Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Alam MT, Vinayak S, Congpuong K, Wongsrichanalai C, Satimai W, Slutsker L, et al.
    Antimicrob Agents Chemother, 2011 Jan;55(1):155-64.
    PMID: 20956597 DOI: 10.1128/AAC.00691-10
    The emergence and spread of drug-resistant Plasmodium falciparum have been a major impediment for the control of malaria worldwide. Earlier studies have shown that similar to chloroquine (CQ) resistance, high levels of pyrimethamine resistance in P. falciparum originated independently 4 to 5 times globally, including one origin at the Thailand-Cambodia border. In this study we describe the origins and spread of sulfadoxine-resistance-conferring dihydropteroate synthase (dhps) alleles in Thailand. The dhps mutations and flanking microsatellite loci were genotyped for P. falciparum isolates collected from 11 Thai provinces along the Burma, Cambodia, and Malaysia borders. Results indicated that resistant dhps alleles were fixed in Thailand, predominantly being the SGEGA, AGEAA, and SGNGA triple mutants and the AGKAA double mutant (mutated codons are underlined). These alleles had different geographical distributions. The SGEGA alleles were found mostly at the Burma border, while the SGNGA alleles occurred mainly at the Cambodia border and nearby provinces. Microsatellite data suggested that there were two major genetic lineages of the triple mutants in Thailand, one common for SGEGA/SGNGA alleles and another one independent for AGEAA. Importantly, the newly reported SGNGA alleles possibly originated at the Thailand-Cambodia border. All parasites in the Yala province (Malaysia border) had AGKAA alleles with almost identical flanking microsatellites haplotypes. They were also identical at putatively neutral loci on chromosomes 2 and 3, suggesting a clonal nature of the parasite population in Yala. In summary, this study suggests multiple and independent origins of resistant dhps alleles in Thailand.
  2. Siddiqui R, Aqeel Y, Khan NA
    Antimicrob Agents Chemother, 2016 11;60(11):6441-6450.
    PMID: 27600042 DOI: 10.1128/AAC.00686-16
    For the past several decades, there has been little improvement in the morbidity and mortality associated with Acanthamoeba keratitis and Acanthamoeba encephalitis, respectively. The discovery of a plethora of antiacanthamoebic compounds has not yielded effective marketed chemotherapeutics. The rate of development of novel antiacanthamoebic chemotherapies of translational value and the lack of interest of the pharmaceutical industry in developing such chemotherapies have been disappointing. On the other hand, the market for contact lenses/contact lens disinfectants is a multi-billion-dollar industry and has been successful and profitable. A better understanding of drugs, their targets, and mechanisms of action will facilitate the development of more-effective chemotherapies. Here, we review the progress toward phenotypic drug discovery, emphasizing the shortcomings of useable therapies.
  3. Parapini S, Olliaro P, Navaratnam V, Taramelli D, Basilico N
    Antimicrob Agents Chemother, 2015 Jul;59(7):4046-52.
    PMID: 25918150 DOI: 10.1128/AAC.00183-15
    Artemisinins are peroxidic antimalarial drugs known to be very potent but highly chemically unstable; they degrade in the presence of ferrous iron, Fe(II)-heme, or biological reductants. Less documented is how this translates into chemical stability and antimalarial activity across a range of conditions applying to in vitro testing and clinical situations. Dihydroartemisinin (DHA) is studied here because it is an antimalarial drug on its own and the main metabolite of other artemisinins. The behaviors of DHA in phosphate-buffered saline, plasma, or erythrocyte lysate at different temperatures and pH ranges were examined. The antimalarial activity of the residual drug was evaluated using the chemosensitivity assay on Plasmodium falciparum, and the extent of decomposition of DHA was established through use of high-performance liquid chromatography with electrochemical detection analysis. The role of the Fe(II)-heme was investigated by blocking its reactivity using carbon monoxide (CO). A significant reduction in the antimalarial activity of DHA was seen after incubation in plasma and to a lesser extent in erythrocyte lysate. Activity was reduced by half after 3 h and almost completely abolished after 24 h. Serum-enriched media also affected DHA activity. Effects were temperature and pH dependent and paralleled the increased rate of decomposition of DHA from pH 7 upwards and in plasma. These results suggest that particular care should be taken in conducting and interpreting in vitro studies, prone as their results are to experimental and drug storage conditions. Disorders such as fever, hemolysis, or acidosis associated with malaria severity may contribute to artemisinin instability and reduce their clinical efficacy.
  4. Kim DH, Choi JY, Kim HW, Kim SH, Chung DR, Peck KR, et al.
    Antimicrob Agents Chemother, 2013 Nov;57(11):5239-46.
    PMID: 23939892 DOI: 10.1128/AAC.00633-13
    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia.
  5. Lazarev VN, Polina NF, Shkarupeta MM, Kostrjukova ES, Vassilevski AA, Kozlov SA, et al.
    Antimicrob Agents Chemother, 2011 Nov;55(11):5367-9.
    PMID: 21876050 DOI: 10.1128/AAC.00449-11
    Spider venoms are vast natural pharmacopoeias selected by evolution. The venom of the ant spider Lachesana tarabaevi contains a wide variety of antimicrobial peptides. We tested six of them (latarcins 1, 2a, 3a, 4b, 5, and cytoinsectotoxin 1a) for their ability to suppress Chlamydia trachomatis infection. HEK293 cells were transfected with plasmid vectors harboring the genes of the selected peptides. Controlled expression of the transgenes led to a significant decrease of C. trachomatis viability inside the infected cells.
  6. Chew WK, Segarra I, Ambu S, Mak JW
    Antimicrob Agents Chemother, 2012 Apr;56(4):1762-8.
    PMID: 22271863 DOI: 10.1128/AAC.05183-11
    Toxoplasma gondii is a parasite that generates latent cysts in the brain; reactivation of these cysts may lead to fatal toxoplasmic encephalitis, for which treatment remains unsuccessful. We assessed spiramycin pharmacokinetics coadministered with metronidazole, the eradication of brain cysts and the in vitro reactivation. Male BALB/c mice were fed 1,000 tachyzoites orally to develop chronic toxoplasmosis. Four weeks later, infected mice underwent different treatments: (i) infected untreated mice (n = 9), which received vehicle only; (ii) a spiramycin-only group (n = 9), 400 mg/kg daily for 7 days; (iii) a metronidazole-only group (n = 9), 500 mg/kg daily for 7 days; and (iv) a combination group (n = 9), which received both spiramycin (400 mg/kg) and metronidazole (500 mg/kg) daily for 7 days. An uninfected control group (n = 10) was administered vehicle only. After treatment, the brain cysts were counted, brain homogenates were cultured in confluent Vero cells, and cysts and tachyzoites were counted after 1 week. Separately, pharmacokinetic profiles (plasma and brain) were assessed after a single dose of spiramycin (400 mg/kg), metronidazole (500 mg/kg), or both. Metronidazole treatment increased the brain spiramycin area under the concentration-time curve from 0 h to ∞ (AUC(0-∞)) by 67% without affecting its plasma disposition. Metronidazole plasma and brain AUC(0-∞) values were reduced 9 and 62%, respectively, after spiramycin coadministration. Enhanced spiramycin brain exposure after coadministration reduced brain cysts 15-fold (79 ± 23 for the combination treatment versus 1,198 ± 153 for the untreated control group [P < 0.05]) and 10-fold versus the spiramycin-only group (768 ± 125). Metronidazole alone showed no effect (1,028 ± 149). Tachyzoites were absent in the brain. Spiramycin reduced in vitro reactivation. Metronidazole increased spiramycin brain penetration, causing a significant reduction of T. gondii brain cysts, with potential clinical translatability for chronic toxoplasmosis treatment.
  7. Mohd Sazlly Lim S, Heffernan AJ, Roberts JA, Sime FB
    Antimicrob Agents Chemother, 2023 May 01;65(5).
    PMID: 33685901 DOI: 10.1128/AAC.02472-20
    Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are now considered potential treatments for CR-AB. This study aimed to explore the utility of fosfomycin-sulbactam combination (FOS/SUL) therapy against CR-AB isolates.Synergism of FOS/SUL against 50 clinical CR-AB isolates were screened using the checkerboard method. Thereafter, time-kill studies against two CR-AB isolates were performed. The time-kill data were described using a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Monte Carlo simulations were then performed to estimate the probability of stasis, 1-log kill and 2-log kill after 24-hours with combination therapy.The FOS/SUL combination demonstrated a synergistic effect against 74% of isolates. No antagonism was observed. The MIC50 and MIC90 of FOS/SUL were decreased four- to eight-fold, compared to the monotherapy MIC50 and MIC90 In the time-kill studies, the combination displayed bactericidal activity against both isolates and synergistic activity against one isolate, at the highest clinically achievable concentrations. Our PK/PD model was able to describe the interaction between fosfomycin and sulbactam in vitro Bacterial kill was mainly driven by sulbactam, with fosfomycin augmentation. FOS/SUL regimens that included sulbactam 4 g every 8 hours, demonstrated a probability of target attainment of 1-log10 kill at 24 h of ∼69-76%, as compared to ∼15-30% with monotherapy regimens at the highest doses.The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that FOS/SUL may potentially be effective against some CR-AB infections.
  8. Hoon AH, Lam CK, Wah MJ
    Antimicrob Agents Chemother, 1995 Mar;39(3):626-8.
    PMID: 7793863
    Malaysian, TGR (Thailand), and Gambian (West African) Plasmodium falciparum isolates were cultured in vitro by the candle jar method and were characterized for their susceptibilities to present antimalarial drugs by the modified in vitro microtechnique. Results showed that 93 and 47% of the Malaysian isolates were resistant at 50% inhibitory concentrations of 0.1415 to 0.7737 and 0.1025 to 0.1975 microM, respectively, while the rest were susceptible to choloroquine and cycloguanil at 0.0376 and 0.0306 to 0.0954 microM, respectively. All isolates were susceptible to mefloquine, quinine, and pyrimethamine at 0.0026 to 0.0172, 0.0062 to 0.0854, and 0.0149 to 0.0663 microM, respectively. In contrast, the Gambian isolate was susceptible to multiple drugs at 0.0024 to 0.0282 microM; TGR was resistant to chloroquine at 0.8147 microM but was susceptible to mefloquine, quinine, cycloguanil, and pyrimethamine at 0.0024, 0.0096, 0.0143, and 0.0495 microM, respectively.
  9. Permala J, Tarning J, Nosten F, White NJ, Karlsson MO, Bergstrand M
    PMID: 28242661 DOI: 10.1128/AAC.02491-16
    Intermittent preventive treatment (IPT) is used to reduce malaria morbidity and mortality, especially in vulnerable groups such as children and pregnant women. IPT with the fixed dose combination of piperaquine (PQ) and dihydroartemisinin (DHA) is being evaluated as a potential mass treatment to control and eliminate artemisinin-resistant falciparum malaria. This study explored alternative DHA-PQ adult dosing regimens compared to the monthly adult dosing regimen currently being studied in clinical trials. A time-to-event model describing the concentration-effect relationship of preventive DHA-PQ administration was used to explore the potential clinical efficacy of once-weekly adult dosing regimens. Loading dose strategies were evaluated and the advantage of weekly dosing regimen was tested against different degrees of adherence. Assuming perfect adherence, three tablets weekly dosing regimen scenarios maintained malaria incidence of 0.2 to 0.3% per year compared to 2.1 to 2.6% for all monthly dosing regimen scenarios and 52% for the placebo. The three tablets weekly dosing regimen was also more forgiving (i.e., less sensitive to poor adherence), resulting in a predicted ∼4% malaria incidence per year compared to ∼8% for dosing regimen of two tablets weekly and ∼10% for monthly regimens (assuming 60% adherence and 35% interindividual variability). These results suggest that weekly dosing of DHA-PQ for malaria chemoprevention would improve treatment outcomes compared to monthly administration by lowering the incidence of malaria infections, reducing safety concerns about high PQ peak plasma concentrations and being more forgiving. In addition, weekly dosing is expected to reduce the selection pressure for PQ resistance.
  10. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Jiménez-Castellanos JC, Zhang J, et al.
    PMID: 29263066 DOI: 10.1128/AAC.01814-17
    Fluoroquinolone resistance in Gram-negative bacteria is multifactorial, involving target site mutations, reductions in fluoroquinolone entry due to reduced porin production, increased fluoroquinolone efflux, enzymes that modify fluoroquinolones, and Qnr, a DNA mimic that protects the drug target from fluoroquinolone binding. Here we report a comprehensive analysis, using transformation and in vitro mutant selection, of the relative importance of each of these mechanisms for fluoroquinolone nonsusceptibility using Klebsiella pneumoniae as a model system. Our improved biological understanding was then used to generate 47 rules that can predict fluoroquinolone susceptibility in K. pneumoniae clinical isolates. Key to the success of this predictive process was the use of liquid chromatography-tandem mass spectrometry to measure the abundance of proteins in extracts of cultured bacteria, identifying which sequence variants seen in the whole-genome sequence data were functionally important in the context of fluoroquinolone susceptibility.
  11. Lo YL, van Hasselt JG, Heng SC, Lim CT, Lee TC, Charles BG
    Antimicrob Agents Chemother, 2010 Jun;54(6):2626-32.
    PMID: 20385872 DOI: 10.1128/AAC.01370-09
    The present study determined the pharmacokinetic profile of vancomycin in premature Malaysian infants. A one-compartment infusion model with first-order elimination was fitted to serum vancomycin concentration data (n = 835 points) obtained retrospectively from the drug monitoring records of 116 premature newborn infants. Vancomycin concentrations were estimated by a fluorescence polarization immunoassay. Population and individual estimates of clearance and distribution volume and the factors which affected the variability observed for the values of these parameters were obtained using a population pharmacokinetic modeling approach. The predictive performance of the population model was evaluated by visual inspections of diagnostic plots and nonparametric bootstrapping with replacement. Dosing guidelines targeting a value of > or =400 for the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC(24)/MIC ratio) were explored using Monte Carlo simulation. Body size (weight), postmenstrual age, and small-for-gestational-age status are important factors explaining the between-subject variability of vancomycin pharmacokinetic parameter values for premature neonates. The typical population parameter estimates of clearance and distribution volume for a 1-kg premature appropriate-for-gestational-age neonate with a postmenstrual age of 30 weeks were 0.0426 liters/h and 0.523 liters, respectively. There was a 20% reduction in clearance for small-for-gestational-age infants compared to the level for the appropriate-for-gestational-age control. Dosage regimens based on a priori target response values were formulated. In conclusion, the pharmacokinetic parameter values for vancomycin in premature Malaysian neonates were estimated. Improved dosage regimens based on a priori target response values were formulated by incorporating body size, postmenstrual age, and small-for-gestational-age status, using Monte Carlo simulations with the model-estimated pharmacokinetic parameter values.
  12. Abdul-Aziz MH, Abd Rahman AN, Mat-Nor MB, Sulaiman H, Wallis SC, Lipman J, et al.
    Antimicrob Agents Chemother, 2016 01;60(1):206-14.
    PMID: 26482304 DOI: 10.1128/AAC.01543-15
    Doripenem has been recently introduced in Malaysia and is used for severe infections in the intensive care unit. However, limited data currently exist to guide optimal dosing in this scenario. We aimed to describe the population pharmacokinetics of doripenem in Malaysian critically ill patients with sepsis and use Monte Carlo dosing simulations to develop clinically relevant dosing guidelines for these patients. In this pharmacokinetic study, 12 critically ill adult patients with sepsis receiving 500 mg of doripenem every 8 h as a 1-hour infusion were enrolled. Serial blood samples were collected on 2 different days, and population pharmacokinetic analysis was performed using a nonlinear mixed-effects modeling approach. A two-compartment linear model with between-subject and between-occasion variability on clearance was adequate in describing the data. The typical volume of distribution and clearance of doripenem in this cohort were 0.47 liters/kg and 0.14 liters/kg/h, respectively. Doripenem clearance was significantly influenced by patients' creatinine clearance (CL(CR)), such that a 30-ml/min increase in the estimated CL(CR) would increase doripenem CL by 52%. Monte Carlo dosing simulations suggested that, for pathogens with a MIC of 8 mg/liter, a dose of 1,000 mg every 8 h as a 4-h infusion is optimal for patients with a CL(CR) of 30 to 100 ml/min, while a dose of 2,000 mg every 8 h as a 4-h infusion is best for patients manifesting a CL(CR) of >100 ml/min. Findings from this study suggest that, for doripenem usage in Malaysian critically ill patients, an alternative dosing approach may be meritorious, particularly when multidrug resistance pathogens are involved.
  13. Salman S, Bendel D, Lee TC, Templeton D, Davis TM
    Antimicrob Agents Chemother, 2015;59(6):3197-207.
    PMID: 25801553 DOI: 10.1128/AAC.05013-14
    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in two open-label studies. In study 1, 16 healthy males were randomized to each of four single-dose treatments administered in random order: (i) 15.0 mg of sublingual artemether (5 × 3.0 actuations), (ii) 30.0 mg of sublingual artemether (10 × 3.0 mg), (iii) 30.0 mg of sublingual artemether (5 × 6.0 mg), and (iv) 30.0 mg of artemether in tablet form. In study 2, 16 healthy males were randomized to eight 30.0-mg doses of sublingual artemether given over 5 days as either 10 3.0-mg or 5 6.0-mg actuations. Frequent blood samples were drawn postdose. Plasma artemether and dihydroartemisinin levels were measured using liquid chromatography-mass spectrometry. Population compartmental pharmacokinetic models were developed. In study 1, sublingual artemether absorption was biphasic, with both rate constants being greater than that of the artemether tablets (1.46 and 1.66 versus 0.43/h, respectively). Relative to the tablets, sublingual artemether had greater bioavailability (≥1.24), with the greatest relative bioavailability occurring in the 30.0-mg dose groups (≥1.58). In study 2, there was evidence that the first absorption phase accounted for between 32% and 69% of the total dose and avoided first-pass (FP) metabolism, with an increase in FP metabolism occurring in later versus earlier doses but with no difference in bioavailability between the dose actuations. Sublingual artemether is more rapidly and completely absorbed than are equivalent doses of artemether tablets in healthy adults. Its disposition appears to be complex, with two absorption phases, the first representing pregastrointestinal absorption, as well as dose-dependent bioavailability and autoinduction of metabolism with multiple dosing.
  14. Salman S, Bendel D, Lee TC, Templeton D, Davis TM
    Antimicrob Agents Chemother, 2015;59(6):3208-15.
    PMID: 25801552 DOI: 10.1128/AAC.05014-14
    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in 91 young African children with severe malaria or who could not tolerate oral antimalarial therapy. Each received 3.0 mg/kg of body weight of artemether at 0, 8, 24, 36, 48, and 60 h or until the initiation of oral treatment. Few blood samples were drawn postdose. Plasma artemether and dihydroartemisinin (DHA) levels were measured using liquid chromatography-mass spectrometry, and the data were analyzed using established population compartmental pharmacokinetic models. Parasite clearance was prompt (median parasite clearance time, 24 h), and there were no serious adverse events. Consistent with studies in healthy adults (S. Salman, D. Bendel, T. C. Lee, D. Templeton, and T. M. E. Davis, Antimicrob Agents Chemother 59:3197-3207, 2015, http://dx.doi.org/10.1128/AAC.05013-14), the absorption of sublingual artemether was biphasic, and multiple dosing was associated with the autoinduction of the metabolism of artemether to DHA (which itself has potent antimalarial activity). In contrast to studies using healthy volunteers, pharmacokinetic modeling indicated that the first absorption phase did not avoid first-pass metabolism, suggesting that the drug is transferred to the upper intestine through postdose fluid/food intake. Simulations using the present data and those from an earlier study in older Melanesian children with uncomplicated malaria treated with artemether-lumefantrine tablets suggested that the bioavailability of sublingual artemether was at least equivalent to that after conventional oral artemether-lumefantrine (median [interquartile range] areas under the concentration-time curve for artemether, 3,403 [2,471 to 4,771] versus 3,063 [2,358 to 4,514] μg · h/liter, respectively; and for DHA, 2,958 [2,146 to 4,278] versus 2,839 [1,812 to 3,488] μg · h/liter, respectively; P ≥ 0.42). These findings suggest that sublingual artemether could be used as prereferral treatment for sick children before transfer for definitive management of severe or moderately severe malaria.
  15. Neoh CF, Leung L, Chan E, Al-Badriyeh D, Fullinfaw RO, Jhanji V, et al.
    Antimicrob Agents Chemother, 2016 11;60(11):6896-6898.
    PMID: 27550348 DOI: 10.1128/AAC.00683-16
    Twenty participants undergoing elective cataract surgery received 1% voriconazole eye drops (1 drop per eye) either 20, 40, 60, or 80 min before surgery. Median voriconazole concentrations of 1.9 to 3.2 mg/liter in aqueous humor samples were attained over the first 80 min, which were higher than in vitro MIC90 values for typical fungi that cause keratitis.
  16. Zandi K, Bassit L, Amblard F, Cox BD, Hassandarvish P, Moghaddam E, et al.
    PMID: 31061163 DOI: 10.1128/AAC.00397-19
    Dengue virus (DENV) and Japanese encephalitis virus (JEV) are important arthropod-borne viruses from the Flaviviridae family. DENV is a global public health problem with significant social and economic impacts, especially in tropical and subtropical areas. JEV is a neurotropic arbovirus endemic to east and southeast Asia. There are no U.S. FDA-approved antiviral drugs available to treat or to prevent DENV and JEV infections, leaving nearly one-third of the world's population at risk for infection. Therefore, it is crucial to discover potent antiviral agents against these viruses. Nucleoside analogs, as a class, are widely used for the treatment of viral infections. In this study, we discovered nucleoside analogs that possess potent and selective anti-JEV and anti-DENV activities across all serotypes in cell-based assay systems. Both viruses were susceptible to sugar-substituted 2'-C-methyl analogs with either cytosine or 7-deaza-7-fluoro-adenine nucleobases. Mouse studies confirmed the anti-DENV activity of these nucleoside analogs. Molecular models were assembled for DENV serotype 2 (DENV-2) and JEV RNA-dependent RNA polymerase replication complexes bound to nucleotide inhibitors. These models show similarities between JEV and DENV-2, which recognize the same nucleotide inhibitors. Collectively, our findings provide promising compounds and a structural rationale for the development of direct-acting antiviral agents with dual activity against JEV and DENV infections.
  17. Lin YW, Abdul Rahim N, Zhao J, Han ML, Yu HH, Wickremasinghe H, et al.
    PMID: 30670431 DOI: 10.1128/AAC.02176-18
    Polymyxins are used as a last-line therapy against multidrug-resistant (MDR) New Delhi metallo-β-lactamase (NDM)-producing Klebsiella pneumoniae However, polymyxin resistance can emerge with monotherapy; therefore, novel strategies are urgently needed to minimize the resistance and maintain their clinical utility. This study aimed to investigate the pharmacodynamics of polymyxin B in combination with the antiretroviral drug zidovudine against K. pneumoniae Three isolates were evaluated in static time-kill studies (0 to 64 mg/liter) over 48 h. An in vitro one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model (IVM) was used to simulate humanized dosage regimens of polymyxin B (4 mg/liter as continuous infusion) and zidovudine (as bolus dose thrice daily to achieve maximum concentration of drug in broth [Cmax] of 6 mg/liter) against K. pneumoniae BM1 over 72 h. The antimicrobial synergy of the combination was further evaluated in a murine thigh infection model against K. pneumoniae 02. In the static time-kill studies, polymyxin B monotherapy produced rapid and extensive killing against all three isolates followed by extensive regrowth, whereas zidovudine produced modest killing followed by significant regrowth at 24 h. Polymyxin B in combination with zidovudine significantly enhanced the antimicrobial activity (≥4 log10 CFU/ml) and minimized bacterial regrowth. In the IVM, the combination was synergistic and the total bacterial loads were below the limit of detection for up to 72 h. In the murine thigh infection model, the bacterial burden at 24 h in the combination group was ≥3 log10 CFU/thigh lower than each monotherapy against K. pneumoniae 02. Overall, the polymyxin B-zidovudine combination demonstrates superior antimicrobial efficacy and minimized emergence of resistance to polymyxins.
  18. Rumaseb A, Moraes Barros RR, Sá JM, Juliano JJ, William T, Braima KA, et al.
    Antimicrob Agents Chemother, 2023 Jul 18;67(7):e0161022.
    PMID: 37314336 DOI: 10.1128/aac.01610-22
    Increasing reports of resistance to a frontline malaria blood-stage treatment, chloroquine (CQ), raises concerns for the elimination of Plasmodium vivax. The absence of an effective molecular marker of CQ resistance in P. vivax greatly constrains surveillance of this emerging threat. A recent genetic cross between CQ sensitive (CQS) and CQ resistant (CQR) NIH-1993 strains of P. vivax linked a moderate CQR phenotype with two candidate markers in P. vivax CQ resistance transporter gene (pvcrt-o): MS334 and In9pvcrt. Longer TGAAGH motif lengths at MS334 were associated with CQ resistance, as were shorter motifs at the In9pvcrt locus. In this study, high-grade CQR clinical isolates of P. vivax from a low endemic setting in Malaysia were used to investigate the association between the MS334 and In9pvcrt variants and treatment efficacy. Among a total of 49 independent monoclonal P. vivax isolates assessed, high-quality MS334 and In9pvcrt sequences could be derived from 30 (61%) and 23 (47%), respectively. Five MS334 and six In9pvcrt alleles were observed, with allele frequencies ranging from 2 to 76% and 3 to 71%, respectively. None of the clinical isolates had the same variant as the NIH-1993 CQR strain, and none of the variants were associated with CQ treatment failure (all P > 0.05). Multi-locus genotypes (MLGs) at 9 neutral microsatellites revealed a predominant P. vivax strain (MLG6) accounting for 52% of Day 0 infections. The MLG6 strain comprised equal proportions of CQS and CQR infections. Our study reveals complexity in the genetic basis of CQ resistance in the Malaysian P. vivax pre-elimination setting and suggests that the proposed pvcrt-o MS334 and In9pvcrt markers are not reliable markers of CQ treatment efficacy in this setting. Further studies are needed in other endemic settings, applying hypothesis-free genome-wide approaches, and functional approaches to understand the biological impact of the TGAAGH repeats linked to CQ response in a cross are warranted to comprehend and track CQR P. vivax.
  19. Dulyayangkul P, Wan Nur Ismah WAK, Douglas EJA, Avison MB
    Antimicrob Agents Chemother, 2020 06 23;64(7).
    PMID: 32312773 DOI: 10.1128/AAC.02208-19
    Meropenem-vaborbactam resistance in Klebsiella pneumoniae isolates is associated with loss-of-function mutations in the OmpK35 and OmpK36 porins. We identify two previously unknown loss-of-function mutations that confer cefuroxime resistance in K. pneumoniae isolates. The proteins lost were NlpD and KvrA; the latter is a transcriptional repressor that controls capsule production. We demonstrate that KvrA loss reduces OmpK35 and OmpK36 porin production, which confers reduced susceptibility to meropenem-vaborbactam in a KPC-3-producing K. pneumoniae isolate.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links