Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Zheng X, Ratnasekera D, Fan J, Henry RJ, Song BK, Olsen KM, et al.
    Mol Plant, 2024 Apr 01;17(4):516-518.
    PMID: 38444157 DOI: 10.1016/j.molp.2024.03.001
  2. Altharan YM, Shamsudin S, Lajis MA, Al-Alimi S, Yusuf NK, Alduais NAM, et al.
    PLoS One, 2024;19(3):e0300504.
    PMID: 38484005 DOI: 10.1371/journal.pone.0300504
    Direct recycling of aluminum waste is crucial in sustainable manufacturing to mitigate environmental impact and conserve resources. This work was carried out to study the application of hot press forging (HPF) in recycling AA6061 aluminum chip waste, aiming to optimize operating factors using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Genetic algorithm (GA) strategy to maximize the strength of recycled parts. The experimental runs were designed using Full factorial and RSM via Minitab 21 software. RSM-ANN models were employed to examine the effect of factors and their interactions on response and to predict output, while GA-RSM and GA-ANN were used for optimization. The chips of different morphology were cold compressed into billet form and then hot forged. The effect of varying forging temperature (Tp, 450-550°C), holding time (HT, 60-120 minutes), and chip surface area to volume ratio (AS:V, 15.4-52.6 mm2/mm3) on ultimate tensile strength (UTS) was examined. Maximum UTS (237.4 MPa) was achieved at 550°C, 120 minutes and 15.4 mm2/mm3 of chip's AS: V. The Tp had the largest contributing effect ratio on the UTS, followed by HT and AS:V according to ANOVA analysis. The proposed optimization process suggested 550°C, 60 minutes, and 15.4 mm2 as the optimal condition yielding the maximum UTS. The developed models' evaluation results showed that ANN (with MSE = 1.48%) outperformed RSM model. Overall, the study promotes sustainable production by demonstrating the potential of integrating RSM and ML to optimize complex manufacturing processes and improve product quality.
  3. Peters R, Li B, Swinburn B, Allender S, He Z, Lim SY, et al.
    Bull World Health Organ, 2023 Nov 01;101(11):690-706F.
    PMID: 37961057 DOI: 10.2471/BLT.23.289973
    OBJECTIVE: To identify and analyse ongoing nutrition-related surveillance programmes led and/or funded by national authorities in countries in South-East Asian and Western Pacific Regions.

    METHODS: We systematically searched for publications in PubMed® and Scopus, manually searched the grey literature and consulted with national health and nutrition officials, with no restrictions on publication type or language. We included low- and middle-income countries in the World Health Organization South-East Asia Region, and the Association of Southeast Asian Nations and China. We analysed the included programmes by adapting the United States Centers for Disease Control and Prevention's public health surveillance evaluation framework.

    FINDINGS: We identified 82 surveillance programmes in 18 countries that repeatedly collect, analyse and disseminate data on nutrition and/or related indicators. Seventeen countries implemented a national periodic survey that exclusively collects nutrition-outcome indicators, often alongside internationally linked survey programmes. Coverage of different subpopulations and monitoring frequency vary substantially across countries. We found limited integration of food environment and wider food system indicators in these programmes, and no programmes specifically monitor nutrition-sensitive data across the food system. There is also limited nutrition-related surveillance of people living in urban deprived areas. Most surveillance programmes are digitized, use measures to ensure high data quality and report evidence of flexibility; however, many are inconsistently implemented and rely on external agencies' financial support.

    CONCLUSION: Efforts to improve the time efficiency, scope and stability of national nutrition surveillance, and integration with other sectoral data, should be encouraged and supported to allow systemic monitoring and evaluation of malnutrition interventions in these countries.

  4. Li B, He Z, Peters R, Allender S, Zou Y, Zhou W, et al.
    Int J Behav Nutr Phys Act, 2023 Sep 18;20(1):111.
    PMID: 37723534 DOI: 10.1186/s12966-023-01510-5
    BACKGROUND: Group Model Building (GMB) is a participatory system dynamics method increasingly used to address complex public health issues like obesity. GMB represents a set of well-defined steps to engage key stakeholders to identify shared drivers and solutions of a given problem. However, GMB has not yet been applied specifically to develop multi-duty interventions that address multiple inter-related issues such as malnutrition in all its forms (MIAIF). Moreover, a recent systematic review of empirical applications of a systems approach to developing obesity interventions found no published work from non-western, low- and middle-income countries (LMICs). In this paper we describe adaptations and innovations to a common GMB process to co-develop systemic MIAIF interventions with Chinese decision-makers.

    METHODS: We developed, piloted and implemented multiple cultural adaptations and two methodological innovations to the commonly used GMB process in Fang Cheng Gang city, China. We included formal, ceremonial and policy maker engagement events before and between GMB workshops, and incorporated culturally tailored arrangements during participant recruitment (officials of the same seniority level joined the same workshop) and workshop activities (e.g., use of individual scoring activities and hand boards). We made changes to the commonly used GMB activities which enabled mapping of shared drivers of multiple health issues (in our case MIAIF) in a single causal loop diagram. We developed and used a 'hybrid' GMB format combining online and in person facilitation to reduce travel and associated climate impact.

    RESULTS: Our innovative GMB process led to high engagement and support from decision-makers representing diverse governmental departments across the whole food systems. We co-identified and prioritised systemic drivers and intervention themes of MIAIF. The city government established an official Local Action Group for long-term, inter-departmental implementation, monitoring and evaluation of the co-developed interventions. The 'hybrid' GMB format enabled great interactions while reducing international travel and mitigating limitations of fully online GMB process.

    CONCLUSIONS: Cultural and methodological adaptations to the common GMB process for an Asian LMIC setting were successful. The 'hybrid' GMB format is feasible, cost-effective, and more environmentally friendly. These cultural adaptations could be considered for other Asian settings and beyond to address inter-related, complex issues such as MIAIF.

  5. Zhu C, Zhou W, Han M, Yang Y, Li Y, Jiang Q, et al.
    Sci Total Environ, 2023 Sep 15;891:164460.
    PMID: 37247739 DOI: 10.1016/j.scitotenv.2023.164460
    Microplastics and nanoplastics (MPs and NPs) are abundant, persistent, and widespread environmental pollutants that are of increasing concern as they pose a serious threat to ecosystems and aquatic species. Identifying the ecological effects of NPs pollution requires understanding the effects of changing nanoplastics concentrations in aquatic organisms. Monopterus albus were orally fed three different concentrations of 100 nm polystyrene nanoplastics (PS-NPs): 0.05 %, 0.5 %, and 1 % of the feed for 28 days. Nanoplastics significantly activated the PPAR signaling pathway, Acyl-CoA oxidase 1 (ACOX1), carnitine palmitoyltransferase 1a (CPT1A), angiopoietin-like 4 (ANGPTL4), and phosphoenolpyruvate carboxykinase (PCK) at the mRNA level, resulting in disturbed lipid metabolism. Glutathione peroxidase (GSH-px) activity, catalase (CAT) activity, and malondialdehyde (MDA) were significantly elevated in the high nanoplastics-feeding exposure group, leading to oxidative stress in the liver. Overexpression of the cytokines genes Interleukin 1 (IL1B) and Interleukin-8 (IL8), Tumor necrosis factor alpha (TNF-α), activation of MAPK signaling pathway, and increased gene expression of c-Jun amino-terminal kinases (JNK) and p38 indicate that exposure to NPs may lead to hepatopancreas apoptosis through oxidative stress and inflammation. In summary, dietary PS-NPs exposure alters hepatic glycolipid metabolism, triggering inflammatory responses and apoptosis in M. albus. The results of this study provide valuable ecotoxicological data for a better understanding of the biological fate and effects of nanoplastics in M. albus.
  6. Zhang Y, Ren H, Li B, Udin SM, Maarof H, Zhou W, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124829.
    PMID: 37210053 DOI: 10.1016/j.ijbiomac.2023.124829
    Deep eutectic solvents (DESs) composed by amino acids (L-arginine, L-proline, L-alanine) as the hydrogen bond acceptors (HBAs) and carboxylic acids (formic acid, acetic acid, lactic acid, levulinic acid) as hydrogen bond donors (HBDs) were prepared and used for the dissolution of dealkaline lignin (DAL). The mechanism of lignin dissolution in DESs was explored at molecular level by combining the analysis of Kamlet-Taft (K-T) solvatochromic parameters, FTIR spectrum and density functional theory (DFT) calculations of DESs. Firstly, it was found that the formation of new hydrogen bonds between lignin and DESs mainly drove the dissolution of lignin, which were accompanied by the erosion of hydrogen bond networks in both lignin and DESs. The nature of hydrogen bond network within DESs was fundamentally determined by the type and number of functional groups in both HBA and HBD, which affected its ability to form hydrogen bond with lignin. One hydroxyl group and carboxyl group in HBDs provided active protons, which facilitated proton-catalyzed cleavage of β-O-4, thus enhancing the dissolution of DESs. The superfluous functional group resulted in more extensive and stronger hydrogen bond network in the DESs, thus decreasing the lignin dissolving ability. Moreover, it was found that lignin solubility had a closed positive correlation with the subtraction value of α and β (net hydrogen donating ability) of DESs. Among all the investigated DESs, L-alanine/formic acid (1:3) with the strong hydrogen-bond donating ability (acidity), weak hydrogen-bond accepting ability (basicity) and small steric-hindrance effect showed the best lignin dissolving ability (23.99 wt%, 60 °C). On top of that, the value of α and β of L-proline/carboxylic acids DESs showed some positive correlation with the global electrostatic potential (ESP) maxima and minima of the corresponding DESs respectively, indicating the analysis of ESP quantitative distributions of DESs could be an effective tool for DESs screening and design for lignin dissolution as well as other applications.
  7. Lin XF, Wong SY, Zhou W, Shen W, Li W, Tsai CC
    Int J Sci Math Educ, 2023 May 04.
    PMID: 37363784 DOI: 10.1007/s10763-023-10376-9
    Research evidence indicated that a specific type of augmented reality-assisted (AR-assisted) science learning design or support might not suit or be effective for all students because students' cognitive load might differ according to their experiences and individual characteristics. Thus, this study aimed to identify undergraduate students' profiles of cognitive load in AR-assisted science learning and to examine the role of their distinct profiles in self-efficacy together with associated behavior patterns in science learning. After ensuring the validity and reliability of each measure, a latent profile analysis confirmed that 365 Chinese undergraduates carried diverse dimensions of cognitive load simultaneously. The latent profile analysis findings revealed four fundamental profiles: Low Engagement, Immersive, Dabbling, and Organized, characterized as carrying various respective cognitive loads. The multivariate analysis of variance findings revealed different levels of the six AR science learning self-efficacy dimensions across profiles. Low Engagement students displayed the lowest self-efficacy among all dimensions. Organized students recorded better conceptual understanding and higher-order cognitive skills than Dabbling ones. Students with the Immersive profile had the highest science learning self-efficacy. The lag sequential analysis results showed significant differences in behavior patterns among profiles. Among them, profiles with social interaction, test, and reviewing feedback behavior had a significantly higher score for self-efficacy than those patterns mainly based on test learning and resource visits. This finding provides a unified consideration of students' diverse profiles and can inform interventions for effective design of AR-assisted science learning to match appropriate strategies to facilitate the science learning effect.
  8. Jani P, Mishra U, Buchmayer J, Walker K, Gözen D, Maheshwari R, et al.
    Pediatr Res, 2023 May;93(6):1701-1709.
    PMID: 36075989 DOI: 10.1038/s41390-022-02297-0
    BACKGROUND: Are thermoregulation and golden hour practices in extremely preterm (EP) infants comparable across the world? This study aims to describe these practices for EP infants based on the neonatal intensive care unit's (NICUs) geographic region, country's income status and the lowest gestational age (GA) of infants resuscitated.

    METHODS: The Director of each NICU was requested to complete the e-questionnaire between February 2019 and August 2021.

    RESULTS: We received 848 responses, from all geographic regions and resource settings. Variations in most thermoregulation and golden hour practices were observed. Using a polyethylene plastic wrap, commencing humidity within 60 min of admission, and having local protocols were the most consistent practices (>75%). The odds for the following practices differed in NICUs resuscitating infants from 22 to 23 weeks GA compared to those resuscitating from 24 to 25 weeks: respiratory support during resuscitation and transport, use of polyethylene plastic wrap and servo-control mode, commencing ambient humidity >80% and presence of local protocols.

    CONCLUSION: Evidence-based practices on thermoregulation and golden hour stabilisation differed based on the unit's region, country's income status and the lowest GA of infants resuscitated. Future efforts should address reducing variation in practice and aligning practices with international guidelines.

    IMPACT: A wide variation in thermoregulation and golden hour practices exists depending on the income status, geographic region and lowest gestation age of infants resuscitated. Using a polyethylene plastic wrap, commencing humidity within 60 min of admission and having local protocols were the most consistent practices. This study provides a comprehensive description of thermoregulation and golden hour practices to allow a global comparison in the delivery of best evidence-based practice. The findings of this survey highlight a need for reducing variation in practice and aligning practices with international guidelines for a comparable health care delivery.

  9. Zhou W, Zeng S, Yu J, Xiang J, Zhang F, Takriff MS, et al.
    J Basic Microbiol, 2023 Feb;63(2):223-234.
    PMID: 36538731 DOI: 10.1002/jobm.202200528
    In this study, selected properties of protease and the complete genome sequence of Bacillus licheniformis NWMCC0046 were investigated, to discover laundry applications and other potential probiotic properties of this strain. Partial characterization of B. licheniformis NWMCC0046 showed that its protease has good activity both in alkaline environments and at low temperatures. Also, the protease is compatible with commercial detergents and can be used as a detergent additive for effective stain removal at low temperatures. The complete genome sequence of B. licheniformis NWMCC0046 is comprised of a 4,321,565 bp linear chromosome with a G + C content of 46.78% and no plasmids. It had 4504 protein-encoding genes, 81 transfer RNA (tRNA) genes, and 24 ribosomal RNA (rRNA) genes. Genomic analysis revealed genes involved in exocellular enzyme production and probiotic properties. In addition, genomic sequence analysis revealed specific genes encoding carbohydrate metabolism pathways, resistance, and cold adaptation capacity. Overall, protease properties show its potential as a detergent additive enzyme. The complete genome sequence information of B. licheniformis NWMCC0046 was obtained, and functional prediction revealed its numerous probiotic properties.
  10. Pagliuca S, Gurnari C, Hercus C, Hergalant S, Nadarajah N, Wahida A, et al.
    Leukemia, 2023 Jan;37(1):202-211.
    PMID: 36253429 DOI: 10.1038/s41375-022-01723-w
    Idiopathic aplastic anemia (IAA) pathophysiology is dominated by autoreactivity of human leukocyte antigen (HLA)-restricted T-cells against antigens presented by hematopoietic stem and progenitor cells (HSPCs). Expansion of PIGA and HLA class I mutant HSPCs have been linked to immune evasion from T-cell mediated pressures. We hypothesized that in analogy with antitumor immunity, the pathophysiological cascade of immune escape in IAA is initiated by immunoediting pressures and culminates with mechanisms of clonal evolution characterized by hits in immune recognition and response genes. To that end, we studied the genetic and transcriptomic make-up of the antigen presentation complexes in a large cohort of patients with IAA and paroxysmal nocturnal hemoglobinuria (PNH) by using single-cell RNA, high throughput DNA sequencing and single nucleotide polymorphism (SNP)-array platforms. At disease onset, HSPCs displayed activation of selected HLA class I and II-restricted mechanisms, without extensive inhibition of immune checkpoint apparatus. Using a newly implemented bioinformatic framework we found that not only class I but also class II genes were often impaired by acquisition of genetic aberrations. We also demonstrated the presence of novel somatic alterations in immune genes possibly contributing to the evasion from the autoimmune T-cells. In contrast, these hits were absent in myeloid neoplasia. These aberrations were not mutually exclusive with PNH and did not correlate with the accumulation of myeloid-driver hits. Our findings shed light on the mechanisms of immune activation and escape in IAA and define alternative modes of clonal hematopoiesis.
  11. Zhou W, Zhan Y, Jawing E
    Front Psychol, 2023;14:1290034.
    PMID: 37928571 DOI: 10.3389/fpsyg.2023.1290034
    In second language and foreign language learning, demotivation in learning is a common occurrence. Almost all previous studies on learners' demotivation focused on traditional classroom learning environment rather than blended learning setting. This paper investigates learner perceptions of demotivating factors for Chinese EFL college students in blended learning context. 272 college sophomores with varied majors from a university in Mid-East China took part in a questionnaire survey. The questionnaire, consisted of 34 4-point Likert type items about learners' demotivation in a blended EFL learning environment, was adapted from Kikuchi's demotivation questionnaire and Xie's LPDS (Learner Perceptions of Demotivator Scale). An exploratory factor analysis was performed to explore the factor structure of the questionnaire items. Then mean scores of items loading on each factor were calculated and independent samples t-test analysis was adopted to examine the differences of demotivating factors between different groups of participants. Five demotivating factors from the questionnaire were extracted. The findings reveal a newly discovered factor: learners' lack of self-discipline in online learning. The paper indicates that there is no significant difference of these five demotivating factors between male and female learners, and between rural and urban learners. Whereas less motivated learners perceive four among the five factors to be more demotivating than more motivated learners.
  12. Wang D, Wong SI, Sunarso J, Xu M, Wang W, Ran R, et al.
    ACS Appl Mater Interfaces, 2021 May 05;13(17):20105-20113.
    PMID: 33886260 DOI: 10.1021/acsami.1c02502
    Hydrocarbon-fueled solid oxide fuel cells (SOFCs) that can operate in the intermediate temperature range of 500-700 °C represent an attractive SOFC device for combined heat and power applications in the industrial market. One of the ways to realize such a device relies upon exploiting an in situ steam reforming process in the anode catalyzed by an anti-carbon coking catalyst. Here, we report a new Ni and Ru bimetal-doped perovskite catalyst, Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.9Ni0.05Ru0.05O3-δ (BZCYYbNRu), with enhanced catalytic hydrogen production activity on n-butane (C4H10), which can resist carbon coking over extended operation durations. Ru in the perovskite lattice inhibits Ni precipitation from perovskite, and the high water adsorption capacity of proton conducting perovskite improves the coking resistance of BZCYYbNRu. When BZCYYbNRu is used as a steam reforming catalyst layer on a Ni-YSZ-supported anode, the single fuel cell not only achieves a higher power density of 1113 mW cm-2 at 700 °C under a 10 mL min-1 C4H10 continuous feed stream at a steam to carbon (H2O/C) ratio of 0.5 but also shows a much better operational stability for 100 h at 600 °C compared with those reported in the literature.
  13. Shen ZZ, Li K, Li ZJ, Shang XL, Hu F, Zhou WJ, et al.
    Trop Biomed, 2020 Jun 01;37(2):452-457.
    PMID: 33612814
    Toxoplasma gondii is a world-widely spread zoonotic parasite. However, scarce knowledge is known about the prevalence of T. gondii infection in people in Hubei province, China. This study herein was to perform epidemiological investigation of T. gondii infection in people in this region. A total 12527 blood samples were obtained during 2015-2018, and were assayed for T. gondii antibodies of IgG and IgM, respectively by employing an indirect hemagglutination test (IHA). The results discovered that the prevalence of T. gondii in people was 2.44% and 6.1%, respectively based on antibodies of IgG and IgM, respectively. The prevalence was ranged from 0.3% to 5.4% during 2015-2018 based on IgM antibodies. For genders, the prevalence was 0.7% and 2.6% in males and females, respectively based on IgM antibodies. In different years, the prevalence was ranged from 4.9% to 14.0% based on IgG antibodies. The prevalence of T. gondii was 4.9% and 6.6% in males and femalesy based on IgG antibodies. The current results may be helpful for the implementation of preventive measures against Toxoplasma infection among people living in this region.
  14. Xiao Y, Zhang S, Dai N, Fei G, Goh KL, Chun HJ, et al.
    Gut, 2020 02;69(2):224-230.
    PMID: 31409606 DOI: 10.1136/gutjnl-2019-318365
    OBJECTIVE: To establish the non-inferior efficacy of vonoprazan versus lansoprazole in the treatment of Asian patients with erosive oesophagitis (EO).

    DESIGN: In this phase III, double-blind, multicentre study, patients with endoscopically confirmed EO were randomised 1:1 to receive vonoprazan 20 mg or lansoprazole 30 mg, once daily for up to 8 weeks. The primary endpoint was EO healing rate at 8 weeks. The secondary endpoints were EO healing rates at 2 and 4 weeks. Safety endpoints included treatment-emergent adverse events (TEAEs).

    RESULTS: In the vonoprazan (n=238) and lansoprazole (n=230) arms, 8-week EO healing rates were 92.4% and 91.3%, respectively (difference 1.1% (95% CI -3.822% to 6.087%)). The respective 2-week EO healing rates were 75.0% and 67.8% (difference 7.2% (95% CI -1.054% to 15.371%)), and the respective 4-week EO healing rates were 85.3% and 83.5% (difference 1.8% (95% CI -4.763% to 8.395%)). In patients with baseline Los Angeles classification grade C/D, 2-week, 4-week and 8-week EO healing rates were higher with vonoprazan versus lansoprazole (2 weeks: 62.2% vs 51.5%, difference 10.6% (95% CI -5.708% to 27.002%); 4 weeks: 73.3% vs 67.2%, difference 6.2% (95% CI -8.884 to 21.223); and 8 weeks: 84.0% vs 80.6%, difference 3.4% (95% CI -9.187% to 15.993%)). Overall, EO healing rates appeared higher with vonoprazan versus lansoprazole. TEAE rates were 38.1% and 36.6% in the vonoprazan and lansoprazole group, respectively.

    CONCLUSION: Our findings demonstrate the non-inferior efficacy of vonoprazan versus lansoprazole in terms of EO healing rate at 8 weeks in this population. Safety outcomes were similar in the two treatment arms.

    TRIAL REGISTRATION NUMBER: NCT02388724.

  15. Zhang X, Dang M, Zhang W, Lei Y, Zhou W
    Drug Dev Ind Pharm, 2020 Feb;46(2):264-271.
    PMID: 32000536 DOI: 10.1080/03639045.2020.1716377
    Topical drug delivery for local anesthetics has been an interesting area of research for formulators considering the resistance and barrier properties of skin and high clearance rate of drugs like prilocaine and lidocaine (duration of action < 2.5 h). In this study, efforts have been made to sustain the release of prilocaine and lidocaine by using depot microemulsion system. Drug loaded microemulsions were formulated using Capmul MCM, Pluronic F127, polyethylene glycol 200 (PEG 200) and water from pseudo-ternary diagrams. The Smix at 1:4 ratio showed larger microemulsion area in comparison to 1:2 ratio. The ex-vivo studies indicate sustained release of prilocaine and lidocaine from the microemulsion up to 8 h, in comparison to 4 h with ointments. Skin irritation study on rabbits confirmed the safety of drug loaded microemulsions for local drug delivery. The improved ex vivo data is reflected in the in vivo studies, were radiant heat tail-flick test and sciatic nerve model showed prolong duration of action for both prilocaine and lidocaine microemulsions in comparison to ointment. The in vitro and in vivo efficacy of prilocaine and lidocaine was non-significant. The improved efficacy was due to high penetration of microemulsion and depot effect due to local precipitation (destabilization of microemulsion) of drug in the skin layer. The sustained local anesthetic effect is highly desirable for the treatment of skin irritation due to skin burns and pre- and post-operative pain.
  16. Yang Z, Cui Q, Zhou W, Qiu L, Han B
    Mol Genet Genomic Med, 2019 06;7(6):e680.
    PMID: 30968607 DOI: 10.1002/mgg3.680
    BACKGROUND: Thalassemia is a common genetic disorder. High prevalence of thalassemia is found in South China, Southeast Asia, India, the Middle East, and the Mediterranean regions. Thalassemia was thought to exist only in southern China, but an increasing number of cases from northern China have been recently reported.

    METHODS: During 2012 to 2017, suspected thalassemia people were detected for common α- and β-thalassemia mutations by gap-Polymerase Chain Reaction (PCR) and reverse dot blot (RDB) analysis in Peking Union Medical College Hospital. One thousand and fifty-nine people with thalassemia mutations were analyzed retrospectively. We picked mutated individuals who originally came from northern areas, and conducted telephone follow-up survey in order to collect their ancestral information. Besides, we used "thalassemia", "mutation", and "Southeast Asian countries" as keywords to search the relevant studies in PubMed and Embase databases.

    RESULTS: All carriers included in our study were resided in northern China. Among them, 17.3% were native northerners and 82.7% were immigrants from southern China. Although substantial difference was found in α- and β-thalassemia ratio and detailed spectrum of α- and β-globin mutation spectrum between our data and data obtained from a previous meta-analysis literature focused on southern China, the most common gene mutations were the same. Similar β-thalassemia mutation spectrum was found among Thai, Malaysian Chinese, and Guangdong people, however, no other similarities in gene profile were found between Chinese and other ethnic groups in Southeast Asia.

    CONCLUSION: Chinese people in different areas had similar gene mutation, whereas they had significantly different mutation spectrums from other ethnic groups in Southeast Asia.

  17. He J, Sunarso J, Miao J, Sun H, Dai J, Zhang C, et al.
    J Hazard Mater, 2019 05 05;369:699-706.
    PMID: 30831522 DOI: 10.1016/j.jhazmat.2019.02.070
    Effective regulation of p-phenylenediamine (PPD), a widely used precursor of hair dye that is harmful to human health in large concentration, relies upon an accurate yet simple detection of PPD. In this context, amperometric electrode sensor based on perovskite oxide becomes attractive given its portability, low cost, high sensitivity, and rapid processing time. This work reports the systematic characterization of a series of Sr-doped PrCoO3-δ perovskite oxides with composition of Pr1-xSrxCoO3-δ(x = 0, 0.2, 0.4, 0.6, 0.8, and 1) for PPD detection in an alkaline solution. PSC82 deposited onto glassy carbon electrode (PSC82/GCE) generates the highest redox currents which correlates with the highest hydrogen peroxide intermediates (HO2-) yield and the σ*-orbital (eg) filling of Co that is closest to unity for PSC82. PSC82/GCE provides the highest sensitivities of 655 and 308 μA mM-1 cm-2 in PPD concentration range of 0.5-2,900 and 2,900-10,400 μM, respectively, with a limit of detection of 0.17 μM. PSC82/GCE additionally demonstrates high selectivity to PPD and long term stability during 50 consecutive cyclic voltammetry scans and over 1-month storage period. The potential applicability of PSC82/GCE was also demonstrated by confirming the presence of very low concentration of PPD of below 0.5% in real hair dyes.
  18. Yu J, Zhong Y, Wu X, Sunarso J, Ni M, Zhou W, et al.
    Adv Sci (Weinh), 2018 Sep;5(9):1800514.
    PMID: 30250794 DOI: 10.1002/advs.201800514
    Hydrogen production from renewable electricity relies upon the development of an efficient alkaline water electrolysis device and, ultimately, upon the availability of low cost and stable electrocatalysts that can promote oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Normally, different electrocatalysts are applied for HER and OER because of their different reaction intermediates and mechanisms. Here, the synthesis of a heterostructured CoP@a-CoOx plate, which constitutes the embedded crystalline cobalt phosphide (CoP) nanoclusters and amorphous cobalt oxides (CoOx) nanoplates matrix, via a combined solvothermal and low temperature phosphidation route is reported. Due to the presence of synergistic effect between CoP nanoclusters and amorphous CoOx nanoplates in the catalyst, created from the strong nanointerfaces electronic interactions between CoP and CoOx phases in its heterostructure, this composite displays very high OER activity in addition to favorable HER activity that is comparable to the performance of the IrO2 OER benchmark and approached that of the Pt/C HER benchmark. More importantly, an efficient and stable alkaline water electrolysis operation is achieved using CoP@a-CoOx plate as both cathode and anode as evidenced by the obtainment of a relatively low potential of 1.660 V at a 10 mA cm-2 current density and its marginal increase above 1.660 V over 30 h continuous operation.
  19. Sun H, Chen G, Sunarso J, Dai J, Zhou W, Shao Z
    ACS Appl Mater Interfaces, 2018 May 23;10(20):16939-16942.
    PMID: 29741862 DOI: 10.1021/acsami.8b03702
    An abundant, highly active, and durable oxygen evolution reaction (OER) electrocatalyst is an enabling component for a more sustainable energy future. We report, herein, a molybdenum and niobium codoped B-site-ordered double perovskite oxide with a compositional formula of Ba2CoMo0.5Nb0.5O6-δ (BCMN) as an active and robust catalyst for OER in an alkaline electrolyte. BCMN displayed a low overpotential of 445 mA at a current density of 10 mA cm-2disk. BCMN also showed long-term stability in an alkaline medium. This work hints toward the possibility of combining a codoping approach with double perovskite structure formation to achieve significant enhancement in the OER performance.
  20. Shen Y, Zhu Y, Sunarso J, Guan D, Liu B, Liu H, et al.
    Chemistry, 2018 May 11;24(27):6950-6957.
    PMID: 29411451 DOI: 10.1002/chem.201705675
    Because of their structural and compositional flexibility, perovskite oxides represent an attractive alternative electrocatalyst class to precious metals for the oxygen reduction reaction (ORR); an important reaction in fuel cells and metal-air batteries. Partial replacement of the original metal cation with another cation, namely, doping, can be used to tailor the ORR activity of perovskite, for which a metal has been exclusively used as the dopant component in the past. Herein, phosphorus is proposed as a non-metal dopant for the cation site to develop a new perovskite family with the formula of La0.8 Sr0.2 Mn1-x Px O3-δ (x=0, 0.02, 0.05, and 0.1; denoted as LSM, LSMP0.02, LSMP0.05, and LSMP0.1, respectively). Powder XRD patterns reveal that the solubility of phosphorus in the perovskite structure is around 0.05. Rotating ring-disk electrode experiments in the form of linear-sweep voltammetry scans demonstrated the best ORR performance for LSMP0.05, and also revealed close to a four-electron ORR pathway for all four compositions. A chronoamperometric test (9000 s) and 500 cycle accelerated durability test demonstrated higher durability for LSMP0.05 relative to that of LSM and the commercial 20 wt % Pt/C catalyst. The higher ORR activity for LSMP0.05 is attributed to the optimised average valence of Mn, as evidenced by combined X-ray photoelectron spectroscopy and soft X-ray absorption spectroscopy data. Doping phosphorus into perovskites is an effective way to develop high-performance electrocatalysts for ORR.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links