY, Yang X, Lim JMC, Binte Ishak ND, et al.
    Lancet Reg Health West Pac, 2024 Mar;44:101017.
    PMID: 38333895 DOI: 10.1016/j.lanwpc.2024.101017
    BACKGROUND: Clinical management of Asian BRCA1 and BRCA2 pathogenic variants (PV) carriers remains challenging due to imprecise age-specific breast (BC) and ovarian cancer (OC) risks estimates. We aimed to refine these estimates using six multi-ethnic studies in Asia.

    METHODS: Data were collected on 271 BRCA1 and 301 BRCA2 families from Malaysia and Singapore, ascertained through population/hospital-based case-series (88%) and genetic clinics (12%). Age-specific cancer risks were estimated using a modified segregation analysis method, adjusted for ascertainment.

    FINDINGS: BC and OC relative risks (RRs) varied across age groups for both BRCA1 and BRCA2. The age-specific RR estimates were similar across ethnicities and country of residence. For BRCA1 carriers of Malay, Indian and Chinese ancestry born between 1950 and 1959 in Malaysia, the cumulative risk (95% CI) of BC by age 80 was 40% (36%-44%), 49% (44%-53%) and 55% (51%-60%), respectively. The corresponding estimates for BRCA2 were 29% (26-32%), 36% (33%-40%) and 42% (38%-45%). The corresponding cumulative BC risks for Singapore residents from the same birth cohort, where the underlying population cancer incidences are higher compared to Malaysia, were higher, varying by ancestry group between 57 and 61% for BRCA1, and between 43 and 47% for BRCA2 carriers. The cumulative risk of OC by age 80 was 31% (27-36%) for BRCA1 and 12% (10%-15%) for BRCA2 carriers in Malaysia born between 1950 and 1959; and 42% (34-50%) for BRCA1 and 20% (14-27%) for BRCA2 carriers of the same birth cohort in Singapore. There was evidence of increased BC and OC risks for women from >1960 birth cohorts (p-value = 3.6 × 10-5 for BRCA1 and 0.018 for BRCA2).

    INTERPRETATION: The absolute age-specific cancer risks of Asian carriers vary depending on the underlying population-specific cancer incidences, and hence should be customised to allow for more accurate cancer risk management.

    FUNDING: Wellcome Trust [grant no: v203477/Z/16/Z]; CRUK (PPRPGM-Nov20∖100002).

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links