Displaying publications 1 - 20 of 104 in total

Abstract:
Sort:
  1. Abdul Rahman SN, Bakar MFA, Singham GV, Othman AS
    3 Biotech, 2019 Nov;9(11):388.
    PMID: 31656726 DOI: 10.1007/s13205-019-1921-3
    In this study, RNA sequencing of several Hevea brasiliensis clones grown in Malaysia with different annual rubber production yields and disease resistance was performed on the Illumina platform. A total of 29,862,548 reads were generated, resulting in 101,269 assembled transcripts that were used as the reference transcripts. A similarity search against the non-redundant (nr) protein databases presented 83,771 (83%) positive BLASTx hits. The transcriptome was annotated using gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Pfam database. A search for putative molecular markers was performed to identify single-nucleotide polymorphisms (SNPs). Overall, 3,210,629 SNPs were detected and a total of 1314 SNPs associated with the genes involved in MVA and MEP pathways were identified. A total of 176 SNP primer pairs were designed from sequences that were related to the MVA and MEP pathways. The transcriptome of RRIM 3001 and RRIM 712 were subjected to pairwise comparison and the results revealed that there were 1262 significantly differentially expressed genes unique to RRIM 3001, 1499 significantly differentially expressed genes unique to RRIM 712 and several genes related to the MVA and MEP pathways such as AACT, HMGS, PMK, MVD, DXS and HDS were included. The results will facilitate the characterization of H. brasiliensis transcriptomes and the development of a new set of molecular markers in the form of SNPs from transcriptome assembly for the genotype identification of various rubber varieties with superior traits in Malaysia.
  2. Adzitey F, Ali GR, Huda N, Ahmad R
    3 Biotech, 2013 Dec;3(6):521-527.
    PMID: 28324423 DOI: 10.1007/s13205-013-0115-7
    Salmonella species are important foodborne pathogens that can cause illness and death in humans. The objective of this study was to determine the genetic relatedness of 115 Salmonella strains isolated from ducks and their environment using random amplified polymorphic deoxyribonucleic acid (RAPD). The analysis of Salmonella strains by RAPD produced DNA fingerprints of different sizes for differentiation purposes, and cluster analysis at a coefficient of 0.85 grouped the Salmonella strains into various clusters and singletons. S. Typhimurium were grouped into nine clusters and ten singletons, S. Hadar were grouped into seven clusters and nine singletons, S. Enteritidis were grouped into four clusters and five singletons, S. Braenderup were grouped into five clusters and four singletons, S. Albany were grouped into two clusters and seven singletons, and S. Derby were grouped into two clusters and four singletons at a coefficient of 0.85 with discriminatory index (D) ranging from 0.879 to 0.957. With the exception of S. Typhimurium strains which were grouped into three major groups (genotypes) by RAPD analysis, the rest were grouped into two major genotypes. RAPD was a useful genotyping tool for determining the genetic relatedness of the duck Salmonella strains. Comparison of the genetic relatedness among foodborne pathogens and their sources of isolation are important to trace their source and possibly the source of human infection.
  3. Adzitey F, Huda N, Ali GR
    3 Biotech, 2013 Apr;3(2):97-107.
    PMID: 28324565 DOI: 10.1007/s13205-012-0074-4
    In recent times, several foodborne pathogens have become important and a threat to public health. Surveillance studies have provided data and a better understanding into the existence and spread of foodborne pathogens. The application of molecular techniques for detecting and typing of foodborne pathogens in surveillance studies provide reliable epidemiological data for tracing the source of human infections. A wide range of molecular techniques (including pulsed field gel electrophoresis, multilocus sequence typing, random amplified polymorphism deoxyribonucleic acid, repetitive extragenic palindromic, deoxyribonucleic acid sequencing, multiplex polymerase chain reaction and many more) have been used for detecting, speciating, typing, classifying and/or characterizing foodborne pathogens of great significance to humans. Farm animals including chickens, cattle, sheep, goats and pigs, and others (such as domestic and wild animals) have been reported to be primary reservoirs for foodborne pathogens. The consumption of contaminated poultry meats or products has been considered to be the leading source of human foodborne infections. Ducks like other farm animals are important source of foodborne pathogens and have been implicated in some human foodborne illnesses and deaths. Nonetheless, few studies have been conducted to explore the potential of ducks in causing foodborne outbreaks, diseases and its consequences. This review highlights some common molecular techniques, their advantages and those that have been applied to pathogens isolated from ducks and their related sources.
  4. Ahmad W, Husain I, Ahmad N, Amir M, Sarafroz M, Ansari MA, et al.
    3 Biotech, 2020 Apr;10(4):165.
    PMID: 32206499 DOI: 10.1007/s13205-020-2154-1
    Boerhavia diffusa (BD) Linn. (Nyctaginaceae) is one of the most commonly used herbs in the Indian traditional system of medicine for the urinary disorders. The aim of the current investigation was to carry out initiation, development, and maintenance of BD callus cultures and quantitative estimation of punarnavine in plant and callus extracts. Leaves and stem of BD were used as explant for the tissue culture studies using Murashige and Skoog (MS) basal medium. MS Media comprising 2,4-Dichlorophenoxy acetic acid (2,4-D) (1 ppm) and 2,4-D (1 ppm) + Indole-3-acetic acid (IAA) (1.0 ppm) were found to yield friable callus from leaf explant; similarly, 2,4-D (0.3 ppm) + IAA (0.75 ppm) + Kinetin (0.3 ppm) and 2,4-D (0.5 ppm) + Naphthalene acetic acid (NAA) (1.5 ppm) + Kinetin (0.3 ppm) were found to yield friable callus from the stem explant. High-performance thin-layer chromatography method was been developed for the quantitative estimation of punarnavine (Rf = 0.73) using mobile phase containing toluene: ethyl acetate: formic acid in the ratio (7.0:2.5:0.7, v/v/v) at 262 nm. The validated method was found linear (r2 = 0.9971) in a wide range (100-1000 ng spot-1), precise, accurate, and robust. The values of limit of detection, LOD = 30.3 ng spot-1, and limit of quantification, LOQ = 100.0 ng spot-1. The robustness of the method was proved by applying the Box-Behnken design (BBD). The developed method found appropriate for the quality control of medicinal plants containing punarnavine as a constituent.
  5. Aithal AP, Bairy LK, Seetharam RN, Kumar N
    3 Biotech, 2021 Feb;11(2):107.
    PMID: 33564610 DOI: 10.1007/s13205-021-02640-y
    Bone marrow mesenchymal stromal cells (BM-MSCs) are multipotent stem cells which are ideal candidates for use in regenerative medicine. The objectives of this study were to evaluate the hepatoprotective effect of BM-MSC and its combination treatment with silymarin in carbon tetrachloride (CCl4)-induced liver cirrhosis animal model and to investigate whether tail vein or portal vein infusion was the ideal route for BM-MSC transplantation. 36 female Wistar rats were randomly divided into six groups (n = 6): Group 1 (normal control), Group 2 (received only CCl4, disease model), Group 3 (CCl4 + BM-MSCs through tail vein), Group 4 (CCl4 + BM-MSCs through portal vein), Group 5 (CCl4 + silymarin), Group 6 (CCl4 + BM-MSCs + silymarin). On the 21st day after treatment, blood samples were collected for biochemical estimations. After the experiment, the rats were sacrificed. Liver was dissected out and processed for histopathology and scanning electron microscopy studies. Liver enzyme and marker analysis, histopathological studies indicated that the combination of BM-MSCs and silymarin was effective in treating liver cirrhosis. Transplanted BM-MSCs in combination with silymarin ameliorated the liver tissue damage through their immunoregulatory activities. Among the two routes, the intravenous administration of cells through the tail vein was found to be more effective and safe.
  6. AlMatar M, Makky EA
    3 Biotech, 2016 Jun;6(1):4.
    PMID: 28330073 DOI: 10.1007/s13205-015-0323-4
    Fungi are important natural product sources that have enormous potential for the production of novel compounds for use in pharmacology, agricultural applications and industry. Compared with other natural sources such as plants, fungi are highly diverse but understudied. However, research on Cladosporium cladosporioides revealed the existence of bioactive products such as p-methylbenzoic acid, ergosterol peroxide (EP) and calphostin C as well as enzymes including pectin methylesterase (PME), polygalacturonase (PG) and chlorpyrifos hydrolase. p-Methylbenzoic acid has ability to synthesise 1,5-benzodiazepine and its derivatives, polyethylene terephthalate and eicosapentaenoic acid. EP has anticancer, antiangiogenic, antibacterial, anti-oxidative and immunosuppressive properties. Calphostin C inhibits protein kinase C (PKC) by inactivating both PKC-epsilon and PKC-alpha. In addition, calphostin C stimulates apoptosis in WEHI-231 cells and vascular smooth muscle cells. Based on the stimulation of endoplasmic reticulum stress in some types of cancer, calphostin C has also been evaluated as a potential photodynamic therapeutic agent. Methylesterase (PME) and PG have garnered attention because of their usage in the food processing industry and significant physiological function in plants. Chlorpyrifos, a human, animal and plant toxin, can be degraded and eliminated by chlorpyrifos hydrolase.
  7. Alka S, Shahir S, Ibrahim N, Rahmad N, Haliba N, Abd Manan F
    3 Biotech, 2021 Jul;11(7):336.
    PMID: 34221807 DOI: 10.1007/s13205-021-02864-y
    Arsenic (As) is an increasing threat across the globe, widely known as a non-threshold carcinogen, and it is reaching harmful values in several areas of the world. In this study, the effect of plant growth promoting bacteria (Microbacterium foliorum) on inorganic arsenic (Arsenate) phytoremediation by Melastoma malabathricum plants was investigated through histological analysis and proteome profiling of the M. malabathricum plants. Two-dimensional gel electrophoresis and transmission electron microscopy were used to conduct the proteome and histological analysis. When arsenic-treated cells were compared to untreated cells, substantial changes were found (1) severely altered the morphology of the cells, intensely disturbed; (2) the cell wall was thicker; (3) drastically changed the cytoplasm, the cells were polygonal in shape, different in size (scattered), and relatively dense. Compared to the control group, the ultra-structure of the root cells of the control group revealed intact cytoplasm, vacuole, and cell wall under exposure to As + bacteria that had a minor effect on the cell form. To further understand As + bacteria interaction, proteome profiling of the root cell was analyzed. The As-induced oxidative stress enrichment was confirmed by the up-regulation of tubulin, nucleoside diphosphate kinase, and major allergen during As + bacteria exposure It was observed that the profusion of proteins involved in defence, protein biogenesis, signaling, photosynthesis, nucleoside and energy metabolism was greater in As + bacteria as compared to the rooting out of As only. Overall, it can be obviously seen that the current study demonstrates the effectiveness of phytoremediation by M. foliorum on proteins involved and responsive pathways in dealing with As toxicity in M. malabathricum plant.
  8. Amer Hamzah M, Mohd Kasim NA, Shamsuddin A, Mustafa N, Mohamad Rusli NI, Teh CY, et al.
    3 Biotech, 2020 Mar;10(3):105.
    PMID: 32099746 DOI: 10.1007/s13205-020-2092-y
    In this study, we analyzed the Rc and Rd genes that are responsible for the coloration of rice pericarps from six upland rice varieties. We also examined the association of pericarp coloration to the single nucleotide polymorphism in 9-cis-epoxycarotenoid dioxygenase 2 (NCED2), a key gene involved in abscisic acid (ABA) biosynthesis. Our findings demonstrated that all the upland rice varieties analyzed have a Rd gene which encodes a complete dihydroflavonol-4-reductase without early translational termination codon irrespective of their pericarp colors. However, the upland rice varieties with white pericarps were found to have a defective Rc gene with a 14-base deletion at exon 7 which could disrupt the function of a positive regulator of proanthocyanidin biosynthesis. In addition, the NCED2 genes from the upland rice varieties with white pericarps in this study have a C-allele while the NCED2 genes from Pandasan Red, Tomou and Taragang varieties that bear red pericarps were found to have a T-allele which was reported to be associated with a higher ABA level in upland rice. A better understanding of the gene sequences of upland rice varieties with red pericarp may provide important information for rice breeding programs.
  9. Ang TF, Salleh AB, Normi YM, Leow TC
    3 Biotech, 2018 Jul;8(7):314.
    PMID: 30023146 DOI: 10.1007/s13205-018-1333-9
    Artificial metalloenzymes are unique as they combine the good features of homogeneous and enzymatic catalysts, and they can potentially improve some difficult catalytic assays. This study reports a method that can be used to create an artificial metal-binding site prior to proving it to be functional in a wet lab. Haloalkane dehalogenase was grafted into a metal-binding site to form an artificial metallo-haloalkane dehalogenase and was studied for its potential functionalities in silico. Computational protocols regarding dynamic metal docking were studied using native metalloenzymes and functional artificial metalloenzymes. Using YASARA Structure, a simulation box covering template structure was created to be filled with water molecules followed by one mutated water molecule closest to the metal-binding site to metal ion. A simple energy minimization step was subsequently run using an AMBER force field to allow the metal ion to interact with the metal-binding residues. Long molecular dynamic simulation using YASARA Structure was performed to analyze the stability of the metal-binding site and the distance between metal-binding residues. Metal ions fluctuating around 2.0 Å across a 20 ns simulation indicated a stable metal-binding site. Metal-binding energies were predicted using FoldX, with a native metalloenzyme (carbonic anhydrase) scoring 18.0 kcal/mol and the best mutant model (C1a) scoring 16.4 kcal/mol. Analysis of the metal-binding site geometry was performed using CheckMyMetal, and all scores for the metalloenzymes and mutant models were in an acceptable range. Like native metalloenzymes, the metal-binding site of C1a was supported by residues in the second coordination shell to maintain a more coordinated metal-binding site. Short-chain multihalogenated alkanes (1,2-dibromoethane and 1,2,3-trichloropropane) were able to dock in the active site of C1a. The halides of the substrate were in contact with both the metal and halide-stabilizing residues, thus indicating a better stabilization of the substrate. The simple catalytic mechanism proposed is that the metal ion interacted with halogen and polarized the carbon-halogen bond, thus making the alpha carbon susceptible to attack by nucleophilic hydroxide. The interaction between halogen in the metal ion and halide-stabilizing residues may help to improve the stabilization of the substrate-enzyme complex and reduce the activation energy. This study reports a modified dynamic metal-docking protocol and validation tests to verify the metal-binding site. These approaches can be applied to design different kinds of artificial metalloenzymes or metal-binding sites.
  10. Arumugam G, Sinniah UR, Swamy MK, Lynch PT
    3 Biotech, 2019 Aug;9(8):298.
    PMID: 31328080 DOI: 10.1007/s13205-019-1831-4
    This investigation demonstrates an efficient method of propagation, short-term conservation, and germplasm exchange for Plectranthus amboinicus (Lour.) Spreng. encapsulated propagules. In vitro-derived shoot apices (shoot tips and nodal segments) which showed 100% survival on MS medium supplemented with 0.4 mg/L 6-benzylaminopurine were selected for encapsulation studies. Shoot apices measuring about 3-5 mm in size showed the ability to break the beads and exhibited 100% survival and regrowth. The combination of 3% (w/v) sodium alginate and 100 mM CaCl2 was found to be ideal for forming uniformally spherical beads, and successive preservation of encapsulated shoot apices into plantlets. The encapsulated shoot tips were relatively more effective than the nodal segments in terms of shoot growth and multiplication. Encapsulated shoot tips retained the ability to regrow (63.3%) for up to 40 days when maintained at 4 °C. Encapsulated shoot tips effectively converted into plantlets on agar medium (78%) and peat moss (58%) under in vitro conditions. Encapsulated shoot tips on agar medium showed a higher shoot regeneration (9.91 ± 0.15 shoots per explant) ability than the peat moss (5.71 ± 0.34 shoots per explant), while the highest rooting (12.16 ± 0.23 roots per explant) was observed on peat moss. Thus, calcium alginate encapsulation holds latent qualities that could be explored to develop a future alternative method of propagation, short-term storage and germplasm distribution for elite genotypes of Plectranthus sp.
  11. Azami NA, Wirjon IA, Kannusamy S, Teh AH, Abdullah AA
    3 Biotech, 2017 May;7(1):75.
    PMID: 28452023 DOI: 10.1007/s13205-017-0716-7
    The contribution of microbial depolymerase has received much attention because of its potential in biopolymer degradation. In this study, the P(3HB) depolymerase enzyme of a newly isolated Burkholderia cepacia DP1 from soil in Penang, Malaysia, was optimized using response surface methodology (RSM). The factors affecting P(3HB) depolymerase enzyme production were studied using one-variable-at-a-time approach prior to optimization. Preliminary experiments revealed that the concentration of nitrogen source, concentration of carbon source, initial pH and incubation time were among the main factors influencing the enzyme productivity. An increase of 9.4 folds in enzyme production with an activity of 5.66 U/mL was obtained using optimal medium containing 0.028% N of di-ammonium hydrogen phosphate and 0.31% P(3HB-co-21%4HB) as carbon source at the initial pH of 6.8 for 38 h of incubation. Moreover, the RSM model showed great similarity between predicted and actual enzyme production indicating a successful model validation. This study warrants the ability of P(3HB) degradation by B. cepacia DP1 in producing higher enzyme activity as compared to other P(3HB) degraders being reported. Interestingly, the production of P(3HB) depolymerase was rarely reported within genus Burkholderia. Therefore, this is considered to be a new discovery in the field of P(3HB) depolymerase production.
  12. Azizi A, Mohd Hanafi N, Basiran MN, Teo CH
    3 Biotech, 2018 Aug;8(8):321.
    PMID: 30034985 DOI: 10.1007/s13205-018-1354-4
    Information on the abiotic stress tolerance and ice-ice disease resistance properties of tissue-cultured Kappaphycus alvarezii is scarce and can pose a big hurdle to a wider use of tissue-cultured seaweed in the industry. Here, we reported on a study of seaweed-associated bacteria diversity in farmed and tissue-cultured K. alvarezii, and ice-ice disease resistance and elevated growth temperature tolerance of tissue-cultured K. alvarezii in laboratory conditions. A total of 40 endophytic seaweed-associated bacteria strains were isolated from 4 types of K. alvarezii samples based on their colony morphologies, Gram staining properties and 16S rRNA gene sequences. Bacteria strains isolated were found to belong to Alteromonas sp., Aestuariibacter sp., Idiomarina sp., Jejuia sp., Halomonas sp., Primorskyibacter sp., Pseudoalteromonas sp., Ruegeria sp., Terasakiella sp., Thalassospira sp. and Vibrio sp. Vibrio alginolyticus strain ABI-TU15 isolated in this study showed agar-degrading property when analyzed using agar depression assay. Disease resistance assay was performed by infecting healthy K. alvarezii with 105 cells/mL Vibrio sp. ABI-TU15. Severe ice-ice disease symptoms were detected in farmed seaweeds compared to the tissue-cultured K. alvarezii. Besides disease resistance, tissue-cultured K. alvarezii showed better tolerance to the elevated growth temperatures of 30 and 35 °C. In conclusion, our overall data suggests that tissue-cultured K. alvarezii exhibited better growth performance than farmed seaweeds when exposed to elevated growth temperature and ice-ice disease-causing agent.
  13. Badai SS, Rasid OA, Parveez GKA, Masani MYA
    3 Biotech, 2020 Dec;10(12):530.
    PMID: 33214977 DOI: 10.1007/s13205-020-02514-9
    Cetyltrimethylammonium bromide (CTAB) is the preferred detergent in RNA extraction of oil palm tissues. However, the CTAB-based protocol is time-consuming. In this study, a combination of the CTAB-based method and silica-based purification reduced the extraction time from two days to five hours. Quality of total RNA from 27 different tissues of oil palm was shown to have an RNA integrity number (RIN) value of more than seven. The extracted RNA was evaluated by RT-qPCR using three reference oil palm genes (GRAS, CYP2, and SLU7) and three putative mesocarp-specific transcripts annotated as WRKY DNA-binding protein 70 (WRKY-70), metallothionein (MT) and pentatricopeptide repeat (PPR) genes. Tissue-specific expression profiling across complete developmental stages of mesocarp and vegetative tissues was determined in this study. Overall, the RNA extraction protocol described here is rapid, simple and yields good quality RNAs from oil palm tissues.
  14. Basirun AA, Ahmad SA, Sabullah MK, Yasid NA, Daud HM, Khalid A, et al.
    3 Biotech, 2019 Feb;9(2):64.
    PMID: 30729088 DOI: 10.1007/s13205-019-1592-0
    The present study is aimed to evaluate the effects of sub-acute toxicity testing of copper sulphate (CuSO4), on behavioural, histological and biochemical changes of the Oreochromis mossambicus (black tilapia) blood tissues. The effects were assessed according to the previous results on sub-acute toxicity test after exposing fish to several concentrations (0.0, 2.5, 5.0, and 10.0 mg/L). The observations of scanning electron microscope, and transmission electron microscope studies revealed severe histopathological changes on the surface and the cellular changes in blood tissues, respectively. The morphological alterations in blood involved irregular structure of red blood cell and blood clot formation. CuSO4 affected the biochemical alteration of the blood cholinesterase also known as serum cholinesterase (ChE). Blood ChE inhibited up to 80% of activity when exposed to 10.0 mg/L CuSO4. The findings from this study can further improve the quality standards of aquaculture industry and the fundamental basis in selecting suitable strains among freshwater fish species to be used as bioindicator.
  15. Bello B, Mustafa S, Tan JS, Ibrahim TAT, Tam YJ, Ariff AB, et al.
    3 Biotech, 2018 Aug;8(8):346.
    PMID: 30073131 DOI: 10.1007/s13205-018-1362-4
    This paper deliberates the extraction, characterization and examination of potential application of soluble polysaccharides of palm kernel cake (PKC) as a prebiotic. The PKC was defatted and crude polysaccharide was obtained through water, citric acid or NaOH extraction. The physiochemical properties of the extracted polysaccharides viz. total carbohydrates, protein content, solubility rate, monosaccharides composition, structural information and thermal properties were also determined. The extracted soluble polysaccharides were further subjected to a digestibility test using artificial human gastric juice. Finally, their prebiotic potential on two probiotics, namely Lactobacillus plantarum ATCC 8014 and Lb. rhamnosus ATCC 53103 were evaluated in vitro. It was observed that PKC contained ash (5.2%), moisture (7.4%), carbohydrates (65.8%), protein (16.5%) and fat (5.1%). There were significant differences (P  95%). Protein content in SCPW, SCPCA and SCPN are 0.72, 0.40 and 0.58, respectively, and the peaks which indicated the presence of protein were observed at approximately 1640 cm-1 (amide I). FTIR spectroscopy revealed that the polysaccharides extracts were linked to β and α-glycosidic bonds and thermal analysis using differential scanning calorimeter (DSC) showed the main degradation temperature of SP is about 121 to 125 °C. The SP were found to be highly resistance (> 96%) to hydrolysis when subjected to artificial human gastric juice. The prebiotics potentials of the polysaccharides on probiotics in vitro demonstrated an increase in proliferation of Lb. plantarum ATCC 8014 and Lb. rhamnosus ATCC 53103 with decrease in the pH of the medium and producing organic acids.All the above findings strongly indicated that polysaccharides extracted from PKC, an industrial waste, have a potential to be exploited as novel prebiotics.
  16. Biglari N, Ganjali Dashti M, Abdeshahian P, Orita I, Fukui T, Sudesh K
    3 Biotech, 2018 Aug;8(8):330.
    PMID: 30073115 DOI: 10.1007/s13205-018-1351-7
    This study aimed to enhance production of polyhydroxybutyrate P(3HB) by a newly engineered strain of Cupriavidus necator NSDG-GG by applying response surface methodology (RSM). From initial experiment of one-factor-at-a-time (OFAT), glucose and urea were found to be the most significant substrates as carbon and nitrogen sources, respectively, for the production of P(3HB). OFAT experiment results showed that the maximum biomass, P(3HB) content, and P(3HB) concentration of 8.95 g/L, 76 wt%, and 6.80 g/L were achieved at 25 g/L glucose and 0.54 g/L urea with an agitation rate of 200 rpm at 30 °C after 48 h. In this study, RSM was applied to optimize the three key variables (glucose concentration, urea concentration, and agitation speed) at a time to obtain optimal conditions in a multivariable system. Fermentation experiments were conducted in shaking flask by cultivation of C. necator NSDG-GG using various glucose concentrations (10-50 g/L), urea concentrations (0.27-0.73 g/L), and agitation speeds (150-250 rpm). The interaction between the variables studied was analyzed by ANOVA analysis. The RSM results indicated that the optimum cultivation conditions were 37.70 g/L glucose, 0.73 g/L urea, and 200 rpm agitation speed. The validation experiments under optimum conditions produced the highest biomass of 12.84 g/L, P(3HB) content of 92.16 wt%, and P(3HB) concentration of 11.83 g/L. RSM was found to be an efficient method in enhancing the production of biomass, P(3HB) content, and P(3HB) concentration by 43, 21, and 74%, respectively.
  17. Buhari SB, Nezhad NG, Normi YM, Shariff FM, Leow TC
    3 Biotech, 2024 Jan;14(1):31.
    PMID: 38178895 DOI: 10.1007/s13205-023-03882-8
    The flexibility and the low production costs offered by plastics have made them crucial to society. Unfortunately, due to their resistance to biological degradation, plastics remain in the environment for an extended period of time, posing a growing risk to life on earth. Synthetic treatments of plastic waste damage the environment and may cause damage to human health. Bacterial and fungal isolates have been reported to degrade plastic polymers in a logistic safe approach with the help of their microbial cell enzymes. Recently, the bacterial strain Ideonella sakaiensis (201-F6) was discovered to break down and assimilate polyethylene terephthalate (PET) plastic via metabolic processes at 30 °C to 37 °C. PETase and MHETase enzymes help the bacterium to accomplish such tremendous action at lower temperatures than previously discovered enzymes. In addition to functioning at low temperatures, the noble bacterium's enzymes have amazing qualities over pH and PET plastic degradation, including a shorter period of degradation. It has been proven that using the enzyme PETase, this bacterium hydrolyzes the ester linkages of PET plastic, resulting in production of terephthalic acid (TPA), nontoxic compound and mono-2-hydroxyethyl (MHET), along with further depolymerization of MHET to release ethylene glycogen (EG) and terephthalic acid (TPA) by the second enzyme MHETase. Enzymatic plastic degradation has been proposed as an environmentally friendly and long-term solution to plastic waste in the environment. As a result, this review focuses on the enzymes involved in hydrolyzing PET plastic polymers, as well as some of the other microorganisms involved in plastic degradation.
  18. Chen SJ, Lam MQ, Thevarajoo S, Abd Manan F, Yahya A, Chong CS
    3 Biotech, 2020 Apr;10(4):160.
    PMID: 32206494 DOI: 10.1007/s13205-020-2148-z
    In this study, a bacterial strain CP22 with ability to produce cellulase, xylanase and mannanase was isolated from the oil palm compost. Based on the 16S rRNA gene analysis, the strain was affiliated to genus Micromonospora. To further investigate genes that are related to cellulose and hemicellulose degradation, the genome of strain CP22 was sequenced, annotated and analyzed. The de novo assembled genome of strain CP22 featured a size of 5,856,203 bp with G + C content of 70.84%. Detailed genome analysis on lignocellulose degradation revealed a total of 60 genes consisting of 47 glycoside hydrolase domains and 16 carbohydrate esterase domains predicted to be involved in cellulolytic and hemicellulolytic deconstruction. Particularly, 20 genes encode for cellulases (8 endoglucanases, 3 exoglucanases and 9 β-glucosidases) and 40 genes encode for hemicellulases (15 endo-1,4-β-xylanase, 3 β-xylosidase, 3 α-arabinofuranosidase, 10 acetyl xylan esterase, 6 polysaccharide deacetylase, 1 β-mannanase, 1 β-mannosidase and 1 α-galactosidase). Thirty-two genes encoding carbohydrate-binding modules (CBM) from six different families (CBM2, CBM4, CBM6, CBM9, CBM13 and CBM22) were present in the genome of strain CP22. These CBMs were found in 27 cellulolytic and hemicellulolytic genes, indicating their potential role in enhancing the substrate-binding capability of the enzymes. CBM2 and CBM13 are the major CBMs present in cellulases and hemicellulases (xylanases and mannanases), respectively. Moreover, a GH10 xylanase was found to contain 3 CBMs (1 CBM9 and 2 CBM22) and these CBMs were reported to bind specifically to xylan. This genome-based analysis could facilitate the exploration of this strain for lignocellulosic biomass degradation.
  19. Chilakamarry CR, Mahmood S, Saffe SNBM, Arifin MAB, Gupta A, Sikkandar MY, et al.
    3 Biotech, 2021 May;11(5):220.
    PMID: 33968565 DOI: 10.1007/s13205-021-02734-7
    Over recent years, keratin has gained great popularity due to its exceptional biocompatible and biodegradable nature. It has shown promising results in various industries like poultry, textile, agriculture, cosmetics, and pharmaceutical. Keratin is a multipurpose biopolymer that has been used in the production of fibrous composites, and with necessary modifications, it can be developed into gels, films, nanoparticles, and microparticles. Its stability against enzymatic degradation and unique biocompatibility has found their way into biomedical applications and regenerative medicine. This review discusses the structure of keratin, its classification and its properties. It also covers various methods by which keratin is extracted like chemical hydrolysis, enzymatic and microbial treatment, dissolution in ionic liquids, microwave irradiation, steam explosion technique, and thermal hydrolysis or superheated process. Special emphasis is placed on its utilisation in the form of hydrogels, films, fibres, sponges, and scaffolds in various biotechnological and industrial sectors. The present review can be noteworthy for the researchers working on natural protein and related usage.
  20. Chuah R, Gopinath SCB, Anbu P, Salimi MN, Yaakub ARW, Lakshmipriya T
    3 Biotech, 2020 Aug;10(8):364.
    PMID: 32832325 DOI: 10.1007/s13205-020-02365-4
    In this study, biological deoxygenation of graphene oxide (GO) using an Eclipta prostrata phytoextract was performed via the infusion method. The presence of oxide groups on the surface of graphene and removal of oxides groups by reduction were characterized through morphological and structural analyses. Field emission scanning electron microscopy images revealed that the synthesized GO and rGO were smooth and morphologically sound. Transmission electron microscopy images showed rGO developing lattice fringes with smooth edges and transparent sheets. Atomic force microscopy images showed an increase in the surface roughness of graphite oxide (14.29 nm) compared with that of graphite (1.784 nm) due to the presence of oxide groups after oxidation, and the restoration of surface roughness to 2.051 nm upon reduction. Energy dispersive X-ray analysis indicated a difference in the carbon/oxygen ratio between GO (1.90) and rGO (2.70). Fourier-transform infrared spectroscopy spectrum revealed peak stretches at 1029, 1388, 1578, and 1630 cm-1 for GO, and a decrease in the peak intensity after reduction that confirmed the removal of oxide groups. X-ray photoelectron microscopy also showed a decrease in the intensity of oxygen peak after reduction. In addition, thermogravimetric analysis suggested that rGO was less thermally stable than graphite, graphite oxide, and GO, with rGO decomposing after heating at temperatures ranging from room temperature to 600 °C.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links