Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Mohammed Jajere S, Hassan L, Zakaria Z, Abu J, Abdul Aziz S
    Antibiotics (Basel), 2020 Oct 15;9(10).
    PMID: 33076451 DOI: 10.3390/antibiotics9100701
    The emergence of multidrug resistance (MDR), including colistin resistance, among Enterobacteriaceae recovered from food animals poses a serious public health threat because of the potential transmission of these resistant variants to humans along the food chain. Village chickens or Ayam Kampung are free-range birds and are preferred by a growing number of consumers who consider these chickens to be organic and more wholesome. The current study investigates the antibiogram profiles of Salmonella isolates recovered from village chicken flocks in South-central Peninsular Malaysia. A total of 34 isolates belonging to eight serotypes isolated from village chickens were screened for resistance towards antimicrobials including colistin according to the WHO and OIE recommendations of critical antibiotics. S. Weltevreden accounted for 20.6% of total isolates, followed by serovars Typhimurium and Agona (17.6%). The majority of isolates (73.5%) demonstrated resistance to one or more antimicrobials. Eight isolates (23.5%) were resistant to ≥3 antimicrobial classes. Colistin resistance (minimum inhibitory concentrations: 4-16 mg/L) was detected among five isolates (14.7%), including S. Weltevreden, S. Albany, S. Typhimurium, and Salmonella spp. Univariable analysis of risk factors likely to influence the occurrence of MDR Salmonella revealed that the flock size, poultry production system, and use of antibiotics in the farm were not significantly (p > 0.05) associated with MDR Salmonella. The current study highlights that MDR Salmonella occur at a lower level in village chickens compared to that found in live commercial chickens. However, MDR remains a problem even among free-range chickens with minimal exposure to antibiotics.
  2. Ngoi ST, Teh CSJ, Chong CW, Abdul Jabar K, Tan SC, Yu LH, et al.
    Antibiotics (Basel), 2021 Feb 11;10(2).
    PMID: 33670224 DOI: 10.3390/antibiotics10020181
    The increasing prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has greatly affected the clinical efficacy of β-lactam antibiotics in the management of urinary tract infections (UTIs). The limited treatment options have resulted in the increased use of carbapenem. However, flomoxef could be a potential carbapenem-sparing strategy for UTIs caused by ESBL-producers. Here, we compared the in vitro susceptibility of UTI-associated ESBL-producers to flomoxef and established β-lactam antibiotics. Fifty Escherichia coli and Klebsiella pneumoniae strains isolated from urine samples were subjected to broth microdilution assay, and the presence of ESBL genes was detected by polymerase chain reactions. High rates of resistance to amoxicillin-clavulanate (76-80%), ticarcillin-clavulanate (58-76%), and piperacillin-tazobactam (48-50%) were observed, indicated by high minimum inhibitory concentration (MIC) values (32 µg/mL to 128 µg/mL) for both species. The ESBL genes blaCTX-M and blaTEM were detected in both E. coli (58% and 54%, respectively) and K. pneumoniae (88% and 74%, respectively), whereas blaSHV was found only in K. pneumoniae (94%). Carbapenems remained as the most effective antibiotics against ESBL-producing E. coli and K. pneumoniae associated with UTIs, followed by flomoxef and cephamycins. In conclusion, flomoxef may be a potential alternative to carbapenem for UTIs caused by ESBL-producers in Malaysia.
  3. Harun AM, Noor NFM, Zaid A, Yusoff ME, Shaari R, Affandi NDN, et al.
    Antibiotics (Basel), 2021 Aug 10;10(8).
    PMID: 34439011 DOI: 10.3390/antibiotics10080961
    Titanium dioxide (TiO2) is an antimicrobial agent which is considered of potential value in inhibiting the growth of multiple bacteria. Klebsiella pneumonia and Haemophilus influenza are two of the most common respiratory infection pathogens, and are the most. Klebsiella pneumonia causes fatal meningitis, while Haemophilus influenza causes mortality even in younger patients. Both are associated with bacteremia and mortality. The purpose of this study was to test a new antibacterial material, namely nanotitania extract combined with 0.03% silver that was developed at Universiti Malaysia Sabah (UMS) and tested against K. pneumonia and H. influenza. The nanoparticles were synthesized through a modified hydrothermal process, combined with molten salt and proven to have excellent crystallinity, with the band-gap energy falling in the visible light spectrum. The nanoparticle extract was tested using a macro-dilutional method, which involved combining it with 0.03% silver solution during the process of nanoparticle synthesis and then introducing it to the bacteria. A positive control containing the bacteria minus the nanoparticles extract was also prepared. 25 mg/mL, 12.5 mg/mL, and 6.25 mg/mL concentrations of the samples were produced using the macro dilution method. After adding the bacteria to multiple concentrations of nanoparticle extract, the suspensions were incubated for 24 h at a temperature of 37 °C. The suspensions were then spread on Mueller-Hinton agar (K. pneumonia) and chocolate blood agar (H. influenza), where the growth of bacteria was observed after 24 h. Nanoparticle extract in combination with silver at 0.03% was proven to have potential as an antimicrobial agent as it was able to inhibit H. influenza at all concentrations. Furthermore, it was also shown to be capable of inhibiting K. pneumonia at concentrations of 25 mg/mL and 50 mg/mL. In conclusion, the nanoparticle extract, when tested using a macro-dilutional method, displayed antimicrobial properties which were proven effective against the growth of both K. pneumonia and H. influenza.
  4. Qamer S, Che-Hamzah F, Misni N, Joseph NMS, Al-Haj NA, Amin-Nordin S
    Antibiotics (Basel), 2023 Sep 03;12(9).
    PMID: 37760700 DOI: 10.3390/antibiotics12091403
    This study is based on the premise of investigating antibacterial activity through a novel conjugate of silver nanoparticles (AgNPs) and antimicrobial peptides (AMPs) in line with a green synthesis approach by developing antimicrobial-coated implants to prevent bacterial resistance. The AMPs were obtained from Bellamya Bengalensis (BB), a freshwater snail, to prepare the nanocomposite conjugate, e.g., AgNPs@BB extract, by making use of UV-Visible spectroscopy. The antimicrobial assessment of AgNPs@BB extract conjugate was performed using the Resazurin Microtiter Assay Method (REMA), followed by the use of three biocompatible implant materials (titanium alloys, Ti 6AL-4V stainless steel 316L, and polyethylene). Finally, the coating was analyzed under confocal microscopy. The results revealed a significant reduction of biofilm formation on the surfaces of implants coated with conjugate (AgNPs@BB extract) in comparison to uncoated implants. For the MTT assay, no significant changes were recorded for the cells grown on the AgNPs/AMP++ sample in high concentrations. Staphylococcus epidermidis, however, showed more prominent growth on all implants in comparison to Staphylococcus aureus. It is evident from the results that Staphylococcus epidermidis is more susceptible to AgNPs@BB extract, while the minimum inhibitory concentration (MIC) value of AgNPs@BB extract conjugates and biosynthesized AgNPs was also on the higher side. This study indicates that AgNPs@BB extract carries antibacterial activity, and concludes that an excessive concentration of AgNPs@BB extract may affect the improved biocompatibility. This study recommends using robust, retentive, and antimicrobial coatings of AgNPs@BB extract for implantable biocompatible materials in accordance with the novel strategy of biomaterial applications.
  5. Dala Ali AHH, Harun SN, Othman N, Ibrahim B, Abdulbagi OE, Abdullah I, et al.
    Antibiotics (Basel), 2023 Aug 10;12(8).
    PMID: 37627725 DOI: 10.3390/antibiotics12081305
    In the management of sepsis, providing adequate empiric antimicrobial therapy is one of the most important pillars of sepsis management. Therefore, it is important to evaluate the adequacy of empiric antimicrobial therapy (EAMT) in sepsis patients admitted to intensive care units (ICU) and to identify the determinants of inadequate EAMT. The aim of this study was to evaluate the adequacy of empiric antimicrobial therapy in patients admitted to the ICU with sepsis or septic shock, and the determinants of inadequate EAMT. The data of patients admitted to the ICU units due to sepsis or septic shock in two tertiary healthcare facilities in Al-Madinah Al-Munawwarah were retrospectively reviewed. The current study used logistic regression analysis and artificial neural network (ANN) analysis to identify determinants of inadequate empiric antimicrobial therapy, and evaluated the performance of these two approaches in predicting the inadequacy of EAMT. The findings of this study showed that fifty-three per cent of patients received inadequate EAMT. Determinants for inadequate EAMT were APACHE II score, multidrug-resistance organism (MDRO) infections, surgical history (lower limb amputation), and comorbidity (coronary artery disease). ANN performed as well as or better than logistic regression in predicating inadequate EAMT, as the receiver operating characteristic area under the curve (ROC-AUC) of the ANN model was higher when compared with the logistic regression model (LRM): 0.895 vs. 0.854. In addition, the ANN model performed better than LRM in predicting inadequate EAMT in terms of classification accuracy. In addition, ANN analysis revealed that the most important determinants of EAMT adequacy were the APACHE II score and MDRO. In conclusion, more than half of the patients received inadequate EAMT. Determinants of inadequate EAMT were APACHE II score, MDRO infections, comorbidity, and surgical history. This provides valuable inputs to improve the prescription of empiric antimicrobials in Saudi Arabia going forward. In addition, our study demonstrated the potential utility of applying artificial neural network analysis in the prediction of outcomes in healthcare research.
  6. Baba MS, Mohamad Zin N, Ahmad SJ, Mazlan NW, Baharum SN, Ahmad N, et al.
    Antibiotics (Basel), 2021 Aug 12;10(8).
    PMID: 34439018 DOI: 10.3390/antibiotics10080969
    Streptomyces sp. has been known to be a major antibiotic producer since the 1940s. As the number of cases related to resistance pathogens infection increases yearly, discovering the biosynthesis pathways of antibiotic has become important. In this study, we present the streamline of a project report summary; the genome data and metabolome data of newly isolated Streptomyces SUK 48 strain are also analyzed. The antibacterial activity of its crude extract is also determined. To obtain genome data, the genomic DNA of SUK 48 was extracted using a commercial kit (Promega) and sent for sequencing (Pac Biosciences technology platform, Menlo Park, CA, USA). The raw data were assembled and polished using Hierarchical Genome Assembly Process 4.0 (HGAP 4.0). The assembled data were structurally predicted using tRNAscan-SE and rnammer. Then, the data were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) database and antiSMASH analysis. Meanwhile, the metabolite profile of SUK 48 was determined using liquid chromatography-mass spectrophotometry (LC-MS) for both negative and positive modes. The results showed that the presence of kanamycin and gentamicin, as well as the other 11 antibiotics. Nevertheless, the biosynthesis pathways of aurantioclavine were also found. The cytotoxicity activity showed IC50 value was at 0.35 ± 1.35 mg/mL on the cell viability of HEK 293. In conclusion, Streptomyces sp. SUK 48 has proven to be a non-toxic antibiotic producer such as auranticlavine and gentamicin.
  7. Ong JH, Wong WL, Wong FC, Chai TT
    Antibiotics (Basel), 2021 Oct 05;10(10).
    PMID: 34680792 DOI: 10.3390/antibiotics10101211
    Acute hepatopancreatic necrosis disease (AHPND), caused by PirAvp- and PirBvp-releasing Vibrio parahaemolyticus strains, has resulted in massive mortality in shrimp aquaculture. Excessive use of antibiotics for AHPND management has led to antibiotic resistance, highlighting the urgency to search for alternatives. Using an in silico approach, we aimed to discover PirAvp/PirBvp-binding peptides from oilseed meals as alternatives to antibiotics. To search for peptides that remain intact in the shrimp digestive tract, and therefore would be available for toxin binding, we focused on peptides released from tryptic hydrolysis of 37 major proteins from seeds of hemp, pumpkin, rape, sesame, and sunflower. This yielded 809 peptides. Further screening led to 24 peptides predicted as being non-toxic to shrimp, fish, and humans, with thermal stability and low water solubility. Molecular docking on the 24 peptides revealed six dual-target peptides capable of binding to key regions responsible for complex formation on both PirAvp and PirBvp. The peptides (ISYVVQGMGISGR, LTFVVHGHALMGK, QSLGVPPQLGNACNLDNLDVLQPTETIK, ISTINSQTLPILSQLR, PQFLVGASSILR, and VQVVNHMGQK) are 1139-2977 Da in mass and 10-28 residues in length. Such peptides are potential candidates for the future development of peptide-based anti-AHPND agents which potentially mitigate V. parahaemolyticus pathogenesis by intercepting PirAvp/PirBvp complex formation.
  8. Yap WF, Tay V, Tan SH, Yow YY, Chew J
    Antibiotics (Basel), 2019 Sep 17;8(3).
    PMID: 31533237 DOI: 10.3390/antibiotics8030152
    Seaweeds are gaining a considerable amount of attention for their antioxidant and antibacterial properties. Caulerpa racemosa and Caulerpa lentillifera, also known as 'sea grapes', are green seaweeds commonly found in different parts of the world, but the antioxidant and antibacterial potentials of Malaysian C. racemosa and C. lentillifera have not been thoroughly explored. In this study, crude extracts of the seaweeds were prepared using chloroform, methanol, and water. Total phenolic content (TPC) and total flavonoid content (TFC) were measured, followed by in vitro antioxidant activity determination using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Antibacterial activities of these extracts were tested against Methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Liquid chromatography-mass spectrometry (LCMS) analysis was then used to determine the possible compounds present in the extract with the most potent antioxidant and antibacterial activity. Results showed that C. racemosa chloroform extract had the highest TPC (13.41 ± 0.86 mg GAE/g), antioxidant effect (EC50 at 0.65 ± 0.03 mg/mL), and the strongest antibacterial effect (97.7 ± 0.30%) against MRSA. LCMS analysis proposed that the chloroform extracts of C. racemosa are mainly polyunsaturated and monounsaturated fatty acids, terpenes, and alkaloids. In conclusion, C. racemosa can be a great source of novel antioxidant and antibacterial agents, but isolation and purification of the bioactive compounds are needed to study their mechanism of action.
  9. Salleh MZ, Nik Zuraina NMN, Hajissa K, Ilias MI, Banga Singh KK, Deris ZZ
    Antibiotics (Basel), 2022 Nov 18;11(11).
    PMID: 36421297 DOI: 10.3390/antibiotics11111653
    Shigellosis remains one of the leading causes of morbidity and mortality worldwide and is the second leading cause of diarrheal mortality among all age groups. However, the global emergence of antimicrobial-resistant Shigella strains, limiting the choice of effective drugs for shigellosis, has become the major challenge in the treatment of Shigella infections. The aim of this systematic review and meta-analysis was to provide an updated picture of the prevalence of antimicrobial-resistant Shigella species in Asia. A comprehensive and systematic search was performed on three electronic databases (PubMed, ScienceDirect and Scopus), in which 63 eligible studies published between 2010 and 2022 were identified. From our meta-analysis of proportions using a random-effects model, the overall prevalence of Shigella spp. in Asian patients was estimated to be 8.0% (95% CI: 5.5-10.5). The pooled prevalence rates of multidrug-resistant (MDR) and extended-spectrum beta-lactamase (ESBL)-producing Shigella strains were 68.7% (95% CI: 59.9-77.5) and 23.9% (95% CI: 12.9-34.8), respectively. Concerning recommended antimicrobial drugs for Shigella, the prevalence of resistance was highest for ciprofloxacin (29.8%) and azithromycin (29.2%), followed by ceftriaxone (23.8%), in spite of their importance as first- and second-line treatments for shigellosis. In contrast, resistance to carbapenems, such as ertapenem (0.0%), imipenem (0.1%) and meropenem (0.0%), was almost non-existent among the 49 tested antibiotics. The significantly high prevalence estimation suggests that the multidrug-resistant Shigella is a pressing threat to public health worthy of careful and justified interventions. Effective antibiotic treatment strategies, which may lead to better outcomes for the control and treatment of shigellosis in Asia, are essential.
  10. Ng WJ, Hing CL, Loo CB, Hoh EK, Loke IL, Ee KY
    Antibiotics (Basel), 2023 Jun 28;12(7).
    PMID: 37508219 DOI: 10.3390/antibiotics12071123
    Quorum sensing (QS) in Pseudomonas aeruginosa plays an essential role in virulence factors, biofilm formation as well as antibiotic resistance. Approaches that target virulence factors are known to be more sustainable than antibiotics in weakening the infectivity of bacteria. Although honey has been shown to exert antipseudomonal activities, the enhancement of such activity in ginger-enriched honey is still unknown. The main objective of this study was to determine the impacts of honey and ginger-enriched honey on the QS virulence factors and biofilm formation of antibiotic resistant P. aeruginosa clinical isolates. Outcomes showed honey and/or ginger-enriched honey significantly reduced the protease activity, pyocyanin production and exotoxin A concentration of the isolates. The swarming and swimming motility together with biofilm formation in all clinical isolates were also significantly inhibited by both honey samples. Notable morphological alteration of bacterial cells was also observed using scanning electron microscopy. A principal component analysis (PCA) managed to distinguish the untreated group and treatment groups into two distinct clusters, although honey and ginger-enriched honey groups were not well differentiated. This study revealed the effectiveness of honey including ginger-enriched honey to attenuate QS virulence factors and biofilm formation of P. aeruginosa.
  11. Baraka MA, Alboghdadly A, Alshawwa S, Elnour AA, Alsultan H, Alsalman T, et al.
    Antibiotics (Basel), 2021 Jul 19;10(7).
    PMID: 34356799 DOI: 10.3390/antibiotics10070878
    Factors reported in the literature associated with inappropriate prescribing of antimicrobials include physicians with less experience, uncertain diagnosis, and patient caregiver influences on physicians' decisions. Monitoring antimicrobial resistance is critical for identifying emerging resistance patterns, developing, and assessing the effectiveness of mitigation strategies. Improvement in prescribing antimicrobials would minimize the risk of resistance and, consequently, improve patients' clinical and health outcomes. The purpose of the study is to delineate factors associated with antimicrobial resistance, describe the factors influencing prescriber's choice during prescribing of antimicrobial, and examine factors related to consequences of inappropriate prescribing of antimicrobial. A cross-sectional study was conducted among healthcare providers (190) in six tertiary hospitals in the Eastern province of Saudi Arabia. The research panel has developed, validated, and piloted survey specific with closed-ended questions. A value of p < 0.05 was considered to be statistically significant. All data analysis was performed using the Statistical Package for Social Sciences (IBM SPSS version 23.0). 72.7% of the respondents have agreed that poor skills and knowledge are key factors that contribute to the inappropriate prescribing of antimicrobials. All of the respondents acknowledged effectiveness, previous experience with the antimicrobial, and reading scientific materials (such as books, articles, and the internet) as being key factors influencing physicians' choice during antimicrobial prescribing. The current study has identified comprehensive education and training needs for healthcare providers about antimicrobial resistance. Using antimicrobials unnecessarily, insufficient duration of antimicrobial use, and using broad spectrum antimicrobials were reported to be common practices. Furthermore, poor skills and knowledge were a key factor that contributed to the inappropriate use and overuse of antimicrobials, and the use of antimicrobials without a physician's prescription (i.e., self-medication) represent key factors which contribute to AMR from participants' perspectives. Furthermore, internal policy and guidelines are needed to ensure that the antimicrobials are prescribed in accordance with standard protocols and clinical guidelines.
  12. Thambirajoo M, Maarof M, Lokanathan Y, Katas H, Ghazalli NF, Tabata Y, et al.
    Antibiotics (Basel), 2021 Nov 02;10(11).
    PMID: 34827276 DOI: 10.3390/antibiotics10111338
    Nanotechnology has become an emerging technology in the medical field and is widely applicable for various clinical applications. The potential use of nanoparticles as antimicrobial agents is greatly explored and taken into consideration as alternative methods to overcome the challenges faced by healthcare workers and patients in preventing infections caused by pathogenic microorganisms. Among microorganisms, bacterial infections remain a major hurdle and are responsible for high morbidity and mortality globally, especially involving those with medical conditions and elderly populations. Over time, these groups are more vulnerable to developing resistance to antibiotics, as bacterial biofilms are difficult to destroy or eliminate via antibiotics; thus, treatment becomes unsuccessful or ineffective. Mostly, bacterial biofilms and other microbes can be found on medical devices and wounds where they disperse their contents which cause infections. To inhibit biofilm formations and overcome antibiotic resistance, antimicrobial-loaded nanoparticles alone or combined with other substances could enhance the bactericidal activity of nanomaterials. This includes killing the pathogens effectively without harming other cells or causing any adverse effects to living cells. This review summarises the mechanisms of actions employed by the different types of nanoparticles which counteract infectious agents in reducing biofilm formation and improve antibiotic therapy for clinical usage.
  13. Teo SP, Bhakta S, Stapleton P, Gibbons S
    Antibiotics (Basel), 2020 Dec 16;9(12).
    PMID: 33339285 DOI: 10.3390/antibiotics9120913
    The present study aimed to screen plants for bioactive compounds with potential antibacterial activities. In our efforts to evaluate plants from Borneo, we isolated and elucidated the structures of four natural products from the bioactive fraction of a chloroform extract of Goniothalamus longistipetes using various chromatographic and spectroscopic techniques. The bioactive compounds were identified as a known styryllactone, (+)-altholactone ((2S,3R,3aS,7aS)-3-hydroxy-2-phenyl-2,3,3a,7a-tetrahydrobenzo-5(4H)-5-one) (1), a new styryllactone, (2S,3R,3aS,7aS)-3-hydroxy-2-phenyl-2,3,3a,7a-tetrahydrobenzo-5(4H)-5-one) (2) as well as a new alkaloid, 2,6-dimethoxyisonicotinaldehyde (3) and a new alkenyl-5-hydroxyl-phenyl benzoic acid (4). 1 and 4 showed broad-spectrum anti-bacterial activities against Gram-positive and Gram-negative bacteria as well as acid-fast model selected for this study. Compound 2 only demonstrated activities against Gram-positive bacteria whilst 3 displayed selective inhibitory activities against Gram-positive bacterial strains. Additionally, their mechanisms of anti-bacterial action were also investigated. Using Mycobacterium smegmatis as a fast-growing model of tubercle bacilli, compounds 1, 2 and 4 demonstrated inhibitory activities against whole-cell drug efflux and biofilm formation; two key intrinsic mechanisms of antibiotic resistance. Interestingly, the amphiphilic compound 4 exhibited inhibitory activity against the conjugation of plasmid pKM101 in Escherichia coli using a plate conjugation assay. Plasmid conjugation is a mechanism by which Gram-positive and Gram-negative-bacteria acquire drug resistance and virulence. These results indicated that bioactive compounds isolated from Goniothalamus longistipetes can be potential candidates as 'hits' for further optimisation.
  14. Engler D, Meyer JC, Schellack N, Kurdi A, Godman B
    Antibiotics (Basel), 2021 Aug 17;10(8).
    PMID: 34439046 DOI: 10.3390/antibiotics10080996
    Antimicrobial resistance (AMR) is a growing problem worldwide, including South Africa, where an AMR National Strategy Framework was implemented to instigate antimicrobial stewardship programmes (ASPs) and improve antimicrobial prescribing across sectors. To address the need to assess progress, a sequential mixed methodology with an explanatory research design was employed. In Phase 1, a self-administered questionnaire was completed by healthcare professionals (HCPs) from 26 public sector healthcare facilities across South Africa to assess compliance with the Framework. The results were explored in Phase 2 through 10 focus group discussions and two in-depth interviews, including 83 participants. Emerging themes indicated that public healthcare facilities across South Africa are facing many challenges, especially at entry level primary healthcare (PHC) facilities, where antimicrobial stewardship activities and ASPs are not yet fully implemented. Improved diagnostics and surveillance data are a major shortcoming at these facilities. Continuous education for HCPs is deficient, especially for the majority of prescribers at PHC level and health campaigns are nearly non-existent. Involvement and visibility of management at certain facilities is a serious shortfall. Consequently, it is important to call attention to the challenges faced with improving antimicrobial prescribing across countries and address these to reduce AMR, especially in PHC facilities, being the first point of access to healthcare for the vast majority of patients in developing countries.
  15. Mustafa ZU, Iqbal S, Asif HR, Salman M, Jabbar S, Mallhi TH, et al.
    Antibiotics (Basel), 2023 Feb 28;12(3).
    PMID: 36978348 DOI: 10.3390/antibiotics12030481
    Since the emergence of COVID-19, several different medicines including antimicrobials have been administered to patients to treat COVID-19. This is despite limited evidence of the effectiveness of many of these, fueled by misinformation. These utilization patterns have resulted in concerns for patients' safety and a rise in antimicrobial resistance (AMR). Healthcare workers (HCWs) were required to serve in high-risk areas throughout the pandemic. Consequently, they may be inclined towards self-medication. However, they have a responsibility to ensure any medicines recommended or prescribed for the management of patients with COVID-19 are evidence-based. However, this is not always the case. A descriptive cross-sectional study was conducted among HCWs in six districts of the Punjab to assess their knowledge, attitude and practices of self-medication during the ongoing pandemic. This included HCWs working a range of public sector hospitals in the Punjab Province. A total of 1173 HCWs were included in the final analysis. The majority of HCWs possessed good knowledge regarding self-medication and good attitudes. However, 60% were practicing self-medication amid the COVID-19 pandemic. The most frequent medicines consumed by the HCWs under self-medication were antipyretics (100%), antibiotics (80.4%) and vitamins (59.9%). Azithromycin was the most commonly purchase antibiotic (35.1%). In conclusion, HCWs possess good knowledge of, and attitude regarding, medicines they purchased. However, there are concerns that high rates of purchasing antibiotics, especially "Watch" antibiotics, for self-medication may enhance AMR. This needs addressing.
  16. Abass A, Adzitey F, Huda N
    Antibiotics (Basel), 2020 Dec 04;9(12).
    PMID: 33291648 DOI: 10.3390/antibiotics9120869
    Bacterial foodborne infections, including meat-derived infections, are globally associated with diseases and some deaths. Antibiotics are sometimes used to treat bacterial infections. The use of antibiotics by farmers contributes to the development of resistance by foodborne pathogens. This study aimed to investigate the antibiotics used by farmers and the occurrence of antibiotic-resistant Escherichia coli in ready-to-eat (RTE) meat sources. Data was obtained from livestock farmers through the administration of semistructured questionnaires (n = 376) to obtain information on their demographics, knowledge and antibiotic usage. The procedure in the USA Food and Drug Administration (FDA)'s Bacteriological Analytical Manual was used for E. coli detection. Antibiotic resistance test was performed using the disk diffusion method. The findings revealed that most of the farmers were male (74.5%), were aged 30-39 years (28.5%), had tertiary education (30.3%) and had 6-10 years of experience in livestock husbandry. Sheep (65.7%) were the most reared livestock, and antibiotics were mostly used to treat sick animals (36.7%). Tetracycline (27.7%) was the most common antibiotic used by farmers, followed by amoxicillin/clavulanic acid (18.6%) and trimethoprim/sulfamethoxazole (11.7%). Most farmers (56.1%) said they had knowledge of antibiotic usage. The prevalence of E. coli in RTE meats was lowest in pork (6.0%) and highest in chevon (20.0%). E. coli isolates from RTE meats were highly resistant to teicoplanin (96.77%), tetracycline (93.55%), amoxicillin/clavulanic (70.97%), azithromycin (70.97%) and trimethoprim/sulfamethoxazole (58.06%) but was susceptible to chloramphenicol (93.55%), ciprofloxacin (61.29%) and ceftriaxone (58.06%). The multiple antibiotic index ranged from 0.22 to 0.78. Multidrug resistance (93.55%) was high among the E. coli isolates. The resistance pattern AmcAzmTecTeSxt (amoxicillin/clavulanic acid-azithromycin-telcoplanin-tetracycline-trimethoprim/sulfamethoxazole) was the most common. The use of antibiotics by farmers must be well regulated. Sellers of RTE meats also ought to take hygiene practices seriously to keep meat safe and healthy for public consumption.
  17. Shakeel S, Muneswarao J, Abdul Aziz A, Yeong Le H, Abd Halim FS, Rehman AU, et al.
    Antibiotics (Basel), 2021 Dec 04;10(12).
    PMID: 34943702 DOI: 10.3390/antibiotics10121490
    The evaluation of disease progression and onsite therapeutic care choices for community-acquired pneumonia (CAP) patients is vital for their well-being and the optimum utilization of healthcare resources. The current study was conducted to assess physicians' adherence to clinical practice standards and antibiotic prescribing behavior for the treatment of CAP in older people. A prospective study that included 121 consecutive patients admitted for CAP was conducted at Kulim Hospital, Kedah, from March 2020 to August 2020. Medical records including demographic data, comorbidity, physical examination, laboratory or radiologic findings, and drugs used for the treatment of CAP were accessed from bed head tickets (BHT). The mean age for patients was 73.5 ± 6.2 years, 73 (60.3%) and 48 (39.6%) were males and females, respectively. Amoxicillin/clavulanate (19.8%) was the most prescribed antibiotic for non-severe pneumonia followed by ampicillin sodium/sulbactam sodium (6.6%), while in patients with severe CAP beta-lactam + beta lactamase inhibitors (BLIs) with a combination of macrolide were the most common antibiotics prescribed either in patients with (21.4%) or without co-morbidities (8.2%). The average length of stay in the hospital with severe pneumonia was 6-7 days for 23.9% of patients and < 5 days for 21.4% of patients. The duration of intravenous antibiotics in patients with severe pneumonia was 6-7 days for 32.2% of patients. The present findings revealed the adherence of antibiotic prescribing practices to the Malaysian National Antimicrobial Guideline 2019 for CAP therapy among geriatric patients and adherence to the CAP criteria for hospital admissions.
  18. Asdaq SMB, Rajan A, Damodaran A, Kamath SR, Nair KS, Zachariah SM, et al.
    Antibiotics (Basel), 2021 Oct 27;10(11).
    PMID: 34827246 DOI: 10.3390/antibiotics10111308
    The COVID-19 infection caused by the new SARS-CoV-2 virus has been linked to a broad spectrum of symptoms, from a mild cough to life-threatening pneumonia. As we learn more about this unusual COVID-19 epidemic, new issues are emerging and being reported daily. Mucormycosis, also known as zygomycosis or phycomycosis, causes severe fungal illness to individuals with a weakened immune system. It is a devastating fungal infection, and the most frequent kind is the rhino cerebral type. As a devastating second wave of COVID-19 sweeps India, doctors report several instances involving a strange illness-sometimes known as the "black fungus"-among returning and recovered COVID-19 patients. This paper analyzes the existing statistical data to address the severity of prevalence and further notes the nano-based diagnostic parameters, clinical presentations, its connection with other conditions like diabetes, hypertension, and GI disorders, and the importance of anti-fungal therapy in treating the same. Anti-fungal therapies, as well as surgical interventions, are currently used for the treatment of the disease. Proper and timely diagnosis is necessary, along with the reduction in the spread of COVID-19. From the review, it was found that timely pharmacologic interventions and early diagnosis by using a nano-based diagnostic kit can help control the disease. Additionally, this paper provides novel information about the nanotechnology approaches such as fungal detection biosensors, nucleic acids-based testing, point-of-care tests, and galactomannans detection, in the diagnosis of mucormycosis, and thereby reinforces the need for further research on the topic.
  19. Hajissa K, Marzan M, Idriss MI, Islam MA
    Antibiotics (Basel), 2021 Jul 31;10(8).
    PMID: 34438982 DOI: 10.3390/antibiotics10080932
    Drug-resistant tuberculosis (DR-TB) is still one of the most critical issues impeding worldwide TB control efforts. The aim of this systematic review and meta-analysis was to give an updated picture of the prevalence of DR-TB in Sudan. A comprehensive systematic search was performed on four electronic databases (PubMed, Scopus, Web of Science and Google Scholar) to identify all published studies reporting prevalence data of DR-TB in Sudan. Sixteen eligible studies published during 2002-2020 were included. Using meta-analysis of proportions, the pooled prevalence of TB cases with resistance to any anti-TB drugs was 47.0% (95% CI: 35.5-58.6%). The overall prevalence of mono, multi, poly and extensive drug resistance were estimated to be 16.2% (95% CI: 9.0-23.4%), 22.8% (95% CI: 16.0-29.7%), 6.8% (95% CI: 0.5-13.0%) and 0.7% (95% CI: 0-2.1%), respectively. Considering any first-line anti-TB drugs, the resistance prevalence was highest for isoniazid (32.3%) and streptomycin (31.7%), followed by rifampicin (29.2%). In contrast, resistance against second-line drugs was reported for only two antibiotics, namely, ofloxacin (2.1%) and kanamycin (0.7%). Of note, the resistance profile of the previously treated patients was found to be remarkably high compared with the newly diagnosed TB patients. The relatively high prevalence estimation of anti-TB drug resistance warrants strengthening TB control and treatment strategies in Sudan.
  20. Samat NA, Yusoff FM, Rasdi NW, Karim M
    Antibiotics (Basel), 2021 Aug 16;10(8).
    PMID: 34439039 DOI: 10.3390/antibiotics10080989
    The administration of probiotics via live feeds, such as Artemia and rotifers, has gained significant attention. Moreover, indiscriminate use of antibiotics in conventional aquaculture practices in order to prevent or control disease outbreaks has resulted in the occurrence of residues and antimicrobial resistance. Thus, the application of eco-friendly feed additives, such as probiotics, as a safer alternative has received increasing attention in recent years. However, only minimal information on the administration of probiotics via freshwater cladoceran Moina micrura is available despite being commonly used for larval and post-larval feeding of freshwater crustaceans and fish. Thus, this study aimed to evaluate the application of Bacillus pocheonensis strain S2 administered via M. micrura to red hybrid tilapia (Oreochromis spp.) larvae. Bacillus pocheonensis that has been previously isolated from Spirulina sp. was subjected to preliminary in vitro evaluation of antagonistic properties. The agar well-diffusion assay revealed that this probiont could inhibit the growth of Streptococcus agalactiae and Aeromonas hydrophila. The size of inhibition zones ranged from 8.8 ± 0.2 to 18.2 ± 0.4 mm. Moina micrura was later used as a biological model in preliminary in vivo bacterial challenge assays to evaluate the efficacy of B. pocheonensis in protecting the host from diseases. Moina micrura was pre-enriched with B. pocheonensis at 104 and 106 CFU mL-1 before S. agalactiae and A. hydrophila were introduced into the culture. The study revealed that B. pocheonensis at 104 CFU mL-1 was able to significantly enhance the survival of M. micrura after being challenged with both pathogens (63 ± 3%) in comparison to the control group. The relative percentage survival (RPS) of M. micrura was highest (p < 0.05) when treated with B. pocheonensis at both concentrations 104 and 106 CFU mL-1 (38.33) after being challenged against S. agalactiae. To assess the efficacy of B. pocheonensis in protecting red hybrid tilapia against streptococcosis, the larvae were fed with either unenriched (control) Moina or probiont-enriched Moina daily for 10 days. A significantly (p < 0.05) higher survival rate (77 ± 3%) was observed in larvae fed with probiont-enriched M. micrura compared to other treatments, and the RPS was recorded at 62.90. In addition, the S. agalactiae load was suppressed in larvae fed probiont-enriched M. micrura (6.84±0.39 CFU mL-1) in comparison to the control group (7.78±0.09 CFU mL-1), indicating that the probiont might have contributed to the improvement of tilapia health and survival. This study illustrated that M. micrura was suitable to be used as a vector for probiotics in freshwater fish larvae as an alternative to hazardous antibiotics for disease control.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links