Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Tripathi M, Singh BK, Liehn EA, Lim SY, Tikno K, Castano-Mayan D, et al.
    Autophagy, 2022 Sep;18(9):2150-2160.
    PMID: 35012409 DOI: 10.1080/15548627.2021.2021494
    Caffeine is among the most highly consumed substances worldwide, and it has been associated with decreased cardiovascular risk. Although caffeine has been shown to inhibit the proliferation of vascular smooth muscle cells (VSMCs), the mechanism underlying this effect is unknown. Here, we demonstrated that caffeine decreased VSMC proliferation and induced macroautophagy/autophagy in an in vivo vascular injury model of restenosis. Furthermore, we studied the effects of caffeine in primary human and mouse aortic VSMCs and immortalized mouse aortic VSMCs. Caffeine decreased cell proliferation, and induced autophagy flux via inhibition of MTOR signaling in these cells. Genetic deletion of the key autophagy gene Atg5, and the Sqstm1/p62 gene encoding a receptor protein, showed that the anti-proliferative effect by caffeine was dependent upon autophagy. Interestingly, caffeine also decreased WNT-signaling and the expression of two WNT target genes, Axin2 and Ccnd1 (cyclin D1). This effect was mediated by autophagic degradation of a key member of the WNT signaling cascade, DVL2, by caffeine to decrease WNT signaling and cell proliferation. SQSTM1/p62, MAP1LC3B-II and DVL2 were also shown to interact with each other, and the overexpression of DVL2 counteracted the inhibition of cell proliferation by caffeine. Taken together, our in vivo and in vitro findings demonstrated that caffeine reduced VSMC proliferation by inhibiting WNT signaling via stimulation of autophagy, thus reducing the vascular restenosis. Our findings suggest that caffeine and other autophagy-inducing drugs may represent novel cardiovascular therapeutic tools to protect against restenosis after angioplasty and/or stent placement.
  2. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  3. Zhang W, Huang G, Ng K, Ji Y, Gao B, Huang L, et al.
    Biomater Sci, 2018 Mar 07.
    PMID: 29511758 DOI: 10.1039/c7bm01186e
    Hydrogel particles that can be engineered to compartmentally culture cells in a three-dimensional (3D) and high-throughput manner have attracted increasing interest in the biomedical area. However, the ability to generate hydrogel particles with specially designed structures and their potential biomedical applications need to be further explored. This work introduces a method for fabricating hydrogel particles in an ellipsoidal cap-like shape (i.e., ellipsoidal cap-like hydrogel particles) by employing an open-pore anodic aluminum oxide membrane. Hydrogel particles of different sizes are fabricated. The ability to produce ellipsoidal cap-like magnetic hydrogel particles with controlled distribution of magnetic nanoparticles is demonstrated. Encapsulated cells show high viability, indicating the potential for using these hydrogel particles as structure- and remote-controllable building blocks for tissue engineering application. Moreover, the hydrogel particles are also used as sacrificial templates for fabricating ellipsoidal cap-like concave wells, which are further applied for producing size controllable cell aggregates. The results are beneficial for the development of hydrogel particles and their applications in 3D cell culture.
  4. Huang Y, Liu S, Zhang J, Syed-Hassan SSA, Hu X, Sun H, et al.
    Bioresour Technol, 2020 Jul;307:123192.
    PMID: 32220819 DOI: 10.1016/j.biortech.2020.123192
    This study investigated the interactions between volatile and char during biomass pyrolysis at 400 °C, employing a β-5 lignin dimer and amino-modified graphitized carbon nanotube (CNT-NH2) as their models, respectively. The results demonstrated that both -NH2 and its carrier (CNT) facilitated the conversion of the β-5 dimer, which significantly increased from 9.7% (blank run), to 61.6% (with CNT), and to 96.6% (with CNT-NH2). CNT mainly favored the breakage of C-O bond in the feedstock to produce dimers with a yield of 55.5%, while CNT-NH2 promoted the cleavage of both C-O and C-C bonds to yield monomers with a yield up to 63.4%. Such significant changes in the pyrolysis behaviors of the β-5 lignin dimer after the introduction of CNT-NH2 were considered to be mainly caused by hydrogen-bond formations between -NH2 and the dimeric feedstock/products, in addition to the π-π stacking between CNT and aromatic rings.
  5. Li S, Tao Y, Li D, Wen G, Zhou J, Manickam S, et al.
    Chemosphere, 2021 Aug;276:130090.
    PMID: 33740651 DOI: 10.1016/j.chemosphere.2021.130090
    In this study, 4 Lactobacillus plantarum strains and 5 Lactobacillus fermentum strains adapting well to the unfavorable fruit system were isolated under different fruit environments. The fermentation ability of these autochthonous lactic acid bacteria (LAB) strains in blueberry juice, and the influence of microbial metabolism on juice composition were explored. After 48 h of fermentation, the viable cell counts exceeded 10.0 log CFU/mL, malic acid content decreased from 511.47 ± 10.50 mg/L to below 146.38 ± 3.79 mg/L, and lactic acid content increased from 0 mg/L to above 2184.90 ± 335.80 mg/L. Moreover, the metabolism of these strains exerted a profound influence on the phenolic composition of juice. Total phenolic content in blueberry juice increased by 6.1-81.2% under lactic acid fermentation, and the antioxidant capacity in vitro enhanced by at least 34.0%. Anthocyanin content showed a declining trend, while the profile of non-anthocyaninic phenolics exhibited complex changes. The increments of rutin, myricetin and gallic acid contents through 48 h lactic acid fermentation exceeded 136%, 71% and 38%, respectively. Instead, the contents of p-hydroxybenzoic acid and caffeic acid decreased with fermentation. Overall, Lactobacillus plantarum LSJ-TY-HYB-T9 and LSJ-TY-HYB-T7, and Lactobacillus fermentum LSJ-TY-HYB-C22 and LSJ-TY-HYB-L16 could be the suitable strains to produce fermented fruit juices, including blueberry in practical applications.
  6. Ke B, Nguyen H, Bui XN, Bui HB, Choi Y, Zhou J, et al.
    Chemosphere, 2021 Aug;276:130204.
    PMID: 34088091 DOI: 10.1016/j.chemosphere.2021.130204
    Heavy metals in water and wastewater are taken into account as one of the most hazardous environmental issues that significantly impact human health. The use of biochar systems with different materials helped significantly remove heavy metals in the water, especially wastewater treatment systems. Nevertheless, heavy metal's sorption efficiency on the biochar systems is highly dependent on the biochar characteristics, metal sources, and environmental conditions. Therefore, this study implicates the feasibility of biochar systems in the heavy metal sorption in water/wastewater and the use of artificial intelligence (AI) models in investigating efficiency sorption of heavy metal on biochar. Accordingly, this work investigated and proposed 20 artificial intelligent models for forecasting the sorption efficiency of heavy metal onto biochar based on five machine learning algorithms and bagging technique (BA). Accordingly, support vector machine (SVM), random forest (RF), artificial neural network (ANN), M5Tree, and Gaussian process (GP) algorithms were used as the key algorithms for the aim of this study. Subsequently, the individual models were bagged with each other to generate new ensemble models. Finally, 20 intelligent models were developed and evaluated, including SVM, RF, M5Tree, GP, ANN, BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN. Of those, the hybrid models (i.e., BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN) are introduced as the novelty of this study for estimating the heavy metal's sorption efficiency on the biochar systems. Also, the biochar characteristics, metal sources, and environmental conditions were comprehensively assessed and used, and they are considered as a novelty of the study as well. For this aim, a dataset of sorption efficiency of heavy metal was collected and processed with 353 experimental tests. Various performance indexes were applied to evaluate the models, such as RMSE, R2, MAE, color intensity, Taylor diagram, box and whiskers plots. This study's findings revealed that AI models could predict heavy metal's sorption efficiency onto biochar with high reliability, and the efficiency of the ensemble models is higher than those of individual models. The results also reported that the SVM-ANN ensemble model is the most superior model among 20 developed models. The predictive model proposed that heavy metal's efficiency sorption on biochar can be accurately forecasted and early warning for the water pollution by heavy metal.
  7. Liam CK, Ahmad AR, Hsia TC, Zhou J, Kim DW, Soo RA, et al.
    Clin Cancer Res, 2023 May 15;29(10):1879-1886.
    PMID: 36971777 DOI: 10.1158/1078-0432.CCR-22-3318
    PURPOSE: The final analyses of the INSIGHT phase II study evaluating tepotinib (a selective MET inhibitor) plus gefitinib versus chemotherapy in patients with MET-altered EGFR-mutant NSCLC (data cut-off: September 3, 2021).

    PATIENTS AND METHODS: Adults with advanced/metastatic EGFR-mutant NSCLC, acquired resistance to first-/second-generation EGFR inhibitors, and MET gene copy number (GCN) ≥5, MET:CEP7 ≥2, or MET IHC 2+/3+ were randomized to tepotinib 500 mg (450 mg active moiety) plus gefitinib 250 mg once daily, or chemotherapy. Primary endpoint was investigator-assessed progression-free survival (PFS). MET-amplified subgroup analysis was preplanned.

    RESULTS: Overall (N = 55), median PFS was 4.9 months versus 4.4 months [stratified HR, 0.67; 90% CI, 0.35-1.28] with tepotinib plus gefitinib versus chemotherapy. In 19 patients with MET amplification (median age 60.4 years; 68.4% never-smokers; median GCN 8.8; median MET/CEP7 2.8; 89.5% with MET IHC 3+), tepotinib plus gefitinib improved PFS (HR, 0.13; 90% CI, 0.04-0.43) and overall survival (OS; HR, 0.10; 90% CI, 0.02-0.36) versus chemotherapy. Objective response rate was 66.7% with tepotinib plus gefitinib versus 42.9% with chemotherapy; median duration of response was 19.9 months versus 2.8 months. Median duration of tepotinib plus gefitinib was 11.3 months (range, 1.1-56.5), with treatment >1 year in six (50.0%) and >4 years in three patients (25.0%). Seven patients (58.3%) had treatment-related grade ≥3 adverse events with tepotinib plus gefitinib and five (71.4%) had chemotherapy.

    CONCLUSIONS: Final analysis of INSIGHT suggests improved PFS and OS with tepotinib plus gefitinib versus chemotherapy in a subgroup of patients with MET-amplified EGFR-mutant NSCLC, after progression on EGFR inhibitors.

  8. Cui J, Zhou J, Peng Y, Chan A, Mao J
    Environ Sci Process Impacts, 2015 Dec;17(12):2082-91.
    PMID: 26515781 DOI: 10.1039/c5em00383k
    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.
  9. Wu Y, Li S, Tao Y, Li D, Han Y, Show PL, et al.
    Food Chem, 2021 Jun 30;348:129083.
    PMID: 33517000 DOI: 10.1016/j.foodchem.2021.129083
    In this study, three potential probiotic strains were selected to ferment blueberry and blackberry juices. The viable cell counts of selected strains were increased by 0.4-0.7 log CFU/mL in berry juices environments after 48-h fermentation. Meanwhile, the contents of cyanindin-3-glucoside and peonidin-3-glucoside decreased over 30%. Heatmap presented an upgrade trend of syringic acid, ferulic acid, gallic acid and lactic acid during fermentation. However, the contents of p-coumaric acid, protocatechuic acid, chlorogenic acid, critic acid and malic acid showed downgrade trend. The metabolism of phenolics probably contributed to the enhancement of the ABTS radical scavenging activity (40%-60%) in fermented berry juices. Moreover, the three strains presented different capacities on changing the quality of berry juices according to the PCA and LDA analysis. The contents of individual organic acids had positive correlations with sensory quality, especially for sourness. Overall, probiotic fermentation could improve the sensory quality of berry juices.
  10. Sheng J, Gong L, Zhou J
    Front Psychol, 2023;14:1103109.
    PMID: 36814667 DOI: 10.3389/fpsyg.2023.1103109
    This study explored the influence of the exercise health belief model and peer support on university students' physical activity PA and clarified the related mechanism. Three hundred and thirty-six healthy university students (aged 19.4 ± 1.3 years, 166 male and 170 female) from Sichuan University of Arts and Science in China were evaluated by the peer support scale, the health belief model scale for exercise, and the physical activity scale (short volume). The results showed that the male students' exercise self-efficacy and PA were markedly higher than female university students. Peer support was positively correlated with perceived benefits, exercise self-efficacy, perceived severity, and cues to action, and was adversely associated with perceived objective and subjective barriers. PA was positively correlated with perceived benefits and exercise self-efficacy, and negatively correlated with perceived objective and subjective barriers. Among the components of the exercise health belief model, only exercise self-efficacy was suitable for constructing a structural equation model (SEM) with peer support and PA. The analysis showed that the predictive effect of exercise self-efficacy on PA was more significant than peer support, and exercise self-efficacy played a critical intermediary role. It is worth noting that, in the grouping model, the effect of male college students' exercise self-efficacy on PA was greater than that of female students, and the model fit of male peer support was better than that of female students. Although the impact of peer support on PA was less than that of exercise self-efficacy and the direct effect of peer support was less than the indirect effect, the impact of peer support on the PA of female university students was higher than that of male university students. This study revealed the impact of exercise self-efficacy and peer support on university students' PA and suggested that exercise self-efficacy is the main path to promoting university students' PA, followed by peer support. Peer support could affect university students' PA not only through direct effects but also through indirect effects. This study also suggested that female university students' peer support has a higher impact on PA than male students. Therefore, when formulating physical exercise courses in the future, it is necessary to give more peer support to female university students to compensate for their low exercise self-efficacy.
  11. Sun P, Hu SB, Cheng X, Li M, Guo B, Song ZF, et al.
    Hernia, 2015 Apr;19 Suppl 1:S157-65.
    PMID: 26518794 DOI: 10.1007/BF03355344
  12. Zhou J, Shaikh LH, Neogi SG, McFarlane I, Zhao W, Figg N, et al.
    Hypertension, 2015 May;65(5):1103-10.
    PMID: 25776071 DOI: 10.1161/HYP.0000000000000025
    Common somatic mutations in CACNAID and ATP1A1 may define a subgroup of smaller, zona glomerulosa (ZG)-like aldosterone-producing adenomas. We have therefore sought signature ZG genes, which may provide insight into the frequency and pathogenesis of ZG-like aldosterone-producing adenomas. Twenty-one pairs of zona fasciculata and ZG and 14 paired aldosterone-producing adenomas from 14 patients with Conn's syndrome and 7 patients with pheochromocytoma were assayed by the Affymetrix Human Genome U133 Plus 2.0 Array. Validation by quantitative real-time polymerase chain reaction was performed on genes >10-fold upregulated in ZG (compared with zona fasciculata) and >10-fold upregulated in aldosterone-producing adenomas (compared with ZG). DACH1, a gene associated with tumor progression, was further analyzed. The role of DACH1 on steroidogenesis, transforming growth factor-β, and Wnt signaling activity was assessed in the human adrenocortical cell line, H295R. Immunohistochemistry confirmed selective expression of DACH1 in human ZG. Silencing of DACH1 in H295R cells increased CYP11B2 mRNA levels and aldosterone production, whereas overexpression of DACH1 decreased aldosterone production. Overexpression of DACH1 in H295R cells activated the transforming growth factor-β and canonical Wnt signaling pathways but inhibited the noncanonical Wnt signaling pathway. Stimulation of primary human adrenal cells with angiotensin II decreased DACH1 mRNA expression. Interestingly, there was little overlap between our top ZG genes and those in rodent ZG. In conclusion, (1) the transcriptome profile of human ZG differs from rodent ZG, (2) DACH1 inhibits aldosterone secretion in human adrenals, and (3) transforming growth factor-β signaling pathway is activated in DACH1 overexpressed cells and may mediate inhibition of aldosterone secretion in human adrenals.
  13. Zhou J, Lam B, Neogi SG, Yeo GS, Azizan EA, Brown MJ
    Hypertension, 2016 12;68(6):1424-1431.
    PMID: 27777363
    Primary aldosteronism is present in ≈10% of hypertensives. We previously performed a microarray assay on aldosterone-producing adenomas and their paired zona glomerulosa and fasciculata. Confirmation of top genes validated the study design and functional experiments of zona glomerulosa selective genes established the role of the encoded proteins in aldosterone regulation. In this study, we further analyzed our microarray data using AmiGO 2 for gene ontology enrichment and Ingenuity Pathway Analysis to identify potential biological processes and canonical pathways involved in pathological and physiological aldosterone regulation. Genes differentially regulated in aldosterone-producing adenoma and zona glomerulosa were associated with steroid metabolic processes gene ontology terms. Terms related to the Wnt signaling pathway were enriched in zona glomerulosa only. Ingenuity Pathway Analysis showed "NRF2-mediated oxidative stress response pathway" and "LPS (lipopolysaccharide)/IL-1 (interleukin-1)-mediated inhibition of RXR (retinoid X receptor) function" were affected in both aldosterone-producing adenoma and zona glomerulosa with associated genes having up to 21- and 8-fold differences, respectively. Comparing KCNJ5-mutant aldosterone-producing adenoma, zona glomerulosa, and zona fasciculata samples with wild-type samples, 138, 56, and 59 genes were differentially expressed, respectively (fold-change >2; P<0.05). ACSS3, encoding the enzyme that synthesizes acetyl-CoA, was the top gene upregulated in KCNJ5-mutant aldosterone-producing adenoma compared with wild-type. NEFM, a gene highly upregulated in zona glomerulosa, was upregulated in KCNJ5 wild-type aldosterone-producing adenomas. NR4A2, the transcription factor for aldosterone synthase, was highly expressed in zona fasciculata adjacent to a KCNJ5-mutant aldosterone-producing adenoma. Further interrogation of these genes and pathways could potentially provide further insights into the pathology of primary aldosteronism.
  14. Li Y, Li S, Wang Y, Zhou J, Yang J, Ma J
    J Fr Ophtalmol, 2021 Dec;44(10):1596-1604.
    PMID: 34454773 DOI: 10.1016/j.jfo.2021.05.005
    BACKGROUND: The main risks for glaucoma are increased intraocular pressure (IOP) and decreased ocular perfusion pressure (OPP). This review aims to examine the potential impact of lower limb isometric resistance exercise on intraocular pressure and ocular perfusion pressure.

    METHOD: A meta-analysis was conducted to determine the potential impact of isometric exercise on IOP and OPP. The literature on the relationship between isometric resistance exercise and IOP was systematically searched according to the "Cochrane Handbook" in the databases of Pubmed, Web of Science, EBSCO, and Scopus through December 31, 2020. The search terms used were "exercise," "train," "isometric," "intraocular pressure," and "ocular perfusion pressure," and the mean differences of the data were analyzed using the Stata 16.0 software, with a 95% confidence interval.

    RESULTS: A total of 13 studies, which included 268 adult participants consisting of 162 men and 106 women, were selected. All the exercise programs that were included were isometric resistance exercises of the lower limbs with intervention times of 1min, 2min, or 6min. The increase in IOP after intervention was as follows: I2=87.1%, P=0.001 using random-effects model combined statistics, SMD=1.03 (0.48, 1.59), and the increase in OPP was as follows: I2=94.5%, P=0.001 using random-effects model combined statistics, SMD=2.94 (1.65, 4.22), with both results showing high heterogeneity.

    CONCLUSION: As isometric exercise may cause an increase in IOP and OPP, therefore, people with glaucoma and related high risk should perform isometric exercise with caution.

  15. Rajadurai J, Tse HF, Wang CH, Yang NI, Zhou J, Sim D
    J. Card. Fail., 2017 Apr;23(4):327-339.
    PMID: 28111226 DOI: 10.1016/j.cardfail.2017.01.004
    Heart failure (HF) is a major global healthcare problem with an estimated prevalence of approximately 26 million. In Asia-Pacific regions, HF is associated with a significant socioeconomic burden and high rates of hospital admission. Epidemiological data that could help to improve management approaches to address this burden in Asia-Pacific regions are limited, but suggest patients with HF in the Asia-Pacific are younger and have more severe signs and symptoms of HF than those of Western countries. However, local guidelines are based largely on the European Society of Cardiology and American College of Cardiology Foundation/American Heart Association guidelines, which draw their evidence from studies where Western patients form the major demographic and patients from the Asia-Pacific region are underrepresented. Furthermore, regional differences in treatment practices likely affect patient outcomes. In the following review, we examine epidemiological data from existing regional registries, which indicate that these patients represent a distinct subpopulation of patients with HF. In addition, we highlight that patients with HF are under-treated in the region despite the existence of local guidelines. Finally, we provide suggestions on how data can be enriched throughout the region, which may positively affect local guidelines and improve management practices.
  16. Asteris PG, Gandomi AH, Armaghani DJ, Tsoukalas MZ, Gavriilaki E, Gerber G, et al.
    J Cell Mol Med, 2024 Feb;28(4):e18105.
    PMID: 38339761 DOI: 10.1111/jcmm.18105
    Complement inhibition has shown promise in various disorders, including COVID-19. A prediction tool including complement genetic variants is vital. This study aims to identify crucial complement-related variants and determine an optimal pattern for accurate disease outcome prediction. Genetic data from 204 COVID-19 patients hospitalized between April 2020 and April 2021 at three referral centres were analysed using an artificial intelligence-based algorithm to predict disease outcome (ICU vs. non-ICU admission). A recently introduced alpha-index identified the 30 most predictive genetic variants. DERGA algorithm, which employs multiple classification algorithms, determined the optimal pattern of these key variants, resulting in 97% accuracy for predicting disease outcome. Individual variations ranged from 40 to 161 variants per patient, with 977 total variants detected. This study demonstrates the utility of alpha-index in ranking a substantial number of genetic variants. This approach enables the implementation of well-established classification algorithms that effectively determine the relevance of genetic variants in predicting outcomes with high accuracy.
  17. Zhou J, Lam B, Neogi S, Yeo G, Azizan E, Brown M
    J Hypertens, 2016 Sep;34 Suppl 1 - ISH 2016 Abstract Book:e40.
    PMID: 27753883
    Primary aldosteronism (PA) is the most common type of secondary hypertension occurring in ∼10% of hypertensive patients. Up to 50% of PA is caused by aldosterone-producing adenomas (APA). This study is to identify the potential biological processes and canonical pathways involved with aldosterone regulation, APA formation, or APA and ZG cell functions.
  18. Zhou J, Lam BY, Neogi SG, Yeo GS, Teo AE, Maniero C, et al.
    J Hypertens, 2016 Sep;34 Suppl 2:e26.
    PMID: 27508643 DOI: 10.1097/01.hjh.0000491398.48468.bf
    Primary aldosteronism (PA) is the most common type of secondary hypertension occurring in ∼10% of hypertensive patients. Up to 50% of PA is caused by aldosterone-producing adenomas (APA). We recently performed a microarray assay using 21 pairs of zona glomerulosa (ZG) and zona fasciculata (ZF), and 14 paired APAs. This study is to identify the potential biological processes and canonical pathways involved with aldosterone regulation, APA formation, or APA and ZG cell functions.
  19. Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, et al.
    J Nanobiotechnology, 2023 Oct 10;21(1):370.
    PMID: 37817254 DOI: 10.1186/s12951-023-02139-z
    Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
  20. Ohno T, Thinh DH, Kato S, Devi CR, Tung NT, Thephamongkhol K, et al.
    J Radiat Res, 2013 May;54(3):467-73.
    PMID: 23192700 DOI: 10.1093/jrr/rrs115
    The purpose of this study was to evaluate the efficacy and toxicity of radiotherapy concurrently with weekly cisplatin, followed by adjuvant chemotherapy, for the treatment of N2-3 nasopharyngeal cancer (NPC) in Asian countries, especially regions of South and Southeast Asian countries where NPC is endemic. Between 2005 and 2009, 121 patients with NPC (T1-4 N2-3 M0) were registered from Vietnam, Malaysia, Indonesia, Thailand, The Philippines, China and Bangladesh. Patients were treated with 2D radiotherapy concurrently with weekly cisplatin (30 mg/m (2)), followed by adjuvant chemotherapy, consisting of cisplatin (80 mg/m(2) on Day 1) and fluorouracil (800 mg/m(2) on Days 1-5) for 3 cycles. Of the 121 patients, 56 patients (46%) required interruption of RT. The reasons for interruption of RT were acute non-hematological toxicities such as mucositis, pain and dermatitis in 35 patients, hematological toxicities in 11 patients, machine break-down in 3 patients, poor general condition in 2 patients, and others in 8 patients. Of the patients, 93% completed at least 4 cycles of weekly cisplatin during radiotherapy, and 82% completed at least 2 cycles of adjuvant chemotherapy. With a median follow-up time of 46 months for the surviving 77 patients, the 3-year locoregional control, distant metastasis-free survival and overall survival rates were 89%, 74% and 66%, respectively. No treatment-related deaths occurred. Grade 3-4 toxicities of mucositis, nausea/vomiting and leukopenia were observed in 34%, 4% and 4% of the patients, respectively. In conclusion, further improvement in survival and locoregional control is necessary, although our regimen showed acceptable toxicities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links