Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Mustafa FH, Ismail I, Ahmad Munawar AAZ, Abdul Basir B, Shueb RH, Irekeola AA, et al.
    Anal Biochem, 2023 Dec 15;683:115368.
    PMID: 37890549 DOI: 10.1016/j.ab.2023.115368
    Hand, Foot, and Mouth Disease (HFMD) is an outbreak infectious disease that can easily spread among children under the age of five. The most common causative agents of HFMD are enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), but infection caused by EV71 is more associated with fatalities due to severe neurological disorders. The present diagnosis methods rely on physical examinations by the doctors and further confirmation by laboratories detection methods such as viral culture and polymerase chain reaction. Clinical signs of HFMD infection and other childhood diseases such as chicken pox, and allergies are similar, yet the genetics and pathogenicity of the viruses are substantially different. Thus, there is an urgent need for an early screening of HFMD using an inexpensive and user-friendly device that can directly detect the causative agents of the disease. This paper reviews current HFMD diagnostic methods based on various target types, such as nucleic acid, protein, and whole virus. This was followed by a thorough discussion on the emerging sensing technologies for HFMD detection, including surface plasmon resonance, electrochemical sensor, and surface enhanced Raman spectroscopy. Lastly, optical absorption spectroscopic method was critically discussed and proposed as a promising technology for HFMD screening and detection.
  2. Ruman UE, Zubair M, Zeeshan MH
    Anal Biochem, 2023 Jun 01;670:115148.
    PMID: 37019252 DOI: 10.1016/j.ab.2023.115148
    The purpose of this study was to explore the new effective method and investigate the dissipation of chlorfenapyr and deltamethrin (DM) pesticides used in the treatment of guava fruit from tropical and sub-tropical areas of Pakistan. Five different solutions of varying concentrations of pesticides were prepared. This study involved the in-vitro and in-vivo analysis of modulated electric flux-triggered degradation as an efficient method for the safer degradation of selected pesticides. The Taser gun was used as a tool for providing different numbers of electrical shocks of million voltages to the pesticides present in guava fruit at different temperatures. The degraded pesticides were extracted and analyzed by High-performance liquid chromatography (HPLC). The HPLC chromatograms verified that significant dissipation of pesticides took place when these were exposed to 9 shocks at 37 °C, which proved the efficiency of this degradation method. More than 50% of the total spray of both pesticides was dissipated. Thus, modulated electrical flux-triggered degradation is one of the effective methods for pesticide degradation.
  3. Lorrine OE, Rahman RNZRA, Joo Shun T, Salleh AB, Oslan SN
    Anal Biochem, 2023 May 01;668:115092.
    PMID: 36889624 DOI: 10.1016/j.ab.2023.115092
    In eukaryotes, serine proteases are cellular localized hydrolases reported to regulate essential biological reactions. Improved industrial applications of proteins are aided by prediction and analysis of their 3-dimensional structures (3D). A serine protease was identified from CTG-clade yeast Meyerozyma guilliermondii strain SO and its 3D structure as well as its catalytic attributes have not been fully understood yet, thus we seek to report on the catalytic mechanism of M. guilliermondii strain SO MgPRB1 using substrate PMSF via in silico docking as well as its stability by way of disulfide bonds formation. Herein, bioinformatics tools and techniques were used to predict, validate and analyze the possible changes of CUG ambiguity (if any) in strain SO using template PDB ID: 3F7O. Structural assessments confirmed the classic catalytic triad Asp305, His337, and Ser499. Superimposition of MgPRB1 and template 3F7O structures revealed the unlinked cysteine residues between Cys341, Cys440, Cys471 and Cys506 of MgPRB1 compared to template 3F7O with two disulfide bonds formation, which confers structural stability. In conclusion, serine protease structure from strain SO was successfully predicted and studies towards understanding at the molecular level may be undertaken for its potential applications in the degradation of peptide bonds.
  4. Akinsola RO, Adewoyin M, Lee CW, Sim EU, Narayanan K
    Anal Biochem, 2021 12 01;634:114432.
    PMID: 34695391 DOI: 10.1016/j.ab.2021.114432
    Quantification of bacterial invasion into eukaryotic cells is a prerequisite to unfold the molecular mechanisms of this vector's function to obtain insights for improving its efficiency. Invasion is traditionally quantified by antibiotic protection assays that require dilution plating and counting of colony-forming units rescued from infected cells. However, to differentiate between attached and internalized bacteria vector, this assay requires supplementation by a time-consuming and tedious immunofluorescence staining, making it laborious and reduces its reliability and reproducibility. Here we describe a new red fluorescent protein (RFP)-based high-throughput and inexpensive method for tracking bacterial adherence and internalization through flow cytometry to provide a convenient and real-time quantification of bacterial invasiveness in a heterogeneous population of cells. We invaded MCF-7, A549, and HEK-293 cells with the E. coli vector and measured RFP using imaging flow cytometry. We found high cellular infection of up to 70.47% in MCF-7 compared to 27.4% and 26.2% in A549 and HEK-293 cells, respectively. The quantitative evaluation of internalized E. coli is rapid and cell-dependent, and it distinctively differentiates between attached and cytosolic bacteria while showing the degree of cellular invasiveness. This imaging flow cytometry approach can be applied broadly to study host-bacteria interaction.
  5. Nawaz N, Abu Bakar NK, Muhammad Ekramul Mahmud HN, Jamaludin NS
    Anal Biochem, 2021 10 01;630:114328.
    PMID: 34363786 DOI: 10.1016/j.ab.2021.114328
    In multiple biological processes, molecular recognition performs an integral role in detecting bio analytes. Molecular imprinted polymers (MIPs) are tailored sensing materials that can biomimic the biologic ligands and can detect specific target molecules selectively and sensitively. The formulation of molecularly imprinted polymers is followed by the formulation of a control termed as non-imprinted polymer (NIP), which, in the absence of a template, is commonly formulated to evaluate whether distinctive imprints have been produced for the template. Given the difficulties confronting bioanalytical researchers, it is inevitable that this strategy would come out as a central route of multidisciplinary studies to create extremely promising stable artificial receptors as a replacement or accelerate biological matrices. The ease of synthesis, low cost, capability to 'tailor' recognition element for analyte molecules, and stability under harsh environments make MIPs promising candidates as a recognition tool for biosensing. Compared to biological systems, molecular imprinting techniques have several advantages, including high recognition ability, long-term durability, low cost, and robustness, allowing molecularly imprinted polymers to be employed in drug delivery, biosensor technology, and nanotechnology. Molecular imprinted polymer-based sensors still have certain shortcomings in determining biomacromolecules (nucleic acid, protein, lipids, and carbohydrates), considering the vast volume of the latest literature on biomicromolecules. These potential materials are still required to address a few weaknesses until gaining their position in recognition of biomacromolecules. This review aims to highlight the current progress in molecularly imprinted polymers (MIPs)-based sensors for the determination of deoxyribonucleic acid (DNA) or nucleobases.
  6. Wong YC, Osahor A, Al-Ajli FOM, Narayanan K
    Anal Biochem, 2021 10 01;630:114324.
    PMID: 34363787 DOI: 10.1016/j.ab.2021.114324
    The effect of DNA topology on transfection efficiency of mammalian cells has been widely tested on plasmids smaller than 10 kb, but little is known for larger DNA vectors carrying intact genomic DNA containing introns, exons, and regulatory regions. Here, we demonstrate that circular BACs transfect more efficiently than covalently closed linear BACs. We found up to 3.1- and 8.9- fold higher eGFP expression from circular 11 kb and 100 kb BACs, respectively, compared to linear BACs. These findings provide insights for improved vector development for gene delivery and expression studies of large intact transgenes in mammalian cells.
  7. Ng AWR, Narayanan K
    Anal Biochem, 2021 09 01;628:114287.
    PMID: 34119486 DOI: 10.1016/j.ab.2021.114287
    Fabry disease is caused by reduced α-GAL A activity and accumulation of globotriaosylceramide (Gb3). Here, we describe a microplate Gb3 assay using fluorophore-tagged antibody and crude cellular lipid extracts. The assay is able to detect higher Gb3 concentrations in human Fabry cells compared to non-diseased cells. This result was verified by immunofluorescence staining that revealed large amounts of Gb3 deposits in Fabry cell lines, demonstrating the accuracy of this method. This assay may provide the basis for detecting Fabry disease by quantifying Gb3 deposits from human biological samples, for example, from urine and blood.
  8. Akinsola RO, Lee CW, Sim EUH, Narayanan K
    Anal Biochem, 2021 03 01;616:114088.
    PMID: 33358938 DOI: 10.1016/j.ab.2020.114088
    Endosomal escape is considered a crucial barrier that needs to be overcome by integrin-mediated E. coli for gene delivery into mammalian cells. Bafilomycin, a potent inhibitor of the H+ proton pump commonly employed to lower endosomal pH, was evaluated as part of the E. coli protocol during delivery. We found an increase in green fluorescent protein expression up 6.9, 3.2, 5.0, 2.8, and 4.5 fold in HeLa, HEK-293, A549, HT1080, and MCF-7 respectively, compared to untreated cells. Our result showed for the first time that Inhibition of lysosomal V-ATPase enhances E. coli efficiency.
  9. Awaludin N, Abdullah J, Salam F, Ramachandran K, Yusof NA, Wasoh H
    Anal Biochem, 2020 12 01;610:113876.
    PMID: 32750357 DOI: 10.1016/j.ab.2020.113876
    The identification of rice bacterial leaf blight disease requires a simple, rapid, highly sensitive, and quantitative approach that can be applied as an early detection monitoring tool in rice health. This paper highlights the development of a turn-off fluorescence-based immunoassay for the early detection of Xanthomonas oryzae pv. oryzae (Xoo), a gram-negative bacterium that causes rice bacterial leaf blight disease. Antibodies against Xoo bacterial cells were produced as specific bio-recognition molecules and the conjugation of these antibodies with graphene quantum dots and gold nanoparticles was performed and characterized, respectively. The combination of both these bio-probes as a fluorescent donor and metal quencher led to changes in the fluorescence signal. The immunoreaction between AntiXoo-GQDs, Xoo cells, and AntiXoo-AuNPs in the immuno-aggregation complex led to the energy transfer in the turn-off fluorescence-based quenching system. The change in fluorescence intensity was proportional to the logarithm of Xoo cells in the range of 100-105 CFU mL-1. The limit of detection was achieved at 22 CFU mL-1 and the specificity test against other plant disease pathogens showed high specificity towards Xoo. The detection of Xoo in real plant samples was also performed in this study and demonstrated satisfactory results.
  10. Thevendran R, Navien TN, Meng X, Wen K, Lin Q, Sarah S, et al.
    Anal Biochem, 2020 07 01;600:113742.
    PMID: 32315616 DOI: 10.1016/j.ab.2020.113742
    The performance of aptamers as versatile tools in numerous analytical applications is critically dependent on their high target binding specificity and selectivity. However, only the technical or methodological aspects of measuring aptamer-target binding affinities are focused, ignoring the equally important mathematical components that play pivotal roles in affinity measurements. In this study, we aim to provide a comprehensive review regarding the utilization of different mathematical models and equations, along with a detailed description of the computational steps involved in mathematically deriving the binding affinity of aptamers against their specific target molecules. Mathematical models ranging from one-site binding to multiple aptameric binding site-based models are explained in detail. Models applied in several different approaches of affinity measurements such as thermodynamics and kinetic analysis, including cooperativity and competitive-assay based mathematical models have been elaborately discussed. Mathematical models incorporating factors that could potentially affect affinity measurements are also further scrutinized.
  11. Lee MJ, Ramanathan S, Mansor SM, Tan SC
    Anal Biochem, 2020 06 15;599:113733.
    PMID: 32302607 DOI: 10.1016/j.ab.2020.113733
    An enzyme-linked immunosorbent assay for detection of mitragynine, other closely related Kratom alkaloids and metabolites was developed using polyclonal antibodies. Mitragynine was conjugated to a carrier protein, cationized-bovine serum albumin using Mannich reaction. The synthesized antigen was injected into rabbits to elicit specific polyclonal antibodies against mitragynine. An enzyme conjugate was synthesized for evaluating its performance with the antibodies produced. The assay had an IC50 of 7.3 ng/mL with a limit of detection of 15 ng/mL for mitragynine. Antibody produced have high affinity for mitragynine (100%), other closely related Kratom alkaloids such as paynantheine (54%), speciociliatine (63%), 7α-hydroxy-7H-mitragynine (83%) and cross-reacted with metabolites 9-O-demethyl mitragynine (79%), 16-carboxy mitragynine (103%), 9-O-demethyl mitragynine sulfate (263%), 9-O-demethyl mitragynine glucuronide (60%), 16-carboxy mitragynine glucuronide (60%), 9-O-demethyl-16-carboxy mitragynine sulfate (270%) and 17-O-demethyl-16,17-dihydro mitragynine glucuronide (34%). It showed cross-reactivity less than 0.01% to reserpine, codeine, morphine, caffeine, methadone, amphetamine, and cocaine. Ten-fold dilution urine was used in the assay to reduce the matrix effects. The recovery ranged from 83% to 112% with variation coefficients in intraday and interday less than 8% and 6%, respectively. The ELISA turned out to be a convenient tool to diagnose mitragynine, other closely related Kratom alkaloids and metabolites in human urine samples.
  12. Appaturi JN, Pulingam T, Thong KL, Muniandy S, Ahmad N, Leo BF
    Anal Biochem, 2020 01 15;589:113489.
    PMID: 31655050 DOI: 10.1016/j.ab.2019.113489
    Rapid detection of foodborne pathogens is crucial as ingestion of contaminated food products may endanger human health. Thus, the objective of this study was to develop a biosensor using reduced graphene oxide-carbon nanotubes (rGO-CNT) nanocomposite via the hydrothermal method for accurate and rapid label-free electrochemical detection of pathogenic bacteria such as Salmonella enterica. The rGO-CNT nanocomposite was characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The nanocomposite was dropped cast on the glassy carbon electrode and further modified with amino-modified DNA aptamer. The resultant ssDNA/rGO-CNT/GCE aptasensor was then used to detect bacteria by using differential pulse voltammetry (DPV) technique. Synergistic effects of aptasensor was evident through the combination of enhanced electrical properties and facile chemical functionality of both rGO and CNT for the stable interface. Under optimal experimental conditions, the aptasensor could detect S. Typhimurium in a wide linear dynamic range from 101 until 108 cfu mL-1 with a 101 cfu mL-1 of the limit of detection. This aptasensor also showed good sensitivity, selectivity and specificity for the detection of microorganisms. Furthermore, we have successfully applied the aptasensor for S. Typhimurium detection in real food samples.
  13. Liew PS, Chen Q, Ng AWR, Chew YC, Ravin NV, Sim EUH, et al.
    Anal Biochem, 2019 10 15;583:113361.
    PMID: 31306622 DOI: 10.1016/j.ab.2019.113361
    Phage N15 protelomerase (TelN) cleaves double-stranded circular DNA containing a telomerase-occupancy-site (tos) and rejoins the resulting linear-ends to form closed-hairpin-telomeres in Escherichia coli (E. coli). Continued TelN expression is essential to support resolution of the linear structure. In mammalian cells, no enzyme with TelN-like activities has been found. In this work, we show that phage TelN, expressed transiently and stably in human and mouse cells, recapitulates its native activities in these exogenous environments. We found TelN to accurately resolve tos-DNA in vitro and in vivo within human and mouse cells into linear DNA-containing terminal telomeres that are resistant to RecBCD degradation, a hallmark of protelomerase processing. In stable cells, TelN activity was detectable for at least 60 days, which suggests the possibility of limited silencing of its expression. Correspondingly, linear plasmid containing a 100 kb human β-globin gene expressed for at least 120 h in non-β-globin-expressing mouse cells with TelN presence. Our results demonstrate TelN is able to cut and heal DNA as hairpin-telomeres within mammalian cells, providing a tool for creating novel structures by DNA resolution in these hosts. The TelN protelomerase may be useful for exploring novel technologies for genome interrogation and chromosome engineering.
  14. Lee SY, Fazlina N, Tye GJ
    Anal Biochem, 2019 09 15;581:113352.
    PMID: 31260647 DOI: 10.1016/j.ab.2019.113352
    DNA-templated silver nanocluster (AgNC), a new promising fluorescence probe has gained importance in biosensing and bioimaging in recent years. We employed a label-free AgNC to detect an intracellular transcription factor known as forkhead box p3 (FOXP3), which is the master regulator of regulatory T cells (Tregs) suppressive function. We developed an optimized method for the detection of messenger ribonucleic acid (mRNA) of FOXP3 by hybridizing AgNC and G-rich to the target FOXP3 mRNA of a MCF-7 cells. MCF-7 cells are chosen as a model as it readily expresses FOXP3. The hybridized samples were examined with UV illuminator and further verified with fluorescence spectroscopy, fluorescence microscope and flow cytometry. The successful hybridization of a three-way junction with AgNC, G-rich and mRNA FOXP3 target generated an improved fluorescence intensity with a spectral shift. We have successfully delivered the green fluorescing AgNC and G-rich into MCF-7 cells, producing a shift to red fluorescing cells corroborated by flow cytometry results. In summary, our approach enables the detection of intracellular FOXP3 nucleic acid and holds considerable potential in establishing a non-lethal intracellular detection system which would be crucial for the isolation of regulatory T-cells (Tregs) when combined with other cell surface markers.
  15. Abdul-Hamid NA, Abas F, Maulidiani M, Ismail IS, Tham CL, Swarup S, et al.
    Anal Biochem, 2019 07 01;576:20-32.
    PMID: 30970239 DOI: 10.1016/j.ab.2019.04.001
    The variation in the extracellular metabolites of RAW 264.7 cells obtained from different passage numbers (passage 9, 12 and 14) was examined. The impact of different harvesting protocols (trypsinization and scraping) on recovery of intracellular metabolites was then assessed. The similarity and variation in the cell metabolome was investigated using 1H NMR metabolic profiling modeled using multivariate data analysis. The characterization and quantification of metabolites was performed to determine the passage-related and harvesting-dependent effects on impacted metabolic networks. The trypsinized RAW cells from lower passages gave higher intensities of most identified metabolites, including asparagine, serine and tryptophan. Principal component analysis revealed variation between cells from different passages and harvesting methods, as indicated by the formation of clusters in score plot. Analysis of S-plots revealed metabolites that acted as biomarkers in discriminating cells from different passages including acetate, serine, lactate and choline. Meanwhile lactate, glutamine and pyruvate served as biomarkers for differentiating trypsinized and scraped cells. In passage-dependent effects, glycolysis and TCA cycle were influential, whereas glycerophospholipid metabolism was affected by the harvesting method. Overall, it is proposed that typsinized RAW cells from lower passage numbers are more appropriate when conducting experiments related to NMR metabolomics.
  16. Rasouli E, Shahnavaz Z, Basirun WJ, Rezayi M, Avan A, Ghayour-Mobarhan M, et al.
    Anal Biochem, 2018 09 01;556:136-144.
    PMID: 29981317 DOI: 10.1016/j.ab.2018.07.002
    Human papillomavirus (HPV) is one of the most common sexually transmitted disease, transmitted through intimate skin contact or mucosal membrane. The HPV virus consists of a double-stranded circular DNA and the role of HPV virus in cervical cancer has been studied extensively. Thus it is critical to develop rapid identification method for early detection of the virus. A portable biosensing device could give rapid and reliable results for the identification and quantitative determination of the virus. The fabrication of electrochemical biosensors is one of the current techniques utilized to achieve this aim. In such electrochemical biosensors, a single-strand DNA is immobilized onto an electrically conducting surface and the changes in electrical parameters due to the hybridization on the electrode surface are measured. This review covers the recent developments in electrochemical DNA biosensors for the detection of HPV virus. Due to the several advantages of electrochemical DNA biosensors, their applications have witnessed an increased interest and research focus nowadays.
  17. Lee W, Syed A A, Leow CY, Tan SC, Leow CH
    Anal Biochem, 2018 08 15;555:81-93.
    PMID: 29775561 DOI: 10.1016/j.ab.2018.05.009
    Anti-salbutamol antibodies remain as important tools for the detection of salbutamol abuse in athletic doping. This study evaluated the feasibility and efficiency of the chicken (Gallus gallus domesticus) as an immunization host to generate anti-salbutamol scFv antibodies by phage display. A phage display antibody library was constructed from a single chicken immunized against salbutamol-KLH conjugate. After a stringent biopanning strategy, a novel scFv clone which was inhibited by free salbutamol recorded the highest affinity. This scFv was expressed as soluble and functional protein in Escherichia coli T7 SHuffle Express B (DE3) strain. Cross-reactivity studies of the scFv towards other relevant β2-agonists revealed that the scFv cross-reacted significantly towards clenbuterol. The determined IC50 of the scFv towards the two β2-agonists were; IC50 salbutamol = ∼0.310 μg/ml, IC50 clenbuterol = ∼0.076 μg/ml. The generated scFv demonstrated poor stability based on accelerated stability studies. The scFv was used to develop an competitive indirect ELISA (LOD = 0.125 μg/ml) for detection of parent salbutamol in spiked human urine (n = 18) with ∼83.4% reliability at the cut-off of 1 μg/ml currently implemented by WADA and may be of potential use in human doping urinalysis.
  18. Zakaria N, Ramli MZ, Ramasamy K, Meng LS, Yean CY, Banga Singh KK, et al.
    Anal Biochem, 2018 08 15;555:12-21.
    PMID: 29879415 DOI: 10.1016/j.ab.2018.05.031
    A miniaturized biosensing platform, based on monoclonal amyloid-beta antibodies (mAβab) that were immobilized on a disc-shaped platinum/iridium (Pt/Ir) microelectrode surface coupled with an impedimetric signal transducer, was developed for the label-free and sensitive detection of amyloid-beta peptide fragment 1-40 (Aβ40); a reliable biomarker for early diagnosis of Alzheimer's disease (AD). A Pt/Ir microelectrode was electropolymerized with poly (ortho-phenylenediamine), a conducting free amine-containing aromatic polymer; followed by crosslinking with glutaraldehyde for subsequent coupling of mAβab on the microelectrode surface. This modification strategy efficiently improved the impedimetric detection performance of Aβ40 in terms of charge transfer resistance (∼400-fold difference) and normalized impedance magnitude percentage change (∼40% increase) compared with a passive adsorption-based immobilization method. The sensitivity of the micro-immunosensing assay was found to be 1056 kΩ/(pg/mL)/cm2 and the limit of detection was found to be 4.81 pg/mL with a dynamic range of 1-104 pg/mL (R2 = 0.9932). The overall precision of the assay, as measured by relative standard deviation, ranged from 0.84 to 5.15%, demonstrating its reliability and accuracy; while in respect to assay durability and stability, the immobilized mAβab were able to maintain 80% of their binding activity to Aβ40 after incubation for 48 h at ambient temperature (25 °C). To validate the practical applicability, the assay was tested using brain tissue lysates prepared from AD-induced rats. Results indicate that the proposed impedimetric micro-immunosensing platform is highly versatile and adaptable for the quantitative detection of other disease-related biomarkers.
  19. Hasan MR, Pulingam T, Appaturi JN, Zifruddin AN, Teh SJ, Lim TW, et al.
    Anal Biochem, 2018 08 01;554:34-43.
    PMID: 29870692 DOI: 10.1016/j.ab.2018.06.001
    In this study, an amino-modified aptasensor using multi-walled carbon nanotubes (MWCNTs)-deposited ITO electrode was prepared and evaluated for the detection of pathogenic Salmonella bacteria. An amino-modified aptamer (ssDNA) which binds selectively to whole-cell Salmonella was immobilised on the COOH-rich MWCNTs to produce the ssDNA/MWCNT/ITO electrode. The morphology of the MWCNT before and after interaction with the aptamers were observed using scanning electron microscopy (SEM). Cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to investigate the electrochemical properties and conductivity of the aptasensor. The results showed that the impedance measured at the ssDNA/MWCNT/ITO electrode surface increased after exposure to Salmonella cells, which indicated successful binding of Salmonella on the aptamer-functionalised surface. The developed ssDNA/MWCNT/ITO aptasensor was stable and maintained linearity when the scan rate was increased from 10 mV s-1 to 90 mV s-1. The detection limit of the ssDNA/MWCNT/ITO aptasensor, determined from the sensitivity analysis, was found to be 5.5 × 101 cfu mL-1 and 6.7 × 101 cfu mL-1 for S. Enteritidis and S. Typhimurium, respectively. The specificity test demonstrated that Salmonella bound specifically to the ssDNA/MWCNT/ITO aptasensor surface, when compared with non-Salmonella spp. The prepared aptasensor was successfully applied for the detection of Salmonella in food samples.
  20. Akhter S, Basirun WJ, Alias Y, Johan MR, Bagheri S, Shalauddin M, et al.
    Anal Biochem, 2018 06 15;551:29-36.
    PMID: 29753720 DOI: 10.1016/j.ab.2018.05.004
    In the present study, a nanocomposite of f-MWCNTs-chitosan-Co was prepared by the immobilization of Co(II) on f-MWCNTs-chitosan by a self-assembly method and used for the quantitative determination of paracetamol (PR). The composite was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive x-ray analysis (EDX). The electroactivity of cobalt immobilized on f-MWCNTs-chitosan was assessed during the electro-oxidation of paracetamol. The prepared GCE modified f-MWCNTs/CTS-Co showed strong electrocatalytic activity towards the oxidation of PR. The electrochemical performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range between 0.1 and 400 μmol L-1 with a detection limit of 0.01 μmol L-1 for the PR solution. The fabricated sensor exhibited significant selectivity towards PR detection. The fabricated sensor was successfully applied for the determination of PR in commercial tablets and human serum sample.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links