Displaying publications 1 - 20 of 81 in total

Abstract:
Sort:
  1. You W, Wang C, Zhang J, Ru X, Xu F, Wu Z, et al.
    Food Chem, 2024 Jul 15;446:138866.
    PMID: 38430769 DOI: 10.1016/j.foodchem.2024.138866
    Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.
  2. Zhang J, Zhao J, Zuo X, You W, Ru X, Xu F, et al.
    Food Chem, 2024 Jun 15;443:138545.
    PMID: 38306904 DOI: 10.1016/j.foodchem.2024.138545
    The effects of exogenous glutamate treatment on the quality attributes, γ-aminobutyric acid (GABA) shunt, phenylpropanoid pathway, and antioxidant capacity of fresh-cut carrots were investigated. Results showed that glutamate treatment suppressed the increases in lightness and whiteness values, inhibited the degradation of total carotenoids and maintained better flavor and taste in fresh-cut carrots. Moreover, glutamate treatment rapidly promoted the activities of glutamate decarboxylase and GABA transaminase, thus improving the GABA content. It also significantly enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate coenzyme A ligase and promoted the accumulation of total phenolics as well as the main individual phenolic compounds, including chlorogenic and caffeic acid. In addition, glutamate application activated the reactive oxygen system-related enzyme including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase activities to maintain higher antioxidant capacity in fresh-cut carrots. These results demonstrated that exogenous glutamate treatment maintained better nutritional quality and alleviated color deterioration by accelerating the accumulation of GABA and phenolics and enhancing the antioxidant capacity in fresh-cut carrots.
  3. Han C, Zheng Y, Huang S, Xu L, Zhou C, Sun Y, et al.
    Int J Biol Macromol, 2024 Apr;263(Pt 1):130300.
    PMID: 38395276 DOI: 10.1016/j.ijbiomac.2024.130300
    This work employed the model protein β-lactoglobulin (BLG) to investigate the contribution of microstructural changes to regulating the interaction patterns between protein and flavor compounds through employing computer simulation and multi-spectroscopic techniques. The formation of molten globule (MG) state-like protein during the conformational evolution of BLG, in response to ultrasonic (UC) and heat (HT) treatments, was revealed through multi-spectroscopic characterization. Differential MG structures were distinguished by variations in surface hydrophobicity and the microenvironment of tryptophan residues. Fluorescence quenching measurements indicated that the formation of MG enhanced the binding affinity of heptanal to protein. LC-MS/MS and NMR revealed the covalent bonding between heptanal and BLG formed by Michael addition and Schiff-base reactions, and MG-like BLG exhibited fewer chemical shift residues. Molecular docking and molecular dynamics simulation confirmed the synergistic involvement of hydrophobic interactions and hydrogen bonds in shaping BLG-heptanal complexes thus promoting the stability of BLG structures. These findings indicated that the production of BLG-heptanal complexes was driven synergistically by non-covalent and covalent bonds, and their interaction processes were influenced by processes-induced formation of MG potentially tuning the release and retention behaviors of flavor compounds.
  4. Zhang X, Zheng Y, Zhou C, Cao J, Zhang Y, Wu Z, et al.
    Ultrason Sonochem, 2024 Mar 25;105:106857.
    PMID: 38552299 DOI: 10.1016/j.ultsonch.2024.106857
    This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 μg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.
  5. Zheng Y, Qin H, Ma X
    Sci Rep, 2024 Mar 19;14(1):6562.
    PMID: 38503822 DOI: 10.1038/s41598-024-56922-5
    Interval-valued q-rung orthopair fuzzy set (IVq-ROFS) is a powerful tool for dealing with uncertainty. In this paper, we first propose a new method for aggregating multiple IVq-ROFSs, which is easier to understand and implement in the multi-attribute group decision making process compared to current aggregation operators. Secondly, this paper introduces a new fuzzy entropy with parameters based on IVq-ROFS, which is highly flexible due to its adjustable parameters. Based on this, the IVq-ROFS-based attribute weight calculation method is proposed to obtain the objective weights of the attributes, which is more reasonable and objective than the existing methods. Then, for the dimensional differences between the three compromise scores in the original Combined Compromise Solution (CoCoSo) method, the enhanced compromise scores are proposed. These scores are obtained by normalizing the three dependent compromise scores, ensuring that they fall within the same range. Finally, a novel CoCoSo mothed on IVq-ROFS using the proposed fuzzy entropy and enhanced compromise scores is presented. The proposed method is highly adaptable and scalable, not limited to IVq-ROFS. The excellent performance and robustness of the proposed method are verified in sepsis diagnosis applications.
  6. Hussein HR, Chang CY, Zheng Y, Yang CY, Li LH, Lee YT, et al.
    Nanotechnology, 2024 Feb 09;35(17).
    PMID: 38262054 DOI: 10.1088/1361-6528/ad21a2
    Heparins are a family of sulfated linear negatively charged polysaccharides that have been widely used for their anticoagulant, antithrombotic, antitumor, anti-inflammatory, and antiviral properties. Additionally, it has been used for acute cerebral infarction relief as well as other pharmacological actions. However, heparin's self-aggregated macrocomplex may reduce blood circulation time and induce life-threatening thrombocytopenia (HIT) complicating the use of heparins. Nonetheless, the conjugation of heparin to immuno-stealth biomolecules may overcome these obstacles. An immunostealth recombinant viral capsid protein (VP28) was expressed and conjugated with heparin to form a novel nanoparticle (VP28-heparin). VP28-heparin was characterized and tested to determine its immunogenicity, anticoagulation properties, effects on total platelet count, and risk of inducing HIT in animal models. The synthesized VP28-heparin trimeric nanoparticle was non-immunogenic, possessed an average hydrodynamic size (8.81 ± 0.58 nm) optimal for the evasion renal filtration and reticuloendothelial system uptake (hence prolonging circulating half-life). Additionally, VP28-heparin did not induce mouse death or reduce blood platelet count when administered at a high dosein vivo(hence reducing HIT risks). The VP28-heparin nanoparticle also exhibited superior anticoagulation properties (2.2× higher prothrombin time) and comparable activated partial thromboplastin time, but longer anticoagulation period when compared to unfractionated heparin. The anticoagulative effects of the VP28-heparin can also be reversed using protamine sulfate. Thus, VP28-heparin may be an effective and safe heparin derivative for therapeutic use.
  7. Yu H, Zheng Y, Zhou C, Liu L, Wang L, Cao J, et al.
    Carbohydr Polym, 2024 Feb 01;325:121583.
    PMID: 38008470 DOI: 10.1016/j.carbpol.2023.121583
    The potential of ultrasonication-driven molecular self-assembly of whey protein isolate (WPI) with chitosan (CS)/chitooligosaccharide (COS) to stabilize Pickering emulsions was examined, based on CS/COS ligands-induced partial unfolding in remodeling the Pickering particles features. Multi-spectral analysis suggested obvious changes in conformational structures of WPI due to interaction with CS/COS, with significantly higher unfolding degrees of WPI induced by COS. Non-covalent interactions were identified as the major forces for WPI-CS/COS conjugates. Ultrasonication enhanced electrostatic interaction between CS's -NH3 groups and WPI's -COO- groups which improved emulsification activity and storability of WPI-COS stabilized Pickering emulsion. This was attributed to increased surface hydrophobicity and decreased particle size compared to WPI-CS associated with differential unfolding degrees induced by different saccharide ligands. CLSM and SEM consistently observed smaller emulsion droplets in WPI-COS complexes than WPI-CS/COS particles tightly adsorbed at the oil-water interface. The electrostatic self-assembly of WPI with CS/COS greatly enhanced the encapsulation efficiency of quercetin than those stabilized by WPI alone and ultrasound further improved encapsulation efficiency. This corresponded well with the quantitative affinity parameters between quercetin and WPI-CS/COS complexes. This investigation revealed the great potential of glycan ligands-induced conformational transitions of extrinsic physical disruption in tuning Pickering particle features.
  8. Sheng B, Guan Z, Lim LL, Jiang Z, Mathioudakis N, Li J, et al.
    Sci Bull (Beijing), 2024 Jan 04.
    PMID: 38220476 DOI: 10.1016/j.scib.2024.01.004
  9. You W, Zhang J, Ru X, Xu F, Wu Z, Jin P, et al.
    Plant Physiol Biochem, 2024 Jan;206:108217.
    PMID: 38039581 DOI: 10.1016/j.plaphy.2023.108217
    The effect of calcium chloride (CaCl2) treatment on γ-aminobutyric acid (GABA) accumulation in fresh-cut cantaloupe and the involved mechanisms were investigated. The result showed that 1% (w/v) CaCl2 treatment increased GABA content and activities of glutamate decarboxylase (GAD) and succinate semialdehyde dehydrogenase (SSADH), while decreased glutamate (Glu) content and GABA transaminase (GABA-T) activities in fresh-cut cantaloupe. CmCML11 and CmCAMTA5 expressions of CaCl2-treated fruit increased by 187.4% and 165.6% than control fruit in the initial 6 h. Besides, expressions of GABA shunt genes, including CmGAD1, CmGAD2, CmGABA-T and CmSSADH were also up-regulated by CaCl2 treatment during early storage. Moreover, acting as a transcriptional activator, CmCAMTA5 could bind to the CG-box in promoters of CmGAD1, CmGABA-T and CmSSADH and activate their transcription. Furthermore, the interaction between CmCML11 and CmCAMTA5 could enhance the transcriptional activation on GABA shunt genes which were regulated by CmCAMTA5. Collectively, our findings revealed that CaCl2 treatment promoted GABA accumulation in fresh-cut cantaloupe via the combined effect of CmCML11 and CmCAMTA5 in the regulation of expressions of CmGAD1, CmGABA-T, and CmSSADH in GABA shunt.
  10. Zheng Y, Ooi MCG, Juneng L, Wee HB, Latif MT, Nadzir MSM, et al.
    Sci Total Environ, 2023 Nov 25;901:166430.
    PMID: 37607626 DOI: 10.1016/j.scitotenv.2023.166430
    Climate change is thought to influence the composition of atmospheric air, but little is known about the direct relationship between these variables, especially in a hot tropical climate like that of Malaysia. This work summarizes and analyzes the climate state and air quality of Peninsular Malaysia based on selected ground-based observations of the temperature, precipitation, relative humidity, wind speed, wind direction and concentrations of PM10, O3, CO, NO2, and SO2 over the last 20 years (2000-2019). The relationship between the climate state and air quality is analyzed using the Pearson correlation and canonical correlation analysis (CCA) methods is employed to predict the degree of change in the future air quality under different warming scenarios. It is found that the Peninsular Malaysia mainly experienced strong precipitation in the central and mountainous regions, while air pollutants are primarily concentrated in densely populated areas. Throughout the period of study (interannual, monthly, and diurnal time series analyses), Peninsular Malaysia became warmer and drier, with a significant increase in temperature (+4.2 %), decrease in the relative humidity (-4.5 %), and greater fluctuation in precipitation amount. The pollution conditions have worsened; there has been an increase in the PM10 (+16.4 %), O3 (+39.5 %), and NO2 (+2.1 %) concentration over the last 20 years. However, the amount of SO2 (-53.6 %) and CO (-20.6 %) decreased significantly. The analysis of the monthly variation shows a strong bimodality of the PM10 and O3 concentrations that corresponds to the monsoon transition. Intensive diurnal fluctuations and correlations are observed for all the variables in this study. According to the CCA, the air quality factors are strongly correlated with meteorological factors; in particular, the CO, O3, and PM10 concentrations interact strongly with the air temperature. These findings show that the future air quality in Peninsular Malaysia has high possibility to deteriorate under warming condition.
  11. Zheng Y, Yuan C, Matsushita N, Lian C, Geng Q
    Ecol Evol, 2023 Sep;13(9):e10565.
    PMID: 37753310 DOI: 10.1002/ece3.10565
    Cenococcum geophilum (C. geophilum) is a widely distributed ectomycorrhizal fungus that plays a crucial role in forest ecosystems worldwide. However, the specific ecological factors influencing its global distribution and how climate change will affect its range are still relatively unknown. In this study, we used the MaxEnt model optimized with the kuenm package to simulate changes in the distribution pattern of C. geophilum from the Last Glacial Maximum to the future based on 164 global distribution records and 17 environmental variables and investigated the key environmental factors influencing its distribution. We employed the optimal parameter combination of RM = 4 and FC = QPH, resulting in a highly accurate predictive model. Our study clearly shows that the mean temperature of the coldest quarter and annual precipitation are the key environmental factors influencing the suitable habitats of C. geophilum. Currently, appropriate habitats of C. geophilum are mainly distributed in eastern Asia, west-central Europe, the western seaboard and eastern regions of North America, and southeastern Australia, covering a total area of approximately 36,578,300 km2 globally. During the Last Glacial Maximum and the mid-Holocene, C. geophilum had a much smaller distribution area, being mainly concentrated in the Qinling-Huaihe Line region of China and eastern Peninsular Malaysia. As global warming continues, the future suitable habitat for C. geophilum is projected to shift northward, leading to an expected expansion of the suitable area from 9.21% to 21.02%. This study provides a theoretical foundation for global conservation efforts and biogeographic understanding of C. geophilum, offering new insights into its distribution patterns and evolutionary trends.
  12. Tang BH, Zhang JY, Allegaert K, Hao GX, Yao BF, Leroux S, et al.
    Clin Pharmacokinet, 2023 Aug;62(8):1105-1116.
    PMID: 37300630 DOI: 10.1007/s40262-023-01265-z
    BACKGROUND AND OBJECTIVE: High variability in vancomycin exposure in neonates requires advanced individualized dosing regimens. Achieving steady-state trough concentration (C0) and steady-state area-under-curve (AUC0-24) targets is important to optimize treatment. The objective was to evaluate whether machine learning (ML) can be used to predict these treatment targets to calculate optimal individual dosing regimens under intermittent administration conditions.

    METHODS: C0 were retrieved from a large neonatal vancomycin dataset. Individual estimates of AUC0-24 were obtained from Bayesian post hoc estimation. Various ML algorithms were used for model building to C0 and AUC0-24. An external dataset was used for predictive performance evaluation.

    RESULTS: Before starting treatment, C0 can be predicted a priori using the Catboost-based C0-ML model combined with dosing regimen and nine covariates. External validation results showed a 42.5% improvement in prediction accuracy by using the ML model compared with the population pharmacokinetic model. The virtual trial showed that using the ML optimized dose; 80.3% of the virtual neonates achieved the pharmacodynamic target (C0 in the range of 10-20 mg/L), much higher than the international standard dose (37.7-61.5%). Once therapeutic drug monitoring (TDM) measurements (C0) in patients have been obtained, AUC0-24 can be further predicted using the Catboost-based AUC-ML model combined with C0 and nine covariates. External validation results showed that the AUC-ML model can achieve an prediction accuracy of 80.3%.

    CONCLUSION: C0-based and AUC0-24-based ML models were developed accurately and precisely. These can be used for individual dose recommendations of vancomycin in neonates before treatment and dose revision after the first TDM result is obtained, respectively.

  13. Işık EB, Brazas MD, Schwartz R, Gaeta B, Palagi PM, van Gelder CWG, et al.
    Nat Biotechnol, 2023 Aug;41(8):1171-1174.
    PMID: 37568018 DOI: 10.1038/s41587-023-01891-9
  14. Wang C, Zhang Y, Lim LG, Cao W, Zhang W, Wan X, et al.
    Sci Rep, 2023 Jul 10;13(1):11141.
    PMID: 37429942 DOI: 10.1038/s41598-023-38057-1
    Living in high expressed emotion (EE) environments tends to increase the relapse rate in schizophrenia (SZ). At present, the neural substrates responsible for high EE in SZ remain poorly understood. Functional near-infrared spectroscopy (fNIRS) may be of great use to quantitatively assess cortical hemodynamics and elucidate the pathophysiology of psychiatric disorders. In this study, we designed novel low- (positivity and warmth) and high-EE (criticism, negative emotion, and hostility) stimulations, in the form of audio, to investigate cortical hemodynamics. We used fNIRS to measure hemodynamic signals while participants listened to the recorded audio. Healthy controls (HCs, [Formula: see text]) showed increased hemodynamic activation in the major language centers across EE stimulations, with stronger activation in Wernicke's area during the processing of negative emotional language. Compared to HCs, people with SZ ([Formula: see text]) exhibited smaller hemodynamic activation in the major language centers across EE stimulations. In addition, people with SZ showed weaker or insignificant hemodynamic deactivation in the medial prefrontal cortex. Notably, hemodynamic activation in SZ was found to be negatively correlated with the negative syndrome scale score at high EE. Our findings suggest that the neural mechanisms in SZ are altered and disrupted, especially during negative emotional language processing. This supports the feasibility of using the designed EE stimulations to assess people who are vulnerable to high-EE environments, such as SZ. Furthermore, our findings provide preliminary evidence for future research on functional neuroimaging biomarkers for people with psychiatric disorders.
  15. Liu H, Zheng Y, Zhu B, Tong Y, Xin W, Yang H, et al.
    Sci Adv, 2023 Jun 23;9(25):eadg4011.
    PMID: 37352347 DOI: 10.1126/sciadv.adg4011
    Marine-terrestrial transition represents an important aspect of organismal evolution that requires numerous morphological and genetic innovations and has been hypothesized to be caused by geological changes. We used talitrid crustaceans with marine-coastal-montane extant species at a global scale to investigate the marine origination and terrestrial adaptation. Using genomic data, we demonstrated that marine ancestors repeatedly colonized montane terrestrial habitats during the Oligocene to Miocene. Biological transitions were well correlated with plate collisions or volcanic island formation, and top-down cladogenesis was observed on the basis of a positive relationship between ancestral habitat elevation and divergence time for montane lineages. We detected convergent variations of convoluted gills and convergent evolution of SMC3 associated with montane transitions. Moreover, using CRISPR-Cas9 mutagenesis, we proposed that SMC3 potentially regulates the development of exites, such as talitrid gills. Our results provide a living model for understanding biological innovations and related genetic regulatory mechanisms associated with marine-terrestrial transitions.
  16. Kim K, Yaffe K, Rehkopf DH, Zheng Y, Nannini DR, Perak AM, et al.
    JAMA Netw Open, 2023 Jun 01;6(6):e2317987.
    PMID: 37306997 DOI: 10.1001/jamanetworkopen.2023.17987
    IMPORTANCE: Adverse childhood experiences (ACEs) are associated with the risk of poorer health, and identifying molecular mechanisms may lay the foundation for health promotion in people with ACEs.

    OBJECTIVE: To investigate the associations of ACEs with changes in epigenetic age acceleration (EAA), a biomarker associated with various health outcomes in middle-aged adults, in a population with balanced race and sex demographics.

    DESIGN, SETTING, AND PARTICIPANTS: Data for this cohort study were from the Coronary Artery Risk Development in Young Adults (CARDIA) study. Participants in CARDIA underwent 8 follow-up exams from baseline (year 0 [Y0]; 1985-1986) to Y30 (2015-2016), and participant blood DNA methylation information was obtained at Y15 (2000-2001) and Y20 (2005-2006). Individuals from Y15 and Y20 with available DNA methylation data and complete variables for ACEs and covariates were included. Data were analyzed from September 2021 to August 2022.

    EXPOSURES: Participant ACEs (general negligence, emotional negligence, physical violence, physical negligence, household substance abuse, verbal and emotional abuse, and household dysfunction) were obtained at Y15.

    MAIN OUTCOMES AND MEASURES: The primary outcome consisted of results from 5 DNA methylation-based EAA measurements known to be associated with biological aging and long-term health: intrinsic EAA (IEAA), extrinsic EAA (EEAA), PhenoAge acceleration (PhenoAA), GrimAge acceleration (GrimAA), and Dunedin Pace of Aging Calculated From the Epigenome (DunedinPACE), measured at Y15 and Y20. Linear regression and generalized estimating equations were used to assess associations of the burden of ACEs (≥4 vs <4 ACEs) with EAA adjusting for demographics, health-related behaviors, and early life and adult socioeconomic status.

    RESULTS: A total of 895 participants for Y15 (mean [SD] age, 40.4 [3.5] years; 450 males [50.3%] and 445 females [49.7%]; 319 Black [35.6%] and 576 White [64.4%]) and 867 participants for Y20 (mean [SD] age, 45.4 [3.5] years; 432 males [49.8%] and 435 females [50.2%]; 306 Black [35.3%] and 561 White [64.7%]) were included after excluding participants with missing data. There were 185 participants with (20.7%) vs 710 participants without (79.3%) 4 or more ACEs at Y15 and 179 participants with (20.6%) vs 688 participants without (79.4%) 4 or more ACEs at Y20. Having 4 or more ACEs was positively associated with EAA in years at Y15 (EEAA: β = 0.60 years; 95% CI, 0.18-1.02 years; PhenoAA: β = 0.62 years; 95% CI = 0.13-1.11 years; GrimAA: β = 0.71 years; 95% CI, 0.42-1.00 years; DunedinPACE: β = 0.01; 95% CI, 0.01-0.02) and Y20 (IEAA: β = 0.41 years; 95% CI, 0.05-0.77 years; EEAA: β = 1.05 years; 95% CI, 0.66-1.44 years; PhenoAA: β = 0.57 years; 95% CI, 0.08-1.05 years; GrimAA: β = 0.57 years; 95% CI, 0.28-0.87 years; DunedinPACE: β = 0.01; 95% CI, 0.01-0.02) after adjusting for demographics, health-related behaviors, and socioeconomic status.

    CONCLUSIONS AND RELEVANCE: In this cohort study, ACEs were associated with EAA among middle-aged adults after controlling for demographics, behavior, and socioeconomic status. These findings of the associations between early life experience and the biological aging process in midlife may contribute to health promotion in a life course perspective.

  17. Han C, Zheng Y, Wang L, Zhou C, Wang J, He J, et al.
    J Sci Food Agric, 2023 May;103(7):3334-3345.
    PMID: 36786016 DOI: 10.1002/jsfa.12499
    BACKGROUND: Extracted proteins of alternative animal origin tend to present strong off-flavor perception due to physicochemical interactions of coextracted off-flavor compounds with proteins. To investigate the relationship between absorption behaviors of volatile aromas and the processes-induced variations in protein microstructures and molecular conformations, duck liver protein isolate (DLp) was subjected to heating (65/100 °C, 15 min) and ultra-high pressure (UHP, 100-500 MPa/10 min, 28 °C) treatments to obtain differential unfolded protein states.

    RESULTS: Heat and UHP treatments induced the unfolding of DLp to varied degrees, as revealed by fluorescence spectroscopy, ultraviolet-visible absorption, circular dichroism spectra and surface hydrophobicity measurements. Two types of heating-denatured states with varied unfolding degrees were obtained, while UHP at both levels of 100/500 MPa caused partial unfolding of DLp and the presence of a molten-globule state, which significantly enhanced the binding affinity between DLp and (E,E)-2,4-heptadienal. In particular, significantly modified secondary structures of DLp were observed in heating-denatured samples. Excessive denaturing and unfolding degrees resulted in no significant changes in the absorption behavior of the volatile ligand, as characterized by observations of fluorescence quenching and analysis of headspace concentrations.

    CONCLUSION: Defining process-induced conformational transition behavior of matrix proteins could be a promising strategy to regulate food flavor attributes and, particularly, to produce DLp coextracted with limited off-flavor components by modifying their interaction during extraction processes. © 2023 Society of Chemical Industry.

  18. Cao W, Kadir AA, Wang Y, Wang J, Dai B, Zheng Y, et al.
    Digit Health, 2023;9:20552076231181473.
    PMID: 37342095 DOI: 10.1177/20552076231181473
    BACKGROUND: As a principal cause of mortality and disability worldwide, stroke imposes considerable burdens on society and effects on the lives of patients, families, and communities. Owing to their growing global popularity, health-related applications (apps) offer a promising approach to stroke management but show a knowledge gap regarding mobile apps for stroke survivors.

    METHODS: This review was conducted across the Android and iOS app stores in September-December 2022 to identify and describe all apps targeting stroke survivors. Apps were included if they were designed for stroke management and contained at least one of the following components: medication taking, risk management, blood pressure management, and stroke rehabilitation. Apps were excluded if they were unrelated to health, not in Chinese or English, or the targeted users were healthcare professionals. The included apps were downloaded, and their functionalities were investigated.

    RESULTS: The initial search yielded 402 apps, with 115 eligible after title and description screening. Some apps were later excluded due to duplicates, registration problems, or installation failures. In total, 83 apps were included for full review and evaluated by three independent reviewers. Educational information was the most common function (36.1%), followed by rehabilitation guidance (34.9%), communication with healthcare providers (HCPs), and others (28.9%). The majority of these apps (50.6%) had only one functionality. A minority had contributions from an HCP or patients.

    CONCLUSION: With the widespread accessibility and availability of smartphone apps across the mHealth landscape, an increasing number of apps targeting stroke survivors are being released. One of the most important findings is that the majority of the apps were not specifically geared toward older adults. Many of the currently available apps lack healthcare professionals' and patients' involvement in their development, and most offer limited functionality, thus requiring further attention to the development of customized apps.

  19. Jia G, Ping J, Shu X, Yang Y, Cai Q, Kweon SS, et al.
    Am J Hum Genet, 2022 Dec 01;109(12):2185-2195.
    PMID: 36356581 DOI: 10.1016/j.ajhg.2022.10.011
    By combining data from 160,500 individuals with breast cancer and 226,196 controls of Asian and European ancestry, we conducted genome- and transcriptome-wide association studies of breast cancer. We identified 222 genetic risk loci and 137 genes that were associated with breast cancer risk at a p 
  20. Ho WK, Tai MC, Dennis J, Shu X, Li J, Ho PJ, et al.
    Genet Med, 2022 Mar;24(3):586-600.
    PMID: 34906514 DOI: 10.1016/j.gim.2021.11.008
    PURPOSE: Non-European populations are under-represented in genetics studies, hindering clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs using the largest available studies of Asian ancestry and to assess the transferability of PRS across ethnic subgroups.

    METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases).

    RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk.

    CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links