Displaying all 10 publications

Abstract:
Sort:
  1. Chung PY, Navaratnam P, Chung LY
    PMID: 21658242 DOI: 10.1186/1476-0711-10-25
    There has been considerable effort to discover plant-derived antibacterials against methicillin-resistant strains of Staphylococcus aureus (MRSA) which have developed resistance to most existing antibiotics, including the last line of defence, vancomycin. Pentacyclic triterpenoid, a biologically diverse plant-derived natural product, has been reported to show anti-staphylococcal activities. The objective of this study is to evaluate the interaction between three pentacyclic triterpenoid and standard antibiotics (methicillin and vancomycin) against reference strains of Staphylococcus aureus.
  2. Dhanoa A, Fatt QK
    PMID: 19445730 DOI: 10.1186/1476-0711-8-15
    Non-typhoidal Salmonella (NTS) is increasingly recognized as an important pathogen associated with bacteraemia especially in immunosuppressed patients. However, there is limited data specifically describing the clinical characteristics and outcome amongst the immunosuppressed patients.
  3. Lord AT, Mohandas K, Somanath S, Ambu S
    PMID: 20307325 DOI: 10.1186/1476-0711-9-11
    The aim of this study was to investigate the presence of multidrug resistant yeasts in the faeces of synanthropic wild birds from the Bangsar suburb of Kuala Lumpur.
  4. Lulu GA, Karunanidhi A, Mohamad Yusof L, Abba Y, Mohd Fauzi F, Othman F
    Ann Clin Microbiol Antimicrob, 2018 Dec 28;17(1):46.
    PMID: 30593272 DOI: 10.1186/s12941-018-0296-3
    BACKGROUND: Osteomyelitis is an acute or chronic inflammatory process of the bone following infection with pyogenic organisms like Staphylococcus aureus. Tobramycin (TOB) is a promising aminoglycoside antibiotic used to treat various bacterial infections, including S. aureus. The aim of this study was to investigate the efficacy of tobramycin-loaded calcium phosphate beads (CPB) in a rabbit osteomyelitis model.

    METHODS: Tobramycin (30 mg/mL) was incorporated into CPB by dipping method and the efficacy of TOB-loaded CPB was studied in a rabbit osteomyelitis model. For juxtaposition, CPB with and without TOB were prepared. Twenty-five New Zealand white rabbits were grouped (n = 5) as sham (group 1), TOB-loaded CPB without S. aureus (group 2), S. aureus only (group 3), S. aureus + CPB (group 4), and S. aureus + TOB-loaded CPB (group 5). Groups infected with S. aureus followed by CPB implantation were immediately subjected to surgery at the mid-shaft of the tibia. After 28 days post-surgery, all rabbits were euthanized and the presence or absence of chronic osteomyelitis and the extent of architectural destruction of the bone were assessed by radiology, bacteriology and histological studies.

    RESULTS: Tobramycin-loaded CPB group potentially inhibited the growth of S. aureus causing 3.2 to 3.4 log10 reductions in CFU/g of bone tissue compared to the controls. Untreated groups infected with S. aureus showed signs of chronic osteomyelitis with abundant bacterial growth and alterations in bone architecture. The sham group and TOB-loaded CPB group showed no evidence of bacterial growth.

    CONCLUSIONS: TOB-incorporated into CPB for local bone administration was proven to be more successful in increasing the efficacy of TOB in this rabbit osteomyelitis model and hence could represent a good alternative to other formulations used in the treatment of osteomyelitis.

  5. Ko WC, Stone GG
    Ann Clin Microbiol Antimicrob, 2020 Apr 01;19(1):14.
    PMID: 32238155 DOI: 10.1186/s12941-020-00355-1
    BACKGROUND: Antimicrobial resistance among nosocomial Gram-negative pathogens is a cause for concern in the Asia-Pacific region. The aims of this study were to measure the rates of resistance among clinical isolates collected in Asia-Pacific countries, and to determine the in vitro antimicrobial activities of ceftazidime-avibactam and comparators against these isolates.

    METHODS: CLSI broth microdilution methodology was used to determine antimicrobial activity and EUCAST breakpoints version 9.0 were used to determine rates of susceptibility and resistance. Isolates were also screened for the genes encoding extended-spectrum β-lactamases (ESBLs) or carbapenemases (including metallo-β-lactamases [MBLs]).

    RESULTS: Between 2015 and 2017, this study collected a total of 7051 Enterobacterales isolates and 2032 Pseudomonas aeruginosa isolates from hospitalized patients in Australia, Japan, South Korea, Malaysia, the Philippines, Taiwan, and Thailand. In the Asia-Pacific region, Enterobacterales isolates that were ESBL-positive, carbapenemase-negative (17.9%) were more frequently identified than isolates that were carbapenemase-positive, MBL-negative (0.7%) or carbapenemase-positive, MBL-positive (1.7%). Multidrug-resistant (MDR) isolates of P. aeruginosa were more commonly identified (23.4%) than isolates that were ESBL-positive, carbapenemase-negative (0.4%), or carbapenemase-positive, MBL-negative (0.3%), or carbapenemase-positive, MBL-positive (3.7%). More than 90% of all Enterobacterales isolates, including the ESBL-positive, carbapenemase-negative subset and the carbapenemase-positive, MBL-negative subset, were susceptible to amikacin and ceftazidime-avibactam. Among the carbapenemase-positive, MBL-positive subset of Enterobacterales, susceptibility to the majority of agents was reduced, with the exception of colistin (93.4%). Tigecycline was active against all resistant subsets of the Enterobacterales (MIC90, 1-4 mg/L) and among Escherichia coli isolates, > 90% from each resistant subset were susceptible to tigecycline. More than 99% of all P. aeruginosa isolates, including MDR isolates and the carbapenemase-positive, MBL-positive subset, were susceptible to colistin.

    CONCLUSIONS: In this study, amikacin, ceftazidime-avibactam, colistin and tigecycline appear to be potential treatment options for infections caused by Gram-negative pathogens in the Asia-Pacific region.

  6. Chua HS, Soh YH, Loong SK, AbuBakar S
    Ann Clin Microbiol Antimicrob, 2021 Oct 03;20(1):72.
    PMID: 34602092 DOI: 10.1186/s12941-021-00475-2
    BACKGROUND: Francisella philomiragia is a very rare opportunistic pathogen of humans which causes protean diseases such as pneumonia and other systemic infections. Subsequent failure of prompt treatment may result in poor prognosis with mortality among infected patients.

    CASE PRESENTATION: The present report describes a case of F. philomiragia bacteraemia first reported in Malaysia and Asian in a 60-year-old patient with underlying end-stage renal disease (ESRF) and diabetes mellitus. He presented with Acute Pulmonary Oedema with Non-ST-Elevation Myocardial Infarction (NSTEMI) in our hospital. He was intubated in view of persistent type I respiratory failure and persistent desaturation despite post haemodialysis. Blood investigation indicated the presence of ongoing infection and inflammation. The aerobic blood culture growth of F. philomiragia was identified using the matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (Score value: 2.16) and confirmed by 16S Ribosomal DNA (16S rDNA) sequencing. He was discharged well on day 26 of admission, after completing one week of piperacillin/tazobactam and two weeks of doxycycline.

    CONCLUSION: Clinical suspicion should be raised if patients with known risk factors are presenting with pneumonia or pulmonary nodules especially as these are the most common manifestations of F. philomiragia infection. Early diagnosis via accurate laboratory identification of the organism through MALDI-TOF mass spectrometry and molecular technique such as 16S rDNA sequencing are vital for prompt treatment that results in better outcomes for the afflicted patients.

  7. Babaei M, Sulong A, Hamat R, Nordin S, Neela V
    PMID: 25858356 DOI: 10.1186/s12941-015-0071-7
    Antiseptics are commonly used for the management of MDR (multiple drug resistance) pathogens in hospitals. They play crucial roles in the infection control practices. Antiseptics are often used for skin antisepsis, gauze dressing, preparation of anatomical sites for surgical procedure, hand sterilization before in contact with an infected person, before an invasive procedure and as surgical scrub.
  8. Sunil M, Hieu HQ, Arjan Singh RS, Ponnampalavanar S, Siew KSW, Loch A
    Ann Clin Microbiol Antimicrob, 2019 Dec 17;18(1):43.
    PMID: 31847847 DOI: 10.1186/s12941-019-0341-x
    BACKGROUND: Staphylococcus has replaced streptococcus as the most common cause of infective endocarditis (IE) in developed health care systems. The trend in developing countries is less clear.

    AIM: To examine the epidemiological trends of infective endocarditis in a developing nation.

    METHODS: Single-centre, retrospective study of patients admitted with IE to a tertiary hospital in Malaysia over a 12-year period.

    RESULTS: The analysis included 182 patients (n = 153 Duke's definite IE, n = 29 possible IE). The mean age was 51 years. Rheumatic heart disease was present in 42%, while 7.6% were immunocompromised. IE affected native valves in 171 (94%) cases. Health-care associated IE (HCAIE) was recorded in 68 (37.4%). IE admission rates increased from 25/100,000 admissions (2012) to 59/100,000 admissions (2017). At least one major complication on admission was detected in 59 (32.4%) patients. Left-sided IE was more common than right-sided IE [n = 159 (87.4%) vs. n = 18 (9.9%)]. Pathogens identified by blood culture were staphylococcus group [n = 58 (40.8%)], streptococcus group [n = 51 (35.9%)] and Enterococcus species [n = 13 (9.2%)]. staphylococcus infection was highest in the HCAIE group. In-hospital death occurred in 65 (35.7%) patients. In-hospital surgery was performed for 36 (19.8%) patients. At least one complication was documented in 163 (85.7%).

    CONCLUSION: Staphylococcus is the new etiologic champion, reflecting the transition of the healthcare system. Streptococcus is still an important culprit organism. The incidence rate of IE appears to be increasing. The rate of patients with underlying rheumatic heart disease is still high.

  9. Chung PY, Khoo REY, Liew HS, Low ML
    Ann Clin Microbiol Antimicrob, 2021 Sep 24;20(1):67.
    PMID: 34560892 DOI: 10.1186/s12941-021-00473-4
    BACKGROUND: Methicillin-resistance S. aureus (MRSA) possesses the ability to resist multiple antibiotics and form biofilm. Currently, vancomycin remains the last drug of choice for treatment of MRSA infection. The emergence of vancomycin-resistant S. aureus (VRSA) has necessitated the development of new therapeutic agents against MRSA. In this study, the antimicrobial and antibiofilm activities of two copper-complexes derived from Schiff base (SBDs) were tested individually, and in combination with oxacillin (OXA) and vancomycin (VAN) against reference strains methicillin-susceptible and methicillin-resistant Staphylococcus aureus. The toxicity of the SBDs was also evaluated on a non-cancerous mammalian cell line.

    METHODS: The antimicrobial activity was tested against the planktonic S. aureus cells using the microdilution broth assay, while the antibiofilm activity were evaluated using the crystal violet and resazurin assays. The cytotoxicity of the SBDs was assessed on MRC5 (normal lung tissue), using the MTT assay.

    RESULTS: The individual SBDs showed significant reduction of biomass and metabolic activity in both S. aureus strains. Combinations of the SBDs with OXA and VAN were mainly additive against the planktonic cells and cells in the biofilm. Both the compounds showed moderate toxicity against the MRC5 cell line. The selectivity index suggested that the compounds were more cytotoxic to S. aureus than the normal cells.

    CONCLUSION: Both the SBD compounds demonstrated promising antimicrobial and antibiofilm activities and have the potential to be further developed as an antimicrobial agent against infections caused by MRSA.

  10. Dassanayake MK, Khoo TJ, An J
    Ann Clin Microbiol Antimicrob, 2021 Dec 02;20(1):79.
    PMID: 34856999 DOI: 10.1186/s12941-021-00485-0
    BACKGROUND AND OBJECTIVES: The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria.

    METHODS: Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general.

    FINDINGS: A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics.

    CONCLUSION: Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links