Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Ahmad R, Kaus NHM, Hamid S
    Adv Exp Med Biol, 2020;1292:65-82.
    PMID: 30560443 DOI: 10.1007/5584_2018_302
    INTRODUCTION: Drug resistance has been a continuous challenge in cancer treatment. The use of nanotechnology in the development of new cancer drugs has potential. One of the extensively studied compounds is thymoquinone (TQ), and this work aims to compare two types of TQ-nanoformulation and its cytotoxicity toward resistant breast cancer cells.

    METHOD: TQ-nanoparticles were prepared and optimized by using two different formulations with different drugs to PLGA-PEG ratio (1:20 and 1:7) and different PLGA-PEG to Pluronic F68 ratio (10:1 and 2:1). The morphology and size were determined using TEM and DLS. Characterization of particles was done using UV-VIS, ATR-IR, entrapment efficiency, and drug release. The effects of drug, polymer, and surfactants were compared between the two formulations. Cytotoxicity assay was performed using MTS assay.

    RESULTS: TEM finding showed 96% of particles produced with 1:7 drug to PLGA-PEG were less than 90 nm in size and spherical in shape. This was confirmed with DLS which showed smaller particle size than those formed with 1:20 drug to PLGA-PEG ratio. Further analysis showed zeta potential was negatively charged which could facilitate cellular uptake as reported previously. In addition, PDI value was less than 0.1 in both formulations indicating monodispersed and less broad in size distribution. The absorption peak of PLGA-PEG-TQ-Nps was at 255 nm. The 1:7 drug to polymer formulation was selected for further analysis where the entrapment efficiency was 79.9% and in vitro drug release showed a maximum release of TQ of 50%. Cytotoxicity result showed IC50 of TQ-nanoparticle at 20.05 μM and free TQ was 8.25 μM.

    CONCLUSION: This study showed that nanoparticle synthesized with 1:7 drug to PLGA-PEG ratio and 2:1 PLGA-PEG to Pluronic F68 formed nanoparticles with less than 100 nm and had spherical shape as confirmed with DLS. This could facilitate its transportation and absorption to reach its target. There was conserved TQ stability as exhibited slow release of this volatile oil. The TQ-nanoparticles showed selective cytotoxic effect toward UACC 732 cells compared to MCF-7 breast cancer cells.

  2. Aizat WM, Hassan M
    Adv Exp Med Biol, 2018 11 2;1102:31-49.
    PMID: 30382567 DOI: 10.1007/978-3-319-98758-3_3
    Proteomics is the study of proteins, the workhorses of cells. Proteins can be subjected to various post-translational modifications, making them dynamic to external perturbation. Proteomics can be divided into four areas: sequence, structural, functional and interaction and expression proteomics. These different areas used different instrumentations and have different focuses. For example, sequence and structural proteomics mainly focus on elucidating a particular protein sequence and structure, respectively. Meanwhile, functional and interaction proteomics concentrate on protein function and interaction partners, whereas expression proteomics allows the cataloguing of total proteins in any given samples, hence providing a holistic overview of various proteins in a cell. The application of expression proteomics in cancer and crop research is detailed in this chapter. The general workflow of expression proteomics consisting the use of mass spectrometry instrumentation has also been described, and some examples of proteomics studies are also presented.
  3. Aizat WM, Ismail I, Noor NM
    Adv Exp Med Biol, 2018 11 2;1102:1-9.
    PMID: 30382565 DOI: 10.1007/978-3-319-98758-3_1
    The central dogma of molecular biology (DNA, RNA, protein and metabolite) has engraved our understanding of genetics in all living organisms. While the concept has been embraced for many decades, the development of high-throughput technologies particularly omics (genomics, transcriptomics, proteomics and metabolomics) has revolutionised the field to incorporate big data analysis including bioinformatics and systems biology as well as synthetic biology area. These omics approaches as well as systems and synthetic biology areas are now increasingly popular as seen by the growing numbers of publication throughout the years. Several journals which have published most of these related fields are also listed in this chapter to overview their impact and target journals.
  4. Asaduzzaman K, Reaz MB, Mohd-Yasin F, Sim KS, Hussain MS
    Adv Exp Med Biol, 2010;680:593-9.
    PMID: 20865544 DOI: 10.1007/978-1-4419-5913-3_65
    Electroencephalogram (EEG) serves as an extremely valuable tool for clinicians and researchers to study the activity of the brain in a non-invasive manner. It has long been used for the diagnosis of various central nervous system disorders like seizures, epilepsy, and brain damage and for categorizing sleep stages in patients. The artifacts caused by various factors such as Electrooculogram (EOG), eye blink, and Electromyogram (EMG) in EEG signal increases the difficulty in analyzing them. Discrete wavelet transform has been applied in this research for removing noise from the EEG signal. The effectiveness of the noise removal is quantitatively measured using Root Mean Square (RMS) Difference. This paper reports on the effectiveness of wavelet transform applied to the EEG signal as a means of removing noise to retrieve important information related to both healthy and epileptic patients. Wavelet-based noise removal on the EEG signal of both healthy and epileptic subjects was performed using four discrete wavelet functions. With the appropriate choice of the wavelet function (WF), it is possible to remove noise effectively to analyze EEG significantly. Result of this study shows that WF Daubechies 8 (db8) provides the best noise removal from the raw EEG signal of healthy patients, while WF orthogonal Meyer does the same for epileptic patients. This algorithm is intended for FPGA implementation of portable biomedical equipments to detect different brain state in different circumstances.
  5. Au A, Cheng KK, Wei LK
    Adv Exp Med Biol, 2017;956:599-613.
    PMID: 27722964 DOI: 10.1007/5584_2016_79
    Hypertension is a common but complex human disease, which can lead to a heart attack, stroke, kidney disease or other complications. Since the pathogenesis of hypertension is heterogeneous and multifactorial, it is crucial to establish a comprehensive metabolomic approach to elucidate the molecular mechanism of hypertension. Although there have been limited metabolomic, lipidomic and pharmacometabolomic studies investigating this disease to date, metabolomic studies on hypertension have provided greater insights into the identification of disease-specific biomarkers, predicting treatment outcome and monitor drug safety and efficacy. Therefore, we discuss recent updates on the applications of metabolomics technology in human hypertension with a focus on metabolic biomarker discovery.
  6. Awasthi R, Singh AK, Mishra G, Maurya A, Chellappan DK, Gupta G, et al.
    Adv Exp Med Biol, 2018 9 28;1087:3-14.
    PMID: 30259353 DOI: 10.1007/978-981-13-1426-1_1
    Circular RNAs (cirRNAs) are long, noncoding endogenous RNA molecules and covalently closed continuous loop without 5'-3' polarity and polyadenylated tail which are largely concentrated in the nucleus. CirRNA regulates gene expression by modulating microRNAs and functions as potential biomarker. CirRNAs can translate in vivo to link between their expression and disease. They are resistant to RNA exonuclease and can convert to the linear RNA by microRNA which can then act as competitor to endogenous RNA. This chapter summarizes the evolutionary conservation and expression of cirRNAs, their identification, highlighting various computational approaches on cirRNA, and translation with a focus on the breakthroughs and the challenges in this new field.
  7. Baharum SN, Azizan KA
    Adv Exp Med Biol, 2018 11 2;1102:51-68.
    PMID: 30382568 DOI: 10.1007/978-3-319-98758-3_4
    Over the last decade, metabolomics has continued to grow rapidly and is considered a dynamic technology in envisaging and elucidating complex phenotypes in systems biology area. The advantage of metabolomics compared to other omics technologies such as transcriptomics and proteomics is that these later omics only consider the intermediate steps in the central dogma pathway (mRNA and protein expression). Meanwhile, metabolomics reveals the downstream products of gene and expression of proteins. The most frequently used tools are nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Some of the common MS-based analyses are gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). These high-throughput instruments play an extremely crucial role in discovery metabolomics to generate data needed for further analysis. In this chapter, the concept of metabolomics in the context of systems biology is discussed and provides examples of its application in human disease studies, plant responses towards stress and abiotic resistance and also microbial metabolomics for biotechnology applications. Lastly, a few case studies of metabolomics analysis are also presented, for example, investigation of an aromatic herbal plant, Persicaria minor metabolome and microbial metabolomics for metabolic engineering applications.
  8. Chan SK, Lim TS
    Adv Exp Med Biol, 2017;1053:61-78.
    PMID: 29549635 DOI: 10.1007/978-3-319-72077-7_4
    The incident of two children in Europe who died of diphtheria due to a shortage of anti-toxin drugs has highlighted the need for alternative anti-toxins. Historically, antiserum produced from immunised horses have been used to treat diphtheria. Despite the potential of antiserum, the economical and medial concerns associated with the use of animal antiserum has led to its slow market demise. Over the years, new and emerging infectious diseases have grown to be a major global health threat. The emergence of drug-resistant superbugs has also pushed the boundaries of available therapeutics to deal with new infectious diseases. Antibodies have emerged as a possible alternative to combat the continuous onslaught of various infectious agents. The isolation of antibodies against pathogens of infectious diseases isolated from immune libraries utilising phage display has yielded promising results in terms of affinities and neutralizing activities. This chapter focuses on the concept of immune antibody libraries and highlights the application of immune antibody libraries to generate antibodies for various infectious diseases.
  9. Chan SK, Rahumatullah A, Lai JY, Lim TS
    Adv Exp Med Biol, 2017;1053:35-59.
    PMID: 29549634 DOI: 10.1007/978-3-319-72077-7_3
    Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.
  10. Chin KY, Pang KL, Soelaiman IN
    Adv Exp Med Biol, 2016;928:97-130.
    PMID: 27671814
    Tocotrienol is a member of vitamin E family and is well-known for its antioxidant and anti-inflammatory properties. It is also a suppressor of mevalonate pathway responsible for cholesterol and prenylated protein synthesis. This review aimed to discuss the health beneficial effects of tocotrienol, specifically in preventing or treating hyperlipidaemia, diabetes mellitus, osteoporosis and cancer with respect to these properties. Evidence from in vitro, in vivo and human studies has been examined. It is revealed that tocotrienol shows promising effects in preventing or treating the health conditions previously mentioned in in vivo and in vitro models. In some cases, alpha-tocopherol attenuates the biological activity of tocotrienol. Except for its cholesterol-lowering effects, data on the health-promoting effects of tocotrienol in human are limited. As a conclusion, the encouraging results on the health beneficial effects of tocotrienol should motivate researchers to explore its potential use in human.
  11. Choong YS, Lee YV, Soong JX, Law CT, Lim YY
    Adv Exp Med Biol, 2017;1053:221-243.
    PMID: 29549642 DOI: 10.1007/978-3-319-72077-7_11
    The use of monoclonal antibody as the next generation protein therapeutics with remarkable success has surged the development of antibody engineering to design molecules for optimizing affinity, better efficacy, greater safety and therapeutic function. Therefore, computational methods have become increasingly important to generate hypotheses, interpret and guide experimental works. In this chapter, we discussed the overall antibody design by computational approches.
  12. Choudhury BP, Roychoudhury S, Sengupta P, Toman R, Dutta S, Kesari KK
    Adv Exp Med Biol, 2022;1391:83-95.
    PMID: 36472818 DOI: 10.1007/978-3-031-12966-7_6
    Arsenic (As) is one of the most potent natural as well as anthropogenic metalloid toxicants that have various implications in the everyday life of humans. It is found in several chemical forms such as inorganic salt, organic salt, and arsine (gaseous form). Although it is mostly released via natural causes, there are many ways through which humans come in contact with As. Drinking water contamination by As is one of the major health concerns in various parts of the world. Arsenic exposure has the ability to induce adverse health effects including reproductive problems. Globally, around 15% of the couples are affected with infertility, of which about 20-30% are attributed to the male factor. Arsenic affects the normal development and function of sperm cells, tissue organization of the gonads, and also the sex hormone parameters. Stress induction is one of the implications of As exposure. Excessive stress leads to the release of glucocorticoids, which impact the oxidative balance in the body leading to overproduction of reactive oxygen species (ROS). This may in turn result in oxidative stress (OS) ultimately interfering with normal sperm and hormonal parameters. This study deals with As-induced OS and its association with sex hormone disruption as well as its effect on sperm and semen quality.
  13. Chowdhury SR, Mh Busra MF, Lokanathan Y, Ng MH, Law JX, Cletus UC, et al.
    Adv Exp Med Biol, 2018 10 26;1077:389-414.
    PMID: 30357700 DOI: 10.1007/978-981-13-0947-2_21
    Collagen type I is the most abundant matrix protein in the human body and is highly demanded in tissue engineering, regenerative medicine, and pharmaceutical applications. To meet the uprising demand in biomedical applications, collagen type I has been isolated from mammalians (bovine, porcine, goat and rat) and non-mammalians (fish, amphibian, and sea plant) source using various extraction techniques. Recent advancement enables fabrication of collagen scaffolds in multiple forms such as film, sponge, and hydrogel, with or without other biomaterials. The scaffolds are extensively used to develop tissue substitutes in regenerating or repairing diseased or damaged tissues. The 3D scaffolds are also used to develop in vitro model and as a vehicle for delivering drugs or active compounds.
  14. Fradelos EC, Latsou D, Alikari V, Papathanasiou IV, Roupa A, Balang V, et al.
    Adv Exp Med Biol, 2021;1337:17-25.
    PMID: 34972887 DOI: 10.1007/978-3-030-78771-4_3
    This study aimed to examine Greek nurses' perceptions about hospital ethical climate and to investigate the possible difference of those perceptions regarding their demographic and work-related characteristics. The cross-sectional study design was employed in this study in which 286 nurses and nurse assistants participated. Data were collected by a sheet containing demographic and work-related characteristics and the Greek version of the Oslons' Hospital Ethical Climate Scale. IBM Statistical Package for Social Sciences 25 was used in data analysis. Frequencies, means, percentages, and standard deviations summarized the data. For the statistical differences, parametric tests were performed. Independent Samples t and Pearson correlation analysis were used to determine the relationship between the ethical climate of the hospital and the nurses' characteristics. The p-values 0.05 were considered statistically significant. The mean age of the nurses was 44 years (SD: 8.5 years; range 24-66 years). The majority of them were women (77.3%). A percent of 57.7% of the sample was married. Most positive perceptions were concerning managers (4.01) following by peers (3.82), patients (3.69), hospitals (3.29) while the least positive perceptions of the ethical climate were concerning the physicians (3.16). The factors associated with hospital ethical perception were: working experience and responsible position. The highest score of ethical climate reported to managers subscale, while the minimum score was related to physicians. In general, Greek nurses reported positive perceptions regarding hospital ethical climate. The positive ethical climate is associated with a better working environment, fewer nurses' experience of moral distress, fewer chances for nursing turnover, high quality of nursing care, and fewer errors in nursing practice.
  15. Goh HH, Ng CL, Loke KK
    Adv Exp Med Biol, 2018 11 2;1102:11-30.
    PMID: 30382566 DOI: 10.1007/978-3-319-98758-3_2
    Functional genomics encompasses diverse disciplines in molecular biology and bioinformatics to comprehend the blueprint, regulation, and expression of genetic elements that define the physiology of an organism. The deluge of sequencing data in the postgenomics era has demanded the involvement of computer scientists and mathematicians to create algorithms, analytical software, and databases for the storage, curation, and analysis of biological big data. In this chapter, we discuss on the concept of functional genomics in the context of systems biology and provide examples of its application in human genetic disease studies, molecular crop improvement, and metagenomics for antibiotic discovery. An overview of transcriptomics workflow and experimental considerations is also introduced. Lastly, we present an in-house case study of transcriptomics analysis of an aromatic herbal plant to understand the effect of elicitation on the biosynthesis of volatile organic compounds.
  16. Goh HH
    Adv Exp Med Biol, 2018 11 2;1102:69-80.
    PMID: 30382569 DOI: 10.1007/978-3-319-98758-3_5
    This chapter introduces different aspects of bioinformatics with a brief discussion in the systems biology context. Example applications in network pharmacology of traditional Chinese medicine, systems metabolic engineering, and plant genome-scale modelling are described. Lastly, this chapter concludes on how bioinformatics helps to integrate omics data derived from various studies described in previous chapters for a holistic understanding of secondary metabolite production in P. minus.
  17. Haque N, Widera D, Abu Kasim NH
    Adv Exp Med Biol, 2019;1084:175-186.
    PMID: 30771186 DOI: 10.1007/5584_2018_299
    BACKGROUND: The response of stem cells to paracrine factors within the host's body plays an important role in the regeneration process after transplantation. The aim of this study was to determine the viability and paracrine factor profile of stem cells from human extracted deciduous teeth (SHED) pre-cultivated in media supplemented with either foetal bovine serum (FBS) or pooled human serum (pHS) in the presence of individual human sera (iHS).

    METHODS: SHED (n = 3) from passage 4 were expanded in FBS (FBS-SHED) or pHS (pHS-SHED) supplemented media until passage 7. During expansion, the proliferation of SHED was determined. Cells at passage 7 were further expanded in human serum from four individual donors (iHS) for 120 h followed by assessment of cell viability and profiling of the secreted paracrine factors.

    RESULTS: Proliferation of SHED was significantly higher (p 

  18. Haque N, Abu Kasim NH
    Adv Exp Med Biol, 2017 7 22;1083:29-44.
    PMID: 28730381 DOI: 10.1007/5584_2017_74
    In regenerative therapy, in vitro expansion of stem cells is critical to obtain a significantly higher number of cells for successful engraftment after transplantation. However, stem cells lose its regenerative potential and enter senescence during in vitro expansion. In this study, the influence of foetal bovine serum (FBS) and pooled human serum (pHS) on the proliferation, morphology and migration of stem cells from human extracted deciduous teeth (SHED) was compared. SHED (n = 3) was expanded in KnockOut DMEM supplemented with either pHS (pHS-SM) or FBS (FBS-SM). pHS was prepared using peripheral blood serum of six healthy male adults, aged between 21 and 35 years old. The number of live SHED was significantly higher, from passage 5 to 7, when cultured in pHS-SM compared to those cultured in FBS-SM (p 
  19. Hema CR, Paulraj MP, Yaacob S, Adom AH, Nagarajan R
    Adv Exp Med Biol, 2011;696:565-72.
    PMID: 21431597 DOI: 10.1007/978-1-4419-7046-6_57
    A brain machine interface (BMI) design for controlling the navigation of a power wheelchair is proposed. Real-time experiments with four able bodied subjects are carried out using the BMI-controlled wheelchair. The BMI is based on only two electrodes and operated by motor imagery of four states. A recurrent neural classifier is proposed for the classification of the four mental states. The real-time experiment results of four subjects are reported and problems emerging from asynchronous control are discussed.
  20. Jamal F, Pit S, Kasni S, Yasin MS, Aton SB, Singh K
    Adv Exp Med Biol, 1997;418:35-7.
    PMID: 9331592
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links