Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Abd Rashid N, Mohamad Najib NH, Abdul Jalil NA, Teoh SL
    Antioxidants (Basel), 2023 Dec 13;12(12).
    PMID: 38136228 DOI: 10.3390/antiox12122109
    Cervical cancer is a prevalent and often devastating disease affecting women worldwide. Traditional treatment modalities such as surgery, chemotherapy, and radiation therapy have significantly improved survival rates, but they are often accompanied by side effects and challenges that can impact a patient's quality of life. In recent years, the integration of essential oils into the management of cervical cancer has gained attention. This review provides an in-depth exploration of the role of various essential oils in cervical cancer, offering insights into their potential benefits and the existing body of research. The review also delves into future directions and challenges in this emerging field, emphasizing promising research areas and advanced delivery systems. The encapsulation of essential oils with solid lipid nanoparticles, nanoemulsification of essential oils, or the combination of essential oils with conventional treatments showed promising results by increasing the anticancer properties of essential oils. As the use of essential oils in cervical cancer treatment or management evolves, this review aims to provide a comprehensive perspective, balancing the potential of these natural remedies with the challenges and considerations that need to be addressed.
  2. Davan I, Fakurazi S, Alias E, Ibrahim N', Hwei NM, Hassan H
    Antioxidants (Basel), 2023 Jul 24;12(7).
    PMID: 37508018 DOI: 10.3390/antiox12071480
    In recent years, bone loss and its associated diseases have become a significant public health concern due to increased disability, morbidity, and mortality. Oxidative stress and bone loss are correlated, where oxidative stress suppresses osteoblast activity, resulting in compromised homeostasis between bone formation and resorption. This event causes upregulation of bone remodeling turnover rate with an increased risk of fractures and bone loss. Therefore, supplementation of antioxidants can be proposed to reduce oxidative stress, facilitate the bone remodeling process, suppress the initiation of bone diseases, and improve bone health. Astaxanthin (3,3'-dihydroxy-4-4'-diketo-β-β carotene), a potent antioxidant belonging to the xanthophylls family, is a potential ROS scavenger and could be a promising therapeutic nutraceutical possessing various pharmacological properties. In bone, astaxanthin enhances osteoblast differentiation, osteocytes numbers, and/or differentiation, inhibits osteoclast differentiation, cartilage degradation markers, and increases bone mineral density, expression of osteogenic markers, while reducing bone loss. In this review, we presented the up-to-date findings of the potential anabolic effects of astaxanthin on bone health in vitro, animal, and human studies by providing comprehensive evidence for its future clinical application, especially in treating bone diseases.
  3. Naomi R, Teoh SH, Embong H, Balan SS, Othman F, Bahari H, et al.
    Antioxidants (Basel), 2023 May 10;12(5).
    PMID: 37237937 DOI: 10.3390/antiox12051071
    Obesity is a chronic low-grade inflammatory condition that induces the generation of oxidative stress and inflammation. This oxidative stress and inflammation stimulate brain atrophy and some morphological changes in the brain that eventually result in cognitive impairments. However, there is no exact study that has summarized the role of oxidative stress and inflammation in obesity and its impact on cognitive impairments. Thus, the objective of this review is to recapitulate the current role of oxidative stress and inflammation in cognitive decline based on in vivo evidence. A comprehensive search was performed in Nature, Medline and Ovid, ScienceDirect, and PubMed, and the search was limited to the past 10 years of publication. From the search, we identified 27 articles to be further reviewed. The outcome of this study indicates that a greater amount of fat stored in individual adipocytes in obesity induces the formation of reactive oxygen species and inflammation. This will lead to the generation of oxidative stress, which may cause morphological changes in the brain, suppress the endogenous antioxidant system, and promote neuroinflammation and, eventually, neuronal apoptosis. This will impair the normal function of the brain and specific regions that are involved in learning, as well as memory. This shows that obesity has a strong positive correlation with cognitive impairments. Hence, this review summarizes the mechanism of oxidative stress and inflammation that induce memory loss based on animal model evidence. In conclusion, this review may serve as an insight into therapeutic development focusing on oxidative stress and inflammatory pathways to manage an obesity-induced cognitive decline in the future.
  4. Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, et al.
    Antioxidants (Basel), 2023 Mar 23;12(4).
    PMID: 37107164 DOI: 10.3390/antiox12040787
    Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
  5. Mak KK, Zhang S, Chellian J, Mohd Z, Epemolu O, Dinkova-Kostova AT, et al.
    Antioxidants (Basel), 2023 Feb 27;12(3).
    PMID: 36978843 DOI: 10.3390/antiox12030595
    Our previous studies have reported the effect of swietenine (a major bioactive component of Swietenia macrophylla seeds) in reversing and potentiating the effect of metformin in hyperglycemia and hyperlipidaemia in diabetic rats. Moreover, we reported that the anti-inflammatory effect of swietenine is mediated via the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). This study evaluated the effect of swietenine and its mechanisms in nonalcoholic fatty liver disease (NAFLD) in high-fat diet/streptozotocin-induced diabetic mice. The effect was assessed by determining blood biochemical parameters (glucose, cholesterol, triglycerides, alanine transaminase (ALT), asparate transaminase (AST), alkaline phosphatase (ALP), glutathione (GSH), total antioxidant capacity (TAC), and malondialdehyde (MDA)) and liver biochemical parameters (liver index, cholesterol, and triglycerides). Hepatic lipid accumulation (initial causative factor in NAFLD) was determined by oil-O-red staining. Gene expression (qPCR) and immunohistochemical studies were performed to elucidate the mechanism of swietenine's effect in NAFLD. The critical regulators (genes and proteins) involved in lipogenesis (ACLY, ACC1, FASN, SREBP1c, and ChREBPβ) and oxidative stress (Nrf2, NQO-1 and HO-1) pathways were determined. In mice fed with a high-fat diet followed by streptozotocin injection, the liver cholesterol, triglycerides, and lipids were elevated. These increases were reversed by the oral administration of swietenine, 80 mg/kg body weight, on alternate days for eight weeks. Gene expression and immunohistochemical studies showed that swietenine reversed the elevated levels of crucial enzymes of lipogenesis (ACLY, ACC1 and FASN) and their master transcription factors (SREBP1c and ChREBPβ). Furthermore, swietenine activated the Nrf2 antioxidant defense mechanism, as evidenced by the upregulated levels of Nrf2, NQO-1, and HO-1. It is concluded that swietenine shows beneficial effects in diabetes-induced NAFLD via inhibiting lipogenesis and activating the Nrf2 pathway.
  6. Tamel Selvan K, Goon JA, Makpol S, Tan JK
    Antioxidants (Basel), 2023 Feb 10;12(2).
    PMID: 36830009 DOI: 10.3390/antiox12020449
    Metabolic syndrome (MetS) is a cluster of metabolic disturbances, including abdominal obesity, hypertension, hypertriglyceridemia, reduced high-density lipoprotein cholesterol (HDL-C) and hyperglycemia. Adopting a healthier lifestyle and multiple drug-based therapies are current ways to manage MetS, but they have limited efficacy, albeit the prevalence of MetS is rising. Microalgae is a part of the human diet and has also been consumed as a health supplement to improve insulin sensitivity, inflammation, and several components of MetS. These therapeutic effects of microalgae are attributed to the bioactive compounds present in them that exhibit antioxidant, anti-inflammatory, anti-obesity, antihypertensive, hepatoprotective and immunomodulatory effects. Therefore, studies investigating the potential of microalgae in alleviating MetS are becoming more popular, but a review on this topic remains scarce. In this review, we discuss the effects of microalgae, specifically on MetS, by reviewing the evidence from scientific literature covering in vitro and in vivo studies. In addition, we also discuss the underlying mechanisms that modulate the effects of microalgae on MetS, and the limitations and future perspectives of developing microalgae as a health supplement for MetS. Microalgae supplementation is becoming a viable approach in alleviating metabolic disturbances and as a unique addition to the management of MetS.
  7. Liang G, Kow ASF, Tham CL, Ho YC, Lee MT
    Antioxidants (Basel), 2022 Nov 03;11(11).
    PMID: 36358550 DOI: 10.3390/antiox11112179
    Osteoporosis, or bone loss, is a disease that affects many women globally. As life expectancy increases, the risk of osteoporosis in women also increases, too, and this will create a burden on the healthcare and economic sectors of a country. Osteoporosis was once thought to be a disease that would occur only after menopause. However, many studies have shown that osteoporosis may develop even in the perimenopausal stage. Due to the erratic levels of estrogen and progesterone during the perimenopausal stage, studies suggest that women are exposed to the risk of developing osteoporosis even at this stage. The erratic hormonal changes result in the production of proinflammatory mediators and cause oxidative stress, which leads to the progressive loss of bone-building activities. Tocotrienols, members of vitamin E, have many health-promoting properties. Due to their powerful anti-oxidative and anti-inflammatory properties, tocotrienols have shown positive anti-osteoporotic properties in post-menopausal studies. Hence, we propose here that tocotrienols could also possibly alleviate perimenopausal osteoporosis by discussing in this review the connection between inflammatory mediators produced during perimenopause and the risk of osteoporosis. Tocotrienols could potentially be an anti-osteoporotic agent, but due to their low bioavailability, they have not been as effective as they could be. Several approaches have been evaluated to overcome this issue, as presented in this review. As the anti-osteoporotic effects of tocotrienols were mostly studied in post-menopausal models, we hope that this review could pave the way for more research to be done to evaluate their effect on peri-menopausal models so as to reduce the risk of osteoporosis from an earlier stage.
  8. Muhammad Abdul Kadar NN, Ahmad F, Teoh SL, Yahaya MF
    Antioxidants (Basel), 2022 Oct 31;11(11).
    PMID: 36358526 DOI: 10.3390/antiox11112154
    There is mounting evidence that metabolic syndrome (MetS) contributes to the development of neurodegenerative disorders such as Alzheimer’s disease. Honey, which has been used for generations, is high in antioxidants and has been demonstrated to benefit the brain and mental health by reducing oxidative stress and boosting cognitive outcomes. Honey from the stingless bees of Heterotrigona itama has been found to have higher phenolic content compared to other types of honeys. The aim of this study is to investigate the effects of stingless bee honey (SBH) supplementation and to compare it with a pure form of antioxidant, caffeic acid (CA), on MetS parameters and inflammatory markers in the brains of MetS-induced rats. A total of 32 male Wistar rats were divided equally into groups of control, high-carbohydrate high-fructose (HCHF) diet (MetS), HCHF + SBH supplemented (1 g/kg) (SBH), and HCHF + CA supplemented (10 mg/kg) (CA) groups. The total duration for SBH and CA supplementation was eight weeks. The HCHF diet was found to promote hypertension, hyperglycemia, and hypertriglyceridemia, and to increase brain TNF-α levels. Supplementation with SBH and CA significantly reversed (p < 0.05) the hyperglycemic and hypertensive effects of the HCHF diet. Although both supplemented groups showed no significant changes to serum HDL or TG, SBH significantly reduced (p < 0.05) brain TNF-α levels and increased (p < 0.05) brain BDNF levels. Immunohistochemistry investigations of neurogenesis (EdU) and apoptosis (TUNEL) on the cornu Ammonis 1 (CA1) and dentate gyrus (DG) areas of the hippocampus showed no changes with SBH and CA supplementation compared to the control. These findings suggest that SBH and CA have the potential to mitigate HCHF-induced MetS effects and possess neuroprotective abilities.
  9. Abdul Rahman NS, Mohamed Noor Khan NA, Eshak Z, Sarbandi MS, Mohammad Kamal AA, Abd Malek M, et al.
    Antioxidants (Basel), 2022 Oct 25;11(11).
    PMID: 36358471 DOI: 10.3390/antiox11112100
    Vitrification is an important tool to store surplus embryos in assisted reproductive technology (ART). However, vitrification increases oxidative damage and results in decreased viability. Studies have reported that L-glutathione (GSH) supplementation improves the preimplantation development of murine embryos. Glutathione constitutes the major non-protein sulphydryl compound in mammalian cells, which confers protection against oxidative damage. However, the effect of GSH supplementation on embryonic vitrification outcomes has yet to be reported. This study aims to determine whether GSH supplementation in culture media improves in vitro culture and vitrification outcomes, as observed through embryo morphology and preimplantation development. Female BALB/c mice aged 6−8 weeks were superovulated through an intraperitoneal injection of 10 IU of pregnant mare serum gonadotrophin (PMSG), followed by 10 IU of human chorionic gonadotrophin (hCG) 48 h later. The mated mice were euthanized by cervical dislocation 48 h after hCG to harvest embryos. Two-cell embryos were randomly assigned to be cultured in either Group 1 (GSH-free medium), Group 2 (GSH-free medium with vitrification), Group 3 (0.01 mM GSH-supplemented medium), or Group 4 (0.01 mM GSH-supplemented medium with vitrification). Non-vitrified (Groups 1 and 3) and vitrified (Groups 2 and 4) embryos were observed for morphological quality and preimplantation development at 24, 48, 72, and 96 h. In the non-vitrified groups, there were significant increases in the number of Grade-1 blastocysts in GSH cultures (p < 0.05). Similarly, in the vitrified groups, GSH supplementation was also seen to significantly increase blastocyst formation. Exogenous GSH supplementation resulted in a significant increase in intracellular GSH, a release of cytochrome c from mitochondria, and a parallel decrease in intracellular reactive oxygen species (ROS) levels in vitrified eight-cell embryos (p < 0.05). GSH supplementation was shown to upregulate Bcl2 expression and downregulate Bax expression in the vitrified preimplantation embryo group. The action of exogenous GSH was concomitant with an increase in the relative abundance of Gpx1 and Sod1. In conclusion, our study demonstrated the novel use and practical applicability of GSH supplementation for improving embryonic cryotolerance via a decrease in ROS levels and the inhibition of apoptotic events by improvement in oxidative status.
  10. Zakaria Z, Othman ZA, Suleiman JB, Che Jalil NA, Ghazali WSW, Nna VU, et al.
    Antioxidants (Basel), 2021 Dec 20;10(12).
    PMID: 34943134 DOI: 10.3390/antiox10122031
    Metabolic dysfunction-associated fatty liver disease (MAFLD) is a pathological accumulation of hepatic lipid closely linked with many metabolic disorders, oxidative stress and inflammation. We aimed to evaluate the hepatoprotective effect of bee bread on oxidative stress and inflammatory parameters in MAFLD rats. Twenty-eight male Sprague-Dawley rats were assigned into four groups (n = 7/group): normal control (NC), high-fat diet (HFD), bee bread (HFD + Bb, HFD + 0.5 g/kg/day bee bread) and orlistat (HFD + Or, HFD + 10 mg/kg/day orlistat) groups. After 12 weeks, the HFD group demonstrated significantly higher body weight gain, serum levels of lipids (TG, TC, LDL), liver enzymes (AST, ALT, ALP) and adiponectin, liver lipids (TG, TC) and insulin resistance (HOMA-IR). Furthermore, the HFD group showed significantly decreased antioxidant enzyme activities (GPx, GST, GR, SOD, CAT) and GSH level, and increased liver oxidative stress (TBARS, NO), translocation of Nrf2 to the nucleus, Keap1 expression and inflammation (TNF-α, NF-κβ, MCP-1) together with histopathological alterations (steatosis, hepatocyte hypertrophy, inflammatory cell infiltration, collagen deposition), which indicated the presence of non-alcoholic steatohepatitis (NASH) and fibrosis. Bee bread significantly attenuated all these changes exerted by HFD feeding. In conclusion, our results suggest that bee bread might have antioxidant, anti-inflammatory, anti-steatotic and anti-fibrotic effects that are beneficial in protecting liver progression towards NASH and fibrosis.
  11. Ong JH, Koh JA, Cao H, Tan SA, Abd Manan F, Wong FC, et al.
    Antioxidants (Basel), 2021 Nov 17;10(11).
    PMID: 34829693 DOI: 10.3390/antiox10111822
    Corn silk (CS) is an agro-by-product from corn cultivation. It is used in folk medicines in some countries, besides being commercialized as health-promoting supplements and beverages. Unlike CS-derived natural products, their bioactive peptides, particularly antioxidant peptides, are understudied. This study aimed to purify, identify and characterize antioxidant peptides from trypsin-hydrolyzed CS proteins. Purification was accomplished by membrane ultrafiltration, gel filtration chromatography, and strong-cation-exchange solid-phase extraction, guided by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS•+) scavenging, hydrogen peroxide scavenging, and lipid peroxidation inhibition assays. De novo sequencing identified 29 peptides (6-14 residues; 633-1518 Da). The peptides consisted of 33-86% hydrophobic and 10-67% basic residues. Molecular docking found MCFHHHFHK, VHFNKGKKR, and PVVWAAKR having the strongest affinity (-4.7 to -4.8 kcal/mol) to ABTS•+, via hydrogen bonds and hydrophobic interactions. Potential cellular mechanisms of the peptides were supported by their interactions with modulators of intracellular oxidant status: Kelch-like ECH-associated protein 1, myeloperoxidase, and xanthine oxidase. NDGPSR (Asn-Asp-Gly-Pro-Ser-Arg), the most promising peptide, showed stable binding to all three cellular targets, besides exhibiting low toxicity, low allergenicity, and cell-penetrating potential. Overall, CS peptides have potential application as natural antioxidant additives and functional food ingredients.
  12. Che Zain MS, Yeoh JX, Lee SY, Afzan A, Shaari K
    Antioxidants (Basel), 2021 Nov 12;10(11).
    PMID: 34829674 DOI: 10.3390/antiox10111802
    Huge quantities of oil palm (Elaeis guineensis Jacq.) leaves (OPL) are generated as agricultural biomass from oil palm plantations. OPL are known to contain significant amounts of flavonoids. For maximal exploitation of these valuable antioxidant compounds, an innovative and sustainable extraction method employing natural deep eutectic solvents (NaDES) combined with ultrasonic assisted extraction was developed. Various NaDES composed of choline chloride as the hydrogen bond donor (HBD) and 1,2 propanediol (PD), 1,4 butanediol (BD), glycerol (GLY), glucose (GLU), maltose (MAL), and lactic acid (LA) as the hydrogen bond acceptor (HBA) were synthesized. The influence of these compositions, the methods of their synthesis, molar ratios, and water contents on their capacity to extract flavonoids from OPL was evaluated. Based on the results, it was found that methods which incorporate a heating step produced NaDES with the best capacity to extract OPL flavonoids. These thermal methods combined with molar ratios of 1:3 or 1:4 and water contents of 17 to 50% were found to be the optimal conditions for preparing NaDES, specifically when applied to the PD, BD, and GLY NaDES. Subsequently, UHPLC-UV/PDA-MS/MS analysis revealed NaDES extracts recovered by macroporous adsorption resin XAD7HP were able to optimally extract at least twelve luteolin and apigenin derivatives in OPL NaDES extracts prepared from glycerol and 1,4-butanediol demonstrated better and comparable efficiency as aqueous methanol in extracting flavonoids from OPL. The in vitro studies of antioxidant and wound healing properties supported these findings by exhibiting good free radical scavenging, cell proliferation, and migration activities. Additionally, the NaDES extracts also showed non-cytotoxicity effects at 1000 µg/mL and below on 3T3 fibroblast cells. Results of the study showed that NaDES could be a promising eco-friendly green solvent to extract bioactive OPL flavonoids that have great potential for applications as wound healing agents.
  13. Sinan KI, Zengin G, Zheleva-Dimitrova D, Gevrenova R, Picot-Allain MCN, Dall'Acqua S, et al.
    Antioxidants (Basel), 2021 Nov 05;10(11).
    PMID: 34829642 DOI: 10.3390/antiox10111771
    Spondias species have been used in traditional medicine for different human ailments. In this study, the effect of different solvents (ethyl acetate, methanol, and water) and extraction methods (infusion, maceration, and Soxhlet extraction) on the enzyme inhibitory activity against acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase, α-glucosidase, and antioxidant properties of S. mombin and S. dulcis leaves and stem bark were evaluated. Ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) yield in the identification and/or annotation of 98 compounds showing that the main secondary metabolites of the plant are gallic and ellagic acids and their derivatives, ellagitannins, hydroxybenzoic, hydroxycinnamic, acylquinic acids and flavonols, flavanones, and flavanonols. The leaves infusion of both Spondias species showed highest inhibition against acetylcholinesterase (AChE) (10.10 and 10.45 mg galantamine equivalent (GALAE)/g, for S. dulcis and S. mombin, respectively). The ethyl acetate extracts of the stem bark of S. mombin and S. dulcis actively inhibited α-glucosidase. Methanolic extracts of the leaves and stem bark exhibited highest tyrosinase inhibitory action. Antioxidant activity and higher levels of phenolics were observed for the methanolic extracts of Spondias. The results suggested that the Spondias species could be considered as natural phyto-therapeutic agents in medicinal and cosmeceutical applications.
  14. Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ
    Antioxidants (Basel), 2021 Sep 15;10(9).
    PMID: 34573097 DOI: 10.3390/antiox10091465
    Plant extracts are rich in various bioactive compounds exerting antioxidants effects, such as phenolics, catechins, flavonoids, quercetin, anthocyanin, tocopherol, rutin, chlorogenic acid, lycopene, caffeic acid, ferulic acid, p-coumaric acid, vitamin C, protocatechuic acid, vitamin E, carotenoids, β-carotene, myricetin, kaempferol, carnosine, zeaxanthin, sesamol, rosmarinic acid, carnosic acid, and carnosol. The extraction processing protocols such as solvent, time, temperature, and plant powder should be optimized to obtain the optimum yield with the maximum concentration of active ingredients. The application of novel green extraction technologies has improved extraction yields with a high concentration of active compounds, heat-labile compounds at a lower environmental cost, in a short duration, and with efficient utilization of the solvent. The application of various combinations of extraction technologies has proved to exert a synergistic effect or to act as an adjunct. There is a need for proper identification, segregation, and purification of the active ingredients in plant extracts for their efficient utilization in the meat industry, as natural antioxidants. The present review has critically analyzed the conventional and green extraction technologies in extracting bioactive compounds from plant biomass and their utilization in meat as natural antioxidants.
  15. Dawood MAO, Basuini MFE, Yilmaz S, Abdel-Latif HMR, Kari ZA, Abdul Razab MKA, et al.
    Antioxidants (Basel), 2021 Aug 27;10(9).
    PMID: 34572996 DOI: 10.3390/antiox10091364
    Balanced aquafeed is the key factor for enhancing the productivity of aquatic animals. In this context, aquatic animals require optimal amounts of lipids, proteins, carbohydrates, vitamins, and minerals. The original plant and animals' ingredients in the basal diets are insufficient to provide aquafeed with suitable amounts of minerals. Concurrently, elements should be incorporated in aquafeed in optimal doses, which differ based on the basal diets' species, age, size, and composition. Selenium is one of the essential trace elements involved in various metabolic, biological, and physiological functions. Se acts as a precursor for antioxidative enzyme synthesis leading to high total antioxidative capacity. Further, Se can enhance the immune response and the tolerance of aquatic animals to infectious diseases. Several metabolic mechanisms, such as thyroid hormone production, cytokine formation, fecundity, and DNA synthesis, require sufficient Se addition. The recent progress in the nanotechnology industry is also applied in the production of Se nanoparticles. Indeed, Se nanoparticles are elaborated as more soluble and bioavailable than the organic and non-organic forms. In aquaculture, multiple investigations have elaborated the role of Se nanoparticles on the performances and wellbeing of aquatic animals. In this review, the outputs of recent studies associated with the role of Se nanoparticles on aquatic animals' performances were simplified and presented for more research and development.
  16. Kaur P, Sandhu KS, Bangar SP, Purewal SS, Kaur M, Ilyas RA, et al.
    Antioxidants (Basel), 2021 Jul 28;10(8).
    PMID: 34439463 DOI: 10.3390/antiox10081214
    Six different solvents were used as extraction medium (water, methanol, ethanol, acidified methanol, benzene and acetone) to check their phenolics extraction efficacy from flour of two rye cultivars. Rye extracts with different solvents were further analyzed for the estimation of phytochemicals and antioxidant properties. Different tests (TPC, TAC, DPPH, FRAP, ABTS, RPA and CTC) were performed to check the antioxidant properties and tannin contents in extracts. A bioactive profile of a rye cultivar indicated the presence of total phenolic compounds (0.08-2.62 mg GAE/g), total antioxidant capacity (0.9-6.8 mg AAE/g) and condensed tannin content (4.24-9.28 mg CE/100 g). HPLC was done to check phenolics in rye extract with the best solvent (water), which indicated the presence of Catechol (91.1-120.4 mg/100 g), resorcinol (52-70.3 mg/100 g), vanillin (1.3-5.5 mg/100 g), ferulic acid (1.4-1.5 mg/100 g), quercetin (4.6-4.67 mg/100 g) and benzoic acid (5.3 mg/100 g) in rye extracts. The presence of DNA damage protection potential in rye extracts indicates its medicinal importance. Rye flour could be utilized in the preparation of antioxidant-rich health-benefiting food products.
  17. Zhou Y, Murugan DD, Khan H, Huang Y, Cheang WS
    Antioxidants (Basel), 2021 Jul 22;10(8).
    PMID: 34439415 DOI: 10.3390/antiox10081167
    In different pathological states that cause endoplasmic reticulum (ER) calcium depletion, altered glycosylation, nutrient deprivation, oxidative stress, DNA damage or energy perturbation/fluctuations, the protein folding process is disrupted and the ER becomes stressed. Studies in the past decade have demonstrated that ER stress is closely associated with pathogenesis of obesity, insulin resistance and type 2 diabetes. Excess nutrients and inflammatory cytokines associated with metabolic diseases can trigger or worsen ER stress. ER stress plays a critical role in the induction of endothelial dysfunction and atherosclerosis. Signaling pathways including AMP-activated protein kinase and peroxisome proliferator-activated receptor have been identified to regulate ER stress, whilst ER stress contributes to the imbalanced production between nitric oxide (NO) and reactive oxygen species (ROS) causing oxidative stress. Several drugs or herbs have been proved to protect against cardiovascular diseases (CVD) through inhibition of ER stress and oxidative stress. The present article reviews the involvement of ER stress and oxidative stress in cardiovascular dysfunction and the potential therapeutic implications.
  18. Kuek SL, Tarmizi AHA, Abd Razak RA, Jinap S, Sanny M
    Antioxidants (Basel), 2021 Jun 22;10(7).
    PMID: 34206458 DOI: 10.3390/antiox10070993
    This study aims to evaluate the influence of Vitamin A and E homologues toward acrylamide in equimolar asparagine-glucose model system. Vitamin A homologue as β-carotene (BC) and five Vitamin E homologues, i.e., α-tocopherol (AT), δ-tocopherol (DT), α-tocotrienol (ATT), γ-tocotrienol (GTT), and δ-tocotrienol (DTT), were tested at different concentrations (1 and 10 µmol) and subjected to heating at 160 °C for 20 min before acrylamide quantification. At lower concentrations (1 µmol; 431, 403, 411 ppm, respectively), AT, DT, and GTT significantly increase acrylamide. Except for DT, enhancing concentration to 10 µmol (5370, 4310, 4250, 3970, and 4110 ppm, respectively) caused significant acrylamide formation. From linear regression model, acrylamide concentration demonstrated significant depreciation over concentration increase in AT (Beta = -83.0, R2 = 0.652, p ≤ 0.05) and DT (Beta = -71.6, R2 = 0.930, p ≤ 0.05). This study indicates that different Vitamin A and E homologue concentrations could determine their functionality either as antioxidants or pro-oxidants.
  19. Kumar MR, Yeap SK, Lee HC, Mohamad NE, Nazirul Mubin Aziz M, Khalid M, et al.
    Antioxidants (Basel), 2021 Jun 10;10(6).
    PMID: 34200854 DOI: 10.3390/antiox10060940
    Kefir, a fermented probiotic drink was tested for its potential anti-oxidative, anti-apoptotic, and neuroprotective effects to attenuate cellular oxidative stress on human SH-SY5Y neuroblastoma cells. Here, the antioxidant potentials of the six different kefir water samples were analysed by total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) assays, whereas the anti-apoptotic activity on hydrogen peroxide (H2O2) induced SH-SY5Y cells was examined using MTT, AO/PI double staining, and PI/Annexin V-FITC assays. The surface and internal morphological features of SH-SY5Y cells were studied using scanning and transmission electron microscopy. The results indicate that Kefir B showed the higher TPC (1.96 ± 0.54 µg GAE/µL), TFC (1.09 ± 0.02 µg CAT eq/µL), FRAP (19.68 ± 0.11 mM FRAP eq/50 µL), and DPPH (0.45 ± 0.06 mg/mL) activities compared to the other kefir samples. The MTT and PI/Annexin V-FITC assays showed that Kefir B pre-treatment at 10 mg/mL for 48 h resulted in greater cytoprotection (97.04%), and a significantly lower percentage of necrotic cells (7.79%), respectively. The Kefir B pre-treatment also resulted in greater protection to cytoplasmic and cytoskeleton inclusion, along with the conservation of the surface morphological features and the overall integrity of SH-SY5Y cells. Our findings indicate that the anti-oxidative, anti-apoptosis, and neuroprotective effects of kefir were mediated via the upregulation of SOD and catalase, as well as the modulation of apoptotic genes (Tp73, Bax, and Bcl-2).
  20. Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Nur H, Ismail AF, Sharif S, et al.
    Antioxidants (Basel), 2020 Dec 21;9(12).
    PMID: 33371338 DOI: 10.3390/antiox9121309
    Recently, increasing public concern about hygiene has been driving many studies to investigate antimicrobial and antiviral agents. However, the use of any antimicrobial agents must be limited due to their possible toxic or harmful effects. In recent years, due to previous antibiotics' lesser side effects, the use of herbal materials instead of synthetic or chemical drugs is increasing. Herbal materials are found in medicines. Herbs can be used in the form of plant extracts or as their active components. Furthermore, most of the world's populations used herbal materials due to their strong antimicrobial properties and primary healthcare benefits. For example, herbs are an excellent material to replace nanosilver as an antibiotic and antiviral agent. The use of nanosilver involves an ROS-mediated mechanism that might lead to oxidative stress-related cancer, cytotoxicity, and heart diseases. Oxidative stress further leads to increased ROS production and also delays the cellular processes involved in wound healing. Therefore, existing antibiotic drugs can be replaced with biomaterials such as herbal medicine with high antimicrobial, antiviral, and antioxidant activity. This review paper highlights the antibacterial, antiviral, and radical scavenger (antioxidant) properties of herbal materials. Antimicrobial activity, radical scavenger ability, the potential for antimicrobial, antiviral, and anticancer agents, and efficacy in eliminating bacteria and viruses and scavenging free radicals in herbal materials are discussed in this review. The presented herbal antimicrobial agents in this review include clove, portulaca, tribulus, eryngium, cinnamon, turmeric, ginger, thyme, pennyroyal, mint, fennel, chamomile, burdock, eucalyptus, primrose, lemon balm, mallow, and garlic, which are all summarized.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links