Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Tajuddin SN, Yusoff MM
    Nat Prod Commun, 2010 Dec;5(12):1965-8.
    PMID: 21299133
    Volatile oils of Aquilaria malaccensis Benth. (Thymelaeaceae) from Malaysia were obtained by hydrodistillation and subjected to detailed GC-FID and GC/MS analyses to determine possible similarities and differences in their chemical composition in comparison with the commercial oil. A total of thirty-one compounds were identified compared with twenty-nine identified in the commercial oil. The major compounds identified were 4-phenyl-2-butanone (32.1%), jinkoh-eremol (6.5%) and alpha-guaiene (5.8%), while the major compounds in the commercial oil were alpha-guaiene (10.3%), caryophellene oxide (8.6%), and eudesmol (3.2%). The results of the present study showed that more than nine sesquiterpene hydrocarbons were present, which is more than previously reported. Analysis also showed that the number of oxygenated sesquiterpenes in this study were much less than previously reported. Among the compounds detected were alpha-guaiene, beta-agarofuran, alpha-bulnesene, jinkoh-eremol, kusunol, selina-3,11-dien-9-one, oxo-agarospirol and guaia-1 (10), 11-dien-15,2-olide.
  2. Yusoff MM, Ibrahim H, Hamid NA
    Chem Biodivers, 2011 May;8(5):916-23.
    PMID: 21560240 DOI: 10.1002/cbdv.201000270
    Two poorly studied, morphologically allied Alpinia species endemic to Borneo, viz., A. ligulata and A. nieuwenhuizii, were investigated here for their rhizome essential oil. The oil compositions and antimicrobial activities were compared with those of A. galanga, a better known plant. A fair number of compounds were identified in the oils by GC-FID and GC/MS analyses, with large differences in the oil composition between the three species. The rhizome oil of A. galanga was rich in 1,8-cineole (29.8%), while those of A. ligulata and A. nieuwenhuizii were both found to be extremely rich in (E)-methyl cinnamate (36.4 and 67.8%, resp.). The three oils were screened for their antimicrobial activity against three Gram-positive and three Gram-negative bacteria and two fungal species. The efficiency of growth inhibition of Staphylococcus aureus var. aureus was found to decline in the order of A. nieuwenhuizii>A. ligulata ∼ A. galanga, while that of Escherichia coli decreased in the order of A. galanga>A. nieuwenhuzii ∼ A. ligulata. Only the A. galanga oil inhibited the other bacteria and the fungi tested.
  3. Ahmad MS, Md Yusoff MM, Abdul Razak I
    PMID: 22299483
    This study was conducted to identify the prevalence of stress, types of stressors, consequences of stress and stress relievers among undergraduate dental students at the University of Malaya during the different years of study. A descriptive cross-sectional quantitative study was conducted using a self-administered questionnaire among Bachelor of Dental Surgery students during Years 2 to 5. A 100% response rate was obtained. The instrument asked questions about the preceding academic year. The results of the questionnaire reveal the prevalence of stress was 100%. The most common cause of stress among preclinical students was academic concerns and among clinical students was patient management and clinical performance. Physical and behavioral problems were reported as consequences of stress. Most students overcame stress by having strong interpersonal relationships.
  4. Fazliana M, Gu HF, Östenson CG, Yusoff MM, Wan Nazaimoon WM
    J Nat Med, 2012 Apr;66(2):257-64.
    PMID: 21833773 DOI: 10.1007/s11418-011-0575-1
    We evaluated the effects of a standardized Labisia pumila var. alata (LPva) extract on body weight change, hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1) expressions and corticosterone (CORT) level in ovariectomized (OVX) rats. The decoction of LPva has been used for generations among Malay women in Malaysia to maintain a healthy reproductive system.Thirty-six Sprague-Dawley OVX rats were treated orally with LPva extract (10, 20 or 50 mg/kg/day) or estrogen replacement (ERT) for 30 days. Sham operated rats were used as controls. Compared to untreated OVX rats, LPva-treated rats showed less weight gain and had significantly down-regulated HSD11B1 mRNA in liver tissues. HSD11B1 mRNA in adipose tissues increased by 55% (p < 0.05) in OVX rats but normalized in rats treated with LPva. Similarly, there was significant down-regulation (p < 0.05) of protein levels of HSD11B1 in both liver and adipose tissue of LPva and ERT groups, and CORT levels were significantly reduced in both groups of rats. This is the first study ever conducted to evaluate the beneficial effects of LPva in relation to weight gain caused by estrogen insufficiency. Results implied that the bioactive components in LPva extract affect not only HSD11B1 expressions in both adipose and liver tissues but also decrease circulating CORT. The extract should be explored for its potential use as a natural remedy for weight management.
  5. Muzakir SK, Alias N, Yusoff MM, Jose R
    Phys Chem Chem Phys, 2013 Oct 14;15(38):16275-85.
    PMID: 24000052 DOI: 10.1039/c3cp52858h
    The possibility of achieving many electrons per absorbed photon of sufficient energy by quantum dots (QDs) drives the motivation to build high performance quantum dot solar cells (QDSCs). Although performance of dye-sensitized solar cells (DSCs), with similar device configuration as that of QDSCs, has significantly improved in the last two decades QDSCs are yet to demonstrate impressive device performances despite the remarkable features of QDs as light harvesters. We investigated the fundamental differences in the optical properties of QDs and dyes using DFT calculations to get insights on the inferior performance of QDSCs. The CdSe QDs and the ruthenium bipyridyl dicarboxylic acid dye (N3) were used as typical examples in this study. Based on a generalized equation of state correlating material properties and photoconversion efficiency, we calculated ground and excited state properties of these absorbers at the B3LYP/lanl2dz level of DFT and analyzed them on the basis of the device performance. Five missing links have been identified in the study which provides numerous insights into building high efficiency QDSCs. They are (i) fundamental differences in the emitting states of the QDs in the strong and weak confinement regimes were observed, which explained successfully the performance differences; (ii) the crucial role of bifunctional ligands that bind the QDs and the photo-electrode was identified; in most cases use of bifunctional ligands does not lead to a QD enabled widening of the absorption of the photo-electrode; (iii) wide QDs size distribution further hinders efficient electron injections; (iv) wide absorption cross-section of QDs favours photon harvesting; and (v) the role of redox potential of the electrolyte in the QD reduction process.
  6. Lokman FE, Gu HF, Wan Mohamud WN, Yusoff MM, Chia KL, Ostenson CG
    PMID: 24319481 DOI: 10.1155/2013/727602
    Aims. To evaluate the antidiabetic properties of borapetol B known as compound 1 (C1) isolated from Tinospora crispa in normoglycemic control Wistar (W) and spontaneously type 2 diabetic Goto-Kakizaki (GK) rats. Methods. The effect of C1 on blood glucose and plasma insulin was assessed by an oral glucose tolerance test. The effect of C1 on insulin secretion was assessed by batch incubation and perifusion experiments using isolated pancreatic islets. Results. An acute oral administration of C1 improved blood glucose levels in treated versus placebo groups with areas under glucose curves 0-120 min being 72 ± 17 versus 344 ± 10 mmol/L (P < 0.001) and 492 ± 63 versus 862 ± 55 mmol/L (P < 0.01) in W and GK rats, respectively. Plasma insulin levels were increased by 2-fold in treated W and GK rats versus placebo group at 30 min (P < 0.05). C1 dose-dependently increased insulin secretion from W and GK isolated islets at 3.3 mM and 16.7 mM glucose. The perifusions of isolated islets indicated that C1 did not cause leakage of insulin by damaging islet beta cells (P < 0.001). Conclusion. This study provides evidence that borapetol B (C1) has antidiabetic properties mainly due to its stimulation of insulin release.
  7. Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJ, Soundharrajan I, Govindan N
    Acta Pharm Sin B, 2014 Jun;4(3):173-81.
    PMID: 26579381 DOI: 10.1016/j.apsb.2014.04.002
    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis.
  8. Kuppusamy P, Ichwan SJ, Parine NR, Yusoff MM, Maniam GP, Govindan N
    J Environ Sci (China), 2015 Mar 1;29:151-7.
    PMID: 25766024 DOI: 10.1016/j.jes.2014.06.050
    In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV-Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24-38 nm for gold and 30-45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.
  9. Kuppusamy P, Yusoff MM, Parine NR, Govindan N
    Saudi J Biol Sci, 2015 May;22(3):293-301.
    PMID: 25972750 DOI: 10.1016/j.sjbs.2014.09.016
    The study explored on the commonly available weed plant Commelina nudiflora which has potential in-vitro antioxidant and antimicrobial activity. The different polar solvents such as ethanol, chloroform, dichloromethane, hexane and aqueous were used for the soxhlet extraction. The extracts were identified pharmacologically as important bioactive compounds and their potential free radical scavenging activities, and antimicrobial properties were studied. C. nudiflora extracts were monitored on their in-vitro antioxidant ability by DPPH and ABTS radical scavenging assay. Aqueous extract shows significant free radical scavenging activity of 63.4 mg/GAE and 49.10 mg/g in DPPH and ABTS respectively. Furthermore, the aqueous crude extract was used in antibacterial studies, which shows the highest inhibitory activity against Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Among all the extracts, aqueous extract of C. nudiflora has significant control over free radical scavenging activity and inhibition of the growth of food pathogenic bacteria. Also, the aqueous extract contains abundance of phenolics and flavonoids higher than other extracts. This study explored weed plant C. nudiflora as a potential source of antioxidant and antibacterial efficacy and identified various therapeutic value bioactive compounds from GC-MS analysis.
  10. Batool T, Makky EA, Jalal M, Yusoff MM
    Appl Biochem Biotechnol, 2016 Mar;178(5):900-23.
    PMID: 26547852 DOI: 10.1007/s12010-015-1917-3
    L-asparaginase (LA) catalyzes the degradation of asparagine, an essential amino acid for leukemic cells, into ammonia and aspartate. Owing to its ability to inhibit protein biosynthesis in lymphoblasts, LA is used to treat acute lymphoblastic leukemia (ALL). Different isozymes of this enzyme have been isolated from a wide range of organisms, including plants and terrestrial and marine microorganisms. Pieces of information about the three-dimensional structure of L-asparaginase from Escherichia coli and Erwinia sp. have identified residues that are essential for catalytic activity. This review catalogues the major sources of L-asparaginase, the methods of its production through the solid state (SSF) and submerged (SmF) fermentation, purification, and characterization as well as its biological roles. In the same breath, this article explores both the past and present applications of this important enzyme and discusses its future prospects.
  11. Rahman ML, Biswas TK, Sarkar SM, Yusoff MM, Yuvaraj AR, Kumar S
    J Colloid Interface Sci, 2016 Jun 15;478:384-393.
    PMID: 27341036 DOI: 10.1016/j.jcis.2016.06.039
    A new series of liquid crystals decorated gold nanoparticles is synthesized whose molecular architecture has azobenzenes moieties as the peripheral units connected to gold nanoparticles (Au NPs) via alkyl groups. The morphology and mesomorphic properties were investigated by field emission scanning electron microscope, high-resolution transmission electron microscopy, differential scanning calorimetry and polarizing optical microscopy. The thiolated ligand molecules (3a-c) showed enantiotropic smectic A phase, whereas gold nanoparticles (5a-c) exhibit nematic and smectic A phase with monotropic nature. HR-TEM measurement showed that the functionalized Au NPs are of the average size of 2nm and they are well dispersed without any aggregation. The trans-form of azo compounds showed a strong band in the UV region at ∼378nm for the π-π(∗) transition, and a weak band in the visible region at ∼472nm due to the n-π(∗) transition. These molecules exhibit attractive photoisomerization behaviour in which trans-cis transition takes about 15s whereas the cis-trans transition requires about 45min for compound 5c. The extent of reversible isomerization did not decay after 10 cycles, which proved that the photo-responsive properties of 5c were stable and repeatable. Therefore, these materials may be suitably exploited in the field of molecular switches and the optical storage devices.
  12. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N
    Saudi Pharm J, 2016 Jul;24(4):473-84.
    PMID: 27330378 DOI: 10.1016/j.jsps.2014.11.013
    The field of nanotechnology mainly encompasses with biology, physics, chemistry and material sciences and it develops novel therapeutic nanosized materials for biomedical and pharmaceutical applications. The biological syntheses of nanoparticles are being carried out by different macro-microscopic organisms such as plant, bacteria, fungi, seaweeds and microalgae. The biosynthesized nanomaterials have been effectively controlling the various endemic diseases with less adverse effect. Plant contains abundant natural compounds such as alkaloids, flavonoids, saponins, steroids, tannins and other nutritional compounds. These natural products are derived from various parts of plant such as leaves, stems, roots shoots, flowers, barks, and seeds. Recently, many studies have proved that the plant extracts act as a potential precursor for the synthesis of nanomaterial in non-hazardous ways. Since the plant extract contains various secondary metabolites, it acts as reducing and stabilizing agents for the bioreduction reaction to synthesized novel metallic nanoparticles. The non-biological methods (chemical and physical) are used in the synthesis of nanoparticles, which has a serious hazardous and high toxicity for living organisms. In addition, the biological synthesis of metallic nanoparticles is inexpensive, single step and eco-friendly methods. The plants are used successfully in the synthesis of various greener nanoparticles such as cobalt, copper, silver, gold, palladium, platinum, zinc oxide and magnetite. Also, the plant mediated nanoparticles are potential remedy for various diseases such as malaria, cancer, HIV, hepatitis and other acute diseases.
  13. Kuppusamy P, Ichwan SJ, Al-Zikri PN, Suriyah WH, Soundharrajan I, Govindan N, et al.
    Biol Trace Elem Res, 2016 Oct;173(2):297-305.
    PMID: 26961292 DOI: 10.1007/s12011-016-0666-7
    Recently, metal nanoparticles have been getting great medical and social interests due to their potential physico-chemical properties such as higher affinity, low molecular weight, and larger surface area. The biosynthesized gold and silver nanoparticles are spherical, triangular in shape with an average size of 24-150 nm as reported in our earlier studies. The biological properties of synthesized gold and silver nanoparticles are demonstrated in this paper. The different in vitro assays such as MTT, flow cytometry, and reverse transcription polymerase chain reaction (RT-qPCR) techniques were used to evaluate the in vitro anticancer properties of synthesized metal nanoparticles. The biosynthesized gold and silver nanoparticles have shown reduced cell viability and increased cytotoxicity in HCT-116 colon cancer cells with IC50 concentration of 200 and 100 μg/ml, respectively. The flow cytometry experiments revealed that the IC50 concentrations of gold and silver nanoparticle-treated cells that have significant changes were observed in the sub-G1 cell cycle phase compared with the positive control. Additionally, the relative messenger RNA (mRNA) gene expressions of HCT-116 cells were studied by RT-qPCR techniques. The pro-apoptotic genes such as PUMA (++), Caspase-3 (+), Caspase-8 (++), and Caspase-9 (++) were upregulated in the treated HCT-116 cells compared with cisplatin. Overall, these findings have proved that the synthesized gold and silver nanoparticles could be potent anti-colon cancer drugs.
  14. Roslee AE, Muzakir SK, Ismail J, Yusoff MM, Jose R
    Phys Chem Chem Phys, 2016 Dec 21;19(1):408-418.
    PMID: 27905607 DOI: 10.1039/c6cp07173b
    This article addresses the heat capacity of quantum dots (QDs) using density functional theory (DFT). By analyzing the evolution of phonon density of states and heat capacity as CdSe clusters grow from a molecular cluster into larger quantum confined solids, we have shown that their heat capacity does not fit very well with the Debye T3 model. We observed that the number of phonon modes, which is discrete, increases as the particles grow, and the dispersion relation shows a quadratic behavior in contrast to the bulk solids whose dispersion relation is linear and equal to the sound velocity. The phonon density of states showed a square root variation with respect to frequency whereas that of the bulk is a quadratic variation of frequency. From the observed variation in the phonon density of states and holding the fact that the atomic vibrations in solids are elastically coupled, we have re-derived the expression for total energy of the QDs and arrive at a T3/2 model of heat capacity, which fits very well to the observed heat capacity data. These results give promising directions in the understanding of the evolution of the thermophysical properties of solids.
  15. Mandal BH, Rahman ML, Yusoff MM, Chong KF, Sarkar SM
    Carbohydr Polym, 2017 Jan 20;156:175-181.
    PMID: 27842811 DOI: 10.1016/j.carbpol.2016.09.021
    Corn-cob cellulose supported poly(hydroxamic acid) Cu(II) complex was prepared by the surface modification of waste corn-cob cellulose through graft copolymerization and subsequent hydroximation. The complex was characterized by IR, UV, FESEM, TEM, XPS, EDX and ICP-AES analyses. The complex has been found to be an efficient catalyst for 1,3-dipolar Huisgen cycloaddition (CuAAC) of aryl/alkyl azides with a variety of alkynes as well as one-pot three-components reaction in the presence of sodium ascorbate to give the corresponding cycloaddition products in up to 96% yield and high turn over number (TON 18,600) and turn over frequency (TOF 930h-1) were achieved. The complex was easy to recover from the reaction mixture and reused six times without significant loss of its catalytic activity.
  16. Harilal M, Vidyadharan B, Misnon II, Anilkumar GM, Lowe A, Ismail J, et al.
    ACS Appl Mater Interfaces, 2017 Mar 29;9(12):10730-10742.
    PMID: 28266837 DOI: 10.1021/acsami.7b00676
    A one-dimensional morphology comprising nanograins of two metal oxides, one with higher electrical conductivity (CuO) and the other with higher charge storability (Co3O4), is developed by electrospinning technique. The CuO-Co3O4 nanocomposite nanowires thus formed show high specific capacitance, high rate capability, and high cycling stability compared to their single-component nanowire counterparts when used as a supercapacitor electrode. Practical symmetric (SSCs) and asymmetric (ASCs) supercapacitors are fabricated using commercial activated carbon, CuO, Co3O4, and CuO-Co3O4 composite nanowires, and their properties are compared. A high energy density of ∼44 Wh kg-1 at a power density of 14 kW kg-1 is achieved in CuO-Co3O4 ASCs employing aqueous alkaline electrolytes, enabling them to store high energy at a faster rate. The current methodology of hybrid nanowires of various functional materials could be applied to extend the performance limit of diverse electrical and electrochemical devices.
  17. Kuppusamy P, Govindan N, Yusoff MM, Ichwan SJA
    Saudi J Biol Sci, 2017 Sep;24(6):1212-1221.
    PMID: 28855814 DOI: 10.1016/j.sjbs.2014.09.017
    Colon cancer is the most common type of cancer and major cause of death worldwide. The detection of colon cancer is difficult in early stages. However, the secretory proteins have been used as ideal biomarker for the detection of colon cancer progress in cancer patients. Serum/tissue protein expression could help general practitioners to identify colon cancer at earlier stages. By this way, we use the biomarkers to evaluate the anticancer drugs and their response to therapy in cancer models. Recently, the biomarker discovery is important in cancer biology and disease management. Also, many measurable specific molecular components have been studied in colon cancer therapeutics. The biomolecules are mainly DNA, RNA, metabolites, enzymes, mRNA, aptamers and proteins. Thus, in this review we demonstrate the important protein biomarker in colon cancer development and molecular identification of protein biomarker discovery.
  18. Abd Hamid H, Mutazah R, Yusoff MM, Abd Karim NA, Abdull Razis AF
    Food Chem Toxicol, 2017 Oct;108(Pt B):451-457.
    PMID: 27725206 DOI: 10.1016/j.fct.2016.10.004
    Rhodomyrtus tomentosa (Aiton) Hassk. has a wide spectrum of pharmacological effects and has been used to treat wounds, colic diarrhoea, heartburns, abscesses and gynaecopathy. The potential antiproliferative activities of R. tomentosa extracts from different solvents were evaluated in vitro on HepG2, MCF-7 and HT 29 cell lines while antioxidant activity was monitored by radical scavenging assay (DPPH), copper reducing antioxidant capacity (CUPRAC) and β-carotene bleaching assay. Extracts from R. tomentosa show the viability of the cells in concentration-dependent manner. According to the IC50 obtained, the ethyl acetate extracts showed significant antiproliferative activity on HepG2 (IC50 11.47 ± 0.280 μg/mL), MCF-7 (IC50 2.68 ± 0.529 μg/mL) and HT 29 (IC50 16.18 ± 0.538 μg/mL) after 72 h of treatment. Bioassay guided fractionation of the ethyl acetate extract led to the isolation of lupeol. Methanol extracts show significant antioxidant activities in DPPH (EC50 110.25 ± 0.005 μg/ml), CUPRAC (EC50 53.84 ± 0.004) and β-carotene bleaching (EC50 58.62 ± 0.001) due to the presence of high total flavonoid and total phenolic content which were 110.822 ± 0.017 mg butylated hydroxytoluene (BHT)/g and 190.467 ± 0.009 mg gallic acid (GAE)/g respectively. Taken together, the results extracts show the R. tomentosa as a potential source of antioxidant and antiproliferative efficacy.
  19. Hamid HA, Ramli AN, Yusoff MM
    Front Pharmacol, 2017;8:96.
    PMID: 28293192 DOI: 10.3389/fphar.2017.00096
    Depression is the most common illness observed in the elderly, adults, and children. Antidepressants prescribed are usually synthetic drugs and these can sometimes cause a wide range of unpleasant side effects. Current research is focussed on natural products from plants as they are a rich source of potent new drug leads. Besides Hypericum perforatum (St. John's wort), the plants studied include Passiflora incarnata L. (passion flower), Mitragyna speciosa (kratom), Piper methysticum G. Forst (kava) and Valeriana officinalis L. Harman, harmol, harmine, harmalol and harmaline are indole alkaloids isolated from P. incarnata, while mitragynine is isolated from M. speciosa. The structure of isolated compounds from P. methysticum G. Forst and V. officinalis L. contains an indole moiety. The indole moiety is related to the neurotransmitter serotonin which is widely implicated for brain function and cognition as the endogenous receptor agonist. An imbalance in serotonin levels may influence mood in a way that leads to depression. The moiety is present in a number of antidepressants already on the market. Hence, the objective of this review is to discuss bioactive compounds containing the indole moiety from plants that can serve as potent antidepressants.
  20. Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR
    PMID: 28424737 DOI: 10.1155/2017/1517683
    This study evaluates the phytochemistry, antioxidant, and antimicrobial effects of Plectranthus amboinicus leaves extracted in different solvents. The methanol extract contained the highest total phenolic (94.37 ± 1.24 mg GAE/g) and flavonoid contents (26.90 ± 1.35 mg RE/g) and exhibited the highest DPPH scavenging activity (90.13 ± 3.32%) followed by the acetone extract (80.23 ± 3.26%) at 500 μg/mL concentration. Similarly, the highest ferric ion reduction potential (849.63 ± 30.95 μM of Fe (II)/g dry weight) was exhibited by the methanol extract followed by the acetone extract (695.92 ± 25.44 μM of Fe (II)/g dry weight). The methanol extract showed greater antimicrobial activity against all the tested pathogens (Bacillus subtilis, Methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans). However, both hexane and acetone extracts failed to inhibit E. coli. S. aureus and C. albicans were more susceptible to all the extracts. Further, GC-MS analysis confirmed the occurrence of a total 46 phytocompounds in different solvent extracts. Some of the major compounds included carvacrol (37.7%), tetracontane (16.6%), squalene (15.6%), tetrapentacontane (13.7%), and Phytol (12.9%). In conclusion, extraction solvents influenced the recovery of phytocompounds and the highest pharmacological activities of the methanol extract could be correlated to the presence of additional bioactive compounds.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links