Displaying all 3 publications

  1. Jing Z, Yu Y, Chen R, Tan KC, He T, Wu A, et al.
    Chem. Commun. (Camb.), 2020 Jan 22.
    PMID: 31967625 DOI: 10.1039/c9cc08593a
    The lack of efficient hydrogen storage material is one of the bottlenecks for the large-scale implementation of hydrogen energy. Here, a series of new hydrogen storage materials, i.e., anilinide-cyclohexylamide pairs, are proposed via the metallation of an aniline-cyclohexylamine pair. DFT calculations show that the enthalpy change of hydrogen desorption (ΔHd) can be significantly tuned from 60.0 kJ per mol-H2 for the pristine aniline-cyclohexylamine pair to 42.2 kJ per mol-H2 for sodium anilinide-cyclohexylamide and 38.7 kJ per mol-H2 for potassium anilinide-cyclohexylamide, where an interesting correlation between the electronegativity of the metal and the ΔHd was observed. Experimentally, the sodium anilinide-cyclohexylamide pair was successfully synthesised with a theoretical hydrogen capacity of 4.9 wt%, and the hydrogenation and dehydrogenation cycle can be achieved at a relatively low temperature of 150 °C in the presence of commercial catalysts, in clear contrast to the pristine aniline-cyclohexylamine pair which undergoes dehydrogenation at elevated temperatures.
  2. Choo SW, Rayko M, Tan TK, Hari R, Komissarov A, Wee WY, et al.
    Genome Res., 2016 10;26(10):1312-1322.
    PMID: 27510566
    Pangolins, unique mammals with scales over most of their body, no teeth, poor vision, and an acute olfactory system, comprise the only placental order (Pholidota) without a whole-genome map. To investigate pangolin biology and evolution, we developed genome assemblies of the Malayan (Manis javanica) and Chinese (M. pentadactyla) pangolins. Strikingly, we found that interferon epsilon (IFNE), exclusively expressed in epithelial cells and important in skin and mucosal immunity, is pseudogenized in all African and Asian pangolin species that we examined, perhaps impacting resistance to infection. We propose that scale development was an innovation that provided protection against injuries or stress and reduced pangolin vulnerability to infection. Further evidence of specialized adaptations was evident from positively selected genes involving immunity-related pathways, inflammation, energy storage and metabolism, muscular and nervous systems, and scale/hair development. Olfactory receptor gene families are significantly expanded in pangolins, reflecting their well-developed olfaction system. This study provides insights into mammalian adaptation and functional diversification, new research tools and questions, and perhaps a new natural IFNE-deficient animal model for studying mammalian immunity.
  3. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links