Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Alp S, Baka ZM
    Am J Orthod Dentofacial Orthop, 2018 Oct;154(4):517-523.
    PMID: 30268262 DOI: 10.1016/j.ajodo.2018.01.010
    INTRODUCTION: In this study, we aimed to determine the effect of regular probiotic consumption on microbial colonization in saliva in orthodontic patients and to comparatively evaluate the difference between the systemic consumption of probiotic products and the local application.

    METHODS: This study included 3 groups with 15 orthodontic patients in each. The control group included patients who had no probiotic treatment, the subjects in the kefir group consumed 2 × 100 ml of kefir (Atatürk Orman Ciftligi, Ankara, Turkey) per day, and the subjects in the toothpaste group brushed their teeth with toothpaste with probiotic content (GD toothpaste; Dental Asia Manufacturing, Shah Alam, Selangor, Malaysia) twice a day. Samples were collected at 3 times: beginning of the study, 3 weeks later, and 6 weeks later. The salivary flow rate, buffer capacity, and Streptococcus mutans and Lactobacillus levels in the saliva were evaluated. Chair-side kits were used to determine the S mutans and Lactobacillus levels.

    RESULTS: A statistically significant decrease was observed in the salivary S mutans and Lactobacillus levels in the kefir and toothpaste groups compared with the control group (P <0.05). A statistically significant increase was observed in the toothpaste group compared with the control and kefir groups in buffer capacity. Changes in the salivary flow rate were not statistically significant.

    CONCLUSIONS: The regular use of probiotics during fixed orthodontic treatment reduces the S mutans and Lactobacillus levels in the saliva.

  2. Alyessary AS, Yap AUJ, Othman SA, Ibrahim N, Rahman MT, Radzi Z
    Am J Orthod Dentofacial Orthop, 2018 Aug;154(2):260-269.
    PMID: 30075928 DOI: 10.1016/j.ajodo.2017.11.031
    INTRODUCTION: In this study, we evaluated the effect of bone-borne accelerated expansion protocols on sutural separation and sutural bone modeling using a microcomputed tomography system. We also determined the optimum instant sutural expansion possible without disruption of bone modeling.

    METHODS: Sixteen New Zealand white rabbits, 20 to 24 weeks old, were randomly divided into 4 experimental groups. Modified hyrax expanders were placed across their interfrontal sutures and secured with miniscrew implants located bilaterally in the frontal bone. The hyrax appliances were activated as follows: group 1 (control), 0.5-mm per day expansion for 12 days; group 2, 1-mm instant expansion followed by 0.5 mm per day for 10 days; group 3, 2.5-mm instant expansion followed by 0.5 mm per day for 7 days, and group 4, 4-mm instant expansion followed by 0.5 mm per day for 4 days. After 6 weeks of retention, sutural separation and sutural bone modeling were assessed by microcomputed tomography and quantified. Statistical analysis was performed using Kruskal Wallis and Mann-Whitney U tests and the Spearman rho correlation (P <0.05).

    RESULTS: Median amounts of sutural separation ranged from 2.84 to 4.41 mm for groups 1 and 4, respectively. Median bone volume fraction ranged from 59.96% to 69.15% for groups 4 and 3, respectively. A significant correlation (r = 0.970; P <0.01) was observed between the amounts of instant expansion and sutural separation.

    CONCLUSIONS: Pending histologic verifications, our findings suggest that the protocol involving 2.5 mm of instant expansion followed by 0.5 mm per day for 7 days is optimal for accelerated sutural expansion. When 4 mm of instant expansion was used, the sutural bone volume fraction was decreased.

  3. Asif MK, Ibrahim N, Sivarajan S, Heng Khiang Teh N, Chek Wey M
    Am J Orthod Dentofacial Orthop, 2020 Oct;158(4):579-586.e1.
    PMID: 32826123 DOI: 10.1016/j.ajodo.2019.09.022
    INTRODUCTION: The study aimed to investigate the effects of micro-osteoperforations (MOPs) on the mandibular bone volume/tissue volume (BV/TV) ratio changes and the rate of orthodontic tooth movement using cone-beam computed tomography images. Another objective was to evaluate the effects of MOP frequency intervals (4 weeks, 8 weeks, and 12 weeks) on the BV/TV ratio and rate of tooth movement.

    METHODS: In 24 participants, 140-200 g of force was applied for mandibular canine retraction. Three MOPs were made according to the scheduled intervals of the 3 different groups: group 1 (MOP 4 weeks), group 2 (MOP 8 weeks), and group 3 (MOP 12 weeks) directly at the mandibular buccal cortical bone of extracted first premolars sites. Cone-beam computed tomography scans were obtained at the 12th week after MOP application. Computed tomography Analyzer software (version 1.11.0.0; Skyscan, Kontich, Belgium) was used to compute the trabecular alveolar BV/TV ratio.

    RESULTS: A significant difference was observed in the rate of canine movement between control and MOP. Paired t test analysis showed a significant difference (P = 0.001) in the mean BV/TV ratio between control and MOP sides in all the frequency intervals groups. However, the difference was significant only in group 1 (P = 0.014). A strong negative correlation (r = -0.86) was observed between the rate of canine tooth movement and the BV/TV ratio at the MOP side for group 1 and all frequency intervals together (r = -0.42).

    CONCLUSIONS: The rate of orthodontic tooth movement can be accelerated by the MOP technique with frequently repeated MOPs throughout the treatment.

  4. Ibrahim N, Asif MK, Sivarajan S, Teh NHK, Wey MC
    Am J Orthod Dentofacial Orthop, 2021 02;159(2):e83.
    PMID: 33546837 DOI: 10.1016/j.ajodo.2020.11.009
  5. Jose JE, Padmanabhan S, Chitharanjan AB
    Am J Orthod Dentofacial Orthop, 2013 Jul;144(1):67-72.
    PMID: 23810047 DOI: 10.1016/j.ajodo.2013.02.023
    The objectives of the study were to evaluate and compare the effects of the systemic consumption of probiotic curd and the topical application of probiotic toothpaste on the Streptococcus mutans levels in the plaque of orthodontic patients.
  6. Kamarudin Y, Skeats MK, Ireland AJ, Barbour ME
    Am J Orthod Dentofacial Orthop, 2020 Nov;158(5):e73-e82.
    PMID: 33008710 DOI: 10.1016/j.ajodo.2020.07.027
    INTRODUCTION: White spot lesions are a common side effect of orthodontic treatment. This laboratory study aimed to explore the suitability of chlorhexidine hexametaphosphate (CHX-HMP) as a coating for orthodontic elastomeric ligatures to provide sustained chlorhexidine (CHX) release.

    METHODS: Dissolution kinetics of CHX-HMP were firstly explored using spectroscopy and a colorimetric phosphate assay. Elastomeric ligatures were categorized into 3 groups-acetone-conditioned, ethanol-conditioned, and as received-and were then immersed in 5 mM CHX-HMP suspension or 5 mM chlorhexidine digluconate solution and rinsed. CHX release was measured over 8 weeks, and the effects of conditioning and immersion on elastomeric force and extension at rupture and surface topography were investigated.

    RESULTS: CHX-HMP exhibited a gradual equilibration that had not reached equilibrium within 8 weeks, releasing soluble CHX and a mixture of polyphosphate and orthophosphate. CHX digluconate-treated ligatures showed no CHX release, whereas CHX-HMP-treated ligatures showed varying degrees of release. As received, CHX-HMP-treated ligatures showed a modest release of CHX up to 7 days. Acetone conditioning did not enhance CHX-HMP uptake or subsequent CHX release and caused a deterioration in mechanical properties. Ethanol conditioning enhanced CHX-HMP uptake (6×) and led to a sustained CHX release over 8 weeks without affecting mechanical properties.

    CONCLUSIONS: Within the inherent limitations of this in-vitro study, CHX-HMP led to a sustained release of CHX from orthodontic elastomeric ligatures after ethanol conditioning. Conditioned and coated elastomeric ligatures may ultimately find application in the prevention of white spot lesions in orthodontic patients.

  7. Mulimani PS
    Am J Orthod Dentofacial Orthop, 2017 Jul;152(1):1-8.
    PMID: 28651753 DOI: 10.1016/j.ajodo.2017.03.020
    Organized evidence-based practice is said to have started in the medical field in the late 20th century. Its principles and usage eventually spread to other health sciences, including orthodontics. Although the conceptual foundations and basic tenets of evidence-based orthodontics are based on the classical approach of testing medical interventions, differences unravel as we encounter the ground realities in orthodontics, which are unique due to the length, complexity, and diversity involved in orthodontic treatment and research. How has this led to the evolution of evidence-based orthodontics and changes in its applications? Is it being translated to better clinical answers, treatment strategies, patient satisfaction, and information for orthodontists? What more needs to be done, considering the rapidly changing orthodontic scenario? This article aims to explore these questions to evaluate how evidence-based orthodontics has played itself out so far, so that it can continue to grow strong and stand up to the challenges of 21st century orthodontics.
  8. Qamruddin I, Alam MK, Fida M, Khan AG
    Am J Orthod Dentofacial Orthop, 2016 Jan;149(1):62-6.
    PMID: 26718379 DOI: 10.1016/j.ajodo.2015.06.024
    The aim of this study was to see the effect of a single dose of low-level laser therapy on spontaneous and chewing pain after the placement of elastomeric separators.
  9. Qamruddin I, Alam MK, Mahroof V, Fida M, Khamis MF, Husein A
    Am J Orthod Dentofacial Orthop, 2017 Nov;152(5):622-630.
    PMID: 29103440 DOI: 10.1016/j.ajodo.2017.03.023
    INTRODUCTION: The aim of this study was to evaluate the effect of low-level laser irradiation applied at 3-week intervals on orthodontic tooth movement and pain associated with orthodontic tooth movement using self-ligating brackets.

    METHODS: Twenty-two patients (11 male, 11 female; mean age, 19.8 ± 3.1 years) with Angle Class II Division 1 malocclusion were recruited for this split-mouth clinical trial; they required extraction of maxillary first premolars bilaterally. After leveling and alignment with self-ligating brackets (SmartClip SL3; 3M Unitek, St Paul, Minn), a 150-g force was applied to retract the canines bilaterally using 6-mm nickel-titanium closed-coil springs on 0.019 x 0.025-in stainless steel archwires. A gallium-aluminum-arsenic diode laser (iLas; Biolase, Irvine, Calif) with a wavelength of 940 nm in a continuous mode (energy density, 7.5 J/cm2/point; diameter of optical fiber tip, 0.04 cm2) was applied at 5 points buccally and palatally around the canine roots on the experimental side; the other side was designated as the placebo. Laser irradiation was applied at baseline and then repeated after 3 weeks for 2 more consecutive follow-up visits. Questionnaires based on the numeric rating scale were given to the patients to record their pain intensity for 1 week. Impressions were made at each visit before the application of irradiation at baseline and the 3 visits. Models were scanned with a CAD/CAM scanner (Planmeca, Helsinki, Finland).

    RESULTS: Canine retraction was significantly greater (1.60 ± 0.38 mm) on the experimental side compared with the placebo side (0.79 ± 0.35 mm) (P <0.05). Pain was significantly less on the experimental side only on the first day after application of LLLI and at the second visit (1.4 ± 0.82 and 1.4 ± 0.64) compared with the placebo sides (2.2 ± 0.41 and 2.4 ± 1.53).

    CONCLUSIONS: Low-level laser irradiation applied at 3-week intervals can accelerate orthodontic tooth movement and reduce the pain associated with it.

  10. Shahrin AA, Ghani SHA, Norman NH
    Am J Orthod Dentofacial Orthop, 2021 Dec;160(6):784-792.
    PMID: 34452786 DOI: 10.1016/j.ajodo.2021.04.021
    INTRODUCTION: This trial aimed to investigate the effectiveness of microosteoperforations (MOPs) in overall time taken for alignment of maxillary anterior crowding and to evaluate the alignment improvement percentage within 6 months between MOPs and control groups.

    METHODS: Thirty adult participants (25 females and 5 males; mean age, 22.66 ± 3.27 years) with moderate upper labial segment crowding were randomly assigned into intervention and control groups using block randomization. All participants had first premolar extractions, bonded conventional fixed appliances, and 0.014-in, followed by 0.018-in nickel-titanium archwire placement for initial alignment. The intervention group received a 3-mm deep MOPs procedure under local anesthesia using a Propel device (Propel Ortho Singapore, Pte, Ltd, Winstedt Rd, Singapore) on the labial attached gingivae of maxillary incisors at monthly visits until complete alignment. Little's irregularity index was used to assess the overall changes and measure the change of tooth alignment of the 6 maxillary anterior teeth. Assessor blinding was employed.

    RESULTS: There was no statistically significant difference in the median overall alignment duration between MOPs and control groups (139 days [95% confidence interval, 115.32-161.83] vs 143 days [95% confidence interval, 107.12-179.74]; hazard ratio, 0.829; P = 0.467). The MOPs procedure had no significant effect on the alignment duration (P = 0.657) and no overall significant difference in alignment improvement percentage among 2 groups on the basis of time (F = 2.53; P = 0.124). No harm was encountered.

    CONCLUSIONS: The application of MOPs is no more effective in accelerating initial orthodontic alignment than conventional treatment.

    TRIAL REGISTRATION: This trial was registered at the ISRCTN registry with the study ID ISRCTN15080404.

    PROTOCOL: https://doi.org/10.1186/ISRCTN15080404.

    FUNDING: This work was supported by the Postgraduate Trust Fund, Faculty of Dentistry, Universiti Teknologi MARA.

  11. Sia S, Shibazaki T, Koga Y, Yoshida N
    Am J Orthod Dentofacial Orthop, 2009 Jan;135(1):36-41.
    PMID: 19121498 DOI: 10.1016/j.ajodo.2007.01.034
    This study was designed to determine the optimum vertical height of the retraction force on the power arm that is required for efficient anterior tooth retraction during space closure with sliding mechanics.
  12. Sivarajan S, Ringgingon LP, Fayed MMS, Wey MC
    Am J Orthod Dentofacial Orthop, 2020 Mar;157(3):290-304.
    PMID: 32115107 DOI: 10.1016/j.ajodo.2019.10.009
    INTRODUCTION: Minimally invasive micro-osteoperforations (MOPs) look promising for a routine acceleration of orthodontic tooth movement (OTM). The objective of this research was to systematically evaluate evidence regarding the effects of MOPs on the OTM rate, treatment duration, and associated complications.

    METHODS: Electronic database and hand search of English literature in PubMed, Cochrane Central Register of Controlled Trials, Embase, Web of Science, and clinical trial.gov, with author clarification were performed. The selection criteria were randomized controlled trial (RCT) comparing MOPs with conventional treatment involving both extraction and nonextraction. Cochrane's risk of bias tool and Grading of Recommendations Assessment, Development and Evaluation approach were used for quality assessment. Studies were analyzed with chi-square-based Q statistic methods, I2 index, fixed-effects, and random-effects model. Quantitative analysis was done on homogenous studies using Review Manager.

    RESULTS: Eight RCTs were included for the qualitative analysis. Meta-analysis of 2 homogenous studies indicated insignificant effect with MOPs (0.01 mm less OTM; 95% CI, 0.13-0.11; P = 0.83). No difference (P >0.05) was found in anchorage loss, root resorption, gingival recession, and pain.

    CONCLUSIONS: Meta-analysis of 2 low-risk of bias studies showed no effect with single application MOPs over a short observation period; however, the overall evidence was low. The quality of evidence for MOP side effects ranged from high to low. Future studies are suggested to investigate repeated MOPs effect over the entire treatment duration for different models of OTM and its related biological changes.

    TRIAL REGISTRATION NUMBER: PROSPERO CDR42019118642.

  13. Surendran S, Thomas E
    Am J Orthod Dentofacial Orthop, 2014 Jan;145(1):7-14.
    PMID: 24373650 DOI: 10.1016/j.ajodo.2013.09.007
    The objective of this study was to determine whether dental calcification can be used as a first-level diagnostic tool for assessment of skeletal maturity.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links