Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Abd Razak DL, Abdullah N, Khir Johari NM, Sabaratnam V
    Appl Microbiol Biotechnol, 2013 Apr;97(7):3207-13.
    PMID: 22576946 DOI: 10.1007/s00253-012-4135-8
    The potential for using agricultural and industrial by-products as substrate for the production of the edible mushroom, Auricularia polytricha, was evaluated using several formulations of selected palm oil wastes mixed with sawdust and further supplemented with selected nitrogen sources. The best substrate formulations were sawdust (SD) mixed with oil palm frond (OPF; 90:10) added with 15% spent grain (SG) and sawdust mixed with empty fruit bunch (EFB; 50:50) added with 10% spent grain (SG) with mycelia growth rate of 8 mm/day and 7 mm/day respectively. These two substrate formulations were then subjected to different moisture content levels (65%, 75% and 85%). Highest total fresh sporophore yield at 0.43% was obtained on SD+OPF (90:10)+15% SG at 85% moisture content, followed closely by SD+EFB (50:50)+10% SG with 0.40% total yield, also at 85% moisture content. Each of the substrate formulations at 85% moisture content gave the highest biological efficiency (BE) at 288.9% and 260.7%, respectively. Both yield and biological efficiency of A. polytricha on these two formulations were almost three times higher when compared to sawdust substrate alone, thus proving the potential of these formulations to improve yield of this mushroom.
  2. Abdul Manaf SA, Mohamad Fuzi SFZ, Low KO, Hegde G, Abdul Manas NH, Md Illias R, et al.
    Appl Microbiol Biotechnol, 2021 Nov;105(21-22):8531-8544.
    PMID: 34611725 DOI: 10.1007/s00253-021-11616-0
    Carbon nanomaterials, due to their catalytic activity and high surface area, have potential as cell immobilization supports to increase the production of xylanase. Recombinant Kluyveromyces lactis used for xylanase production was integrated into a polymeric gel network with carbon nanomaterials. Carbon nanomaterials were pretreated before cell immobilization with hydrochloric acid (HCl) treatment and glutaraldehyde (GA) crosslinking, which contributes to cell immobilization performance. Carbon nanotubes (CNTs) and graphene oxide (GO) were further screened using a Plackett-Burman experimental design. Cell loading and agar concentration were the most important factors in xylanase production with low cell leakage. Under optimized conditions, xylanase production was increased by more than 400% compared to free cells. Immobilized cell material containing such high cell densities may exhibit new and unexplored beneficial properties because the cells comprise a large fraction of the component. The use of carbon nanomaterials as a cell immobilization support along with the entrapment method successfully enhances the production of xylanase, providing a new route to improved bioprocessing, particularly for the production of enzymes. KEY POINTS: • Carbon nanomaterials (CNTs, GO) have potential as cell immobilization supports. • Entrapment in a polymeric gel network provides space for xylanase production. • Plackett-Burman design screen for the most important factor for cell immobilization.
  3. Akbar N, Siddiqui R, Sagathevan KA, Khan NA
    Appl Microbiol Biotechnol, 2019 May;103(10):3955-3964.
    PMID: 30941460 DOI: 10.1007/s00253-019-09783-2
    The morbidity and mortality associated with bacterial infections have remained significant despite chemotherapeutic advances. With the emergence of drug-resistant bacterial strains, the situation has become a serious threat to the public health. Thus, there is an urgent need to identify novel antibacterials. The majority of antibiotics available in the market are produced by bacteria isolated from soil. However, the low-hanging fruit has been picked; hence, there is a need to mine bacteria from unusual sources. With this in mind, it is important to note that animals and pests such as cockroaches, snake, crocodiles, and water monitor lizard come across pathogenic bacteria regularly, yet flourish in contaminated environments. These species must have developed methods to defend themselves to counter pathogens. Although the immune system is known to possess antiinfective properties, gut bacteria of animals/pests may also offer a potential source of novel antibacterial agents, and it is the subject of this study. This paper discusses our current knowledge of bacteria isolated from land and marine animals with antibacterial properties and to propose untapped sources for the isolation of bacteria to mine potentially novel antibiotic molecules.
  4. Akhtar J, Idris A, Abd Aziz R
    Appl Microbiol Biotechnol, 2014 Feb;98(3):987-1000.
    PMID: 24292125 DOI: 10.1007/s00253-013-5319-6
    Production of succinic acid via separate enzymatic hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) are alternatives and are environmentally friendly processes. These processes have attained considerable positions in the industry with their own share of challenges and problems. The high-value succinic acid is extensively used in chemical, food, pharmaceutical, leather and textile industries and can be efficiently produced via several methods. Previously, succinic acid production via chemical synthesis from petrochemical or refined sugar has been the focus of interest of most reviewers. However, these expensive substrates have been recently replaced by alternative sustainable raw materials such as lignocellulosic biomass, which is cheap and abundantly available. Thus, this review focuses on succinic acid production utilizing lignocellulosic material as a potential substrate for SSF and SHF. SSF is an economical single-step process which can be a substitute for SHF - a two-step process where biomass is hydrolyzed in the first step and fermented in the second step. SSF of lignocellulosic biomass under optimum temperature and pH conditions results in the controlled release of sugar and simultaneous conversion into succinic acid by specific microorganisms, reducing reaction time and costs and increasing productivity. In addition, main process parameters which influence SHF and SSF processes such as batch and fed-batch fermentation conditions using different microbial strains are discussed in detail.
  5. Ali SM, Siddiqui R, Ong SK, Shah MR, Anwar A, Heard PJ, et al.
    Appl Microbiol Biotechnol, 2017 Jan;101(1):253-286.
    PMID: 27743045 DOI: 10.1007/s00253-016-7872-2
    Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential sources of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic Escherichia coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analysed. Among hundreds of compounds, only a few homologous compounds were identified that contained the isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole-containing analogs, sulfonamides, furanones, and flavanones and known to possess broad-spectrum antimicrobial properties and anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization, and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs.
  6. Ang PC, Perumal V, Ibrahim MNM, Adnan R, Mohd Azman DK, Gopinath SCB, et al.
    Appl Microbiol Biotechnol, 2023 Mar;107(5-6):1503-1513.
    PMID: 36719432 DOI: 10.1007/s00253-023-12400-y
    Viruses have spread throughout the world and cause acute illness or death among millions of people. There is a growing concern about methods to control and combat early-stage viral infections to prevent the significant public health problem. However, conventional detection methods like polymerase chain reaction (PCR) requires sample purification and are time-consuming for further clinical diagnosis. Hence, establishing a portable device for rapid detection with enhanced sensitivity and selectivity for the specific virus to prevent further spread becomes an urgent need. Many research groups are focusing on the potential of the electrochemical sensor to become a key for developing point-of-care (POC) technologies for clinical analysis because it can solve most of the limitations of conventional diagnostic methods. Herein, this review discusses the current development of electrochemical sensors for the detection of respiratory virus infections and flaviviruses over the past 10 years. Trends in future perspectives in rapid clinical detection sensors on viruses are also discussed. KEY POINTS: • Respiratory related viruses and Flavivirus are being concerned for past decades. • Important to differentiate the cross-reactivity between the virus in same family. • Electrochemical biosensor as a suitable device to detect viruses with high performance.
  7. Arshad ZI, Amid A, Yusof F, Jaswir I, Ahmad K, Loke SP
    Appl Microbiol Biotechnol, 2014 Sep;98(17):7283-97.
    PMID: 24965557 DOI: 10.1007/s00253-014-5889-y
    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.
  8. Ayoib A, Hashim U, Gopinath SCB, Md Arshad MK
    Appl Microbiol Biotechnol, 2017 Nov;101(22):8077-8088.
    PMID: 28942548 DOI: 10.1007/s00253-017-8493-0
    This review covers a developmental progression on early to modern taxonomy at cellular level following the advent of electron microscopy and the advancement in deoxyribonucleic acid (DNA) extraction for expatiation of biological classification at DNA level. Here, we discuss the fundamental values of conventional chemical methods of DNA extraction using liquid/liquid extraction (LLE) followed by development of solid-phase extraction (SPE) methods, as well as recent advances in microfluidics device-based system for DNA extraction on-chip. We also discuss the importance of DNA extraction as well as the advantages over conventional chemical methods, and how Lab-on-a-Chip (LOC) system plays a crucial role for the future achievements.
  9. Chan ES, Lee PP, Ravindra P, Krishnaiah K, Voo WP
    Appl Microbiol Biotechnol, 2010 Mar;86(1):385-91.
    PMID: 20033402 DOI: 10.1007/s00253-009-2384-y
    The aim of this work was to develop a standard quantitative method to measure the acid tolerance of probiotic cells when exposed to a simulated gastric fluid. Three model strains of different cell concentrations were exposed to a standard simulated gastric fluid of fixed volume. The fluid pH ranged from pH 1.5 to 2.5. In general, the death kinetics followed an exponential trend. The overall death constant, k (d), for all strains was found to be in a power relationship with the pH value and the initial cell concentration, and it can be expressed as k(d)=k(AII) (pH(-9.0)N(0)(-0.19)) where k (AII) is defined as the acid intolerance indicator and N (0) is the initial cell concentration (CFU/ml). This equation was validated with the experimental data with an average R (2) of 0.98. The acid intolerance of cells can be quantitatively expressed by the k (AII) values, where higher value indicates higher intolerance. In conclusion, a standard quantitative method has been developed to measure the acid tolerance of probiotic cells. This could facilitate the selection of probiotic strains and processing technologies.
  10. Chan SK, Lim TS
    Appl Microbiol Biotechnol, 2019 Apr;103(7):2973-2984.
    PMID: 30805670 DOI: 10.1007/s00253-019-09669-3
    Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.
  11. Chek MF, Hiroe A, Hakoshima T, Sudesh K, Taguchi S
    Appl Microbiol Biotechnol, 2019 Feb;103(3):1131-1141.
    PMID: 30511262 DOI: 10.1007/s00253-018-9538-8
    Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by a wide range of bacteria, which serve as a promising candidate in replacing some conventional petrochemical-based plastics. PHA synthase (PhaC) is the key enzyme in the polymerization of PHA, and the crystal structures were successfully determined using the catalytic domain of PhaC from Cupriavidus necator (PhaCCn-CAT) and Chromobacterium sp. USM2 (PhaCCs-CAT). Here, we review the beneficial mutations discovered in PhaCs from a structural perspective. The structural comparison of the residues involved in beneficial mutation reveals that the residues are near to the catalytic triad, but not inside the catalytic pocket. For instance, Ala510 of PhaCCn is near catalytic His508 and may be involved in the open-close regulation, which presumably play an important role in substrate specificity and activity. In the class II PhaC1 from Pseudomonas sp. 61-3 (PhaC1Ps), Ser325 stabilizes the catalytic cysteine through hydrogen bonding. Another residue, Gln508 of PhaC1Ps is located in a conserved hydrophobic pocket which is next to the catalytic Asp and His. A class I, II-conserved Phe420 of PhaCCn is one of the residues involved in dimerization and its mutation to serine greatly reduced the lag phase. The current structural analysis shows that the Phe362 and Phe518 of PhaC from Aeromonas caviae (PhaCAc) are assisting the dimer formation and maintaining the integrity of the core beta-sheet, respectively. The structure-function relationship of PhaCs discussed in this review will serve as valuable reference for future protein engineering works to enhance the performance of PhaCs and to produce novel biopolymers.
  12. Doni F, Mispan MS, Suhaimi NSM, Ishak N, Uphoff N
    Appl Microbiol Biotechnol, 2019 Jul;103(13):5131-5142.
    PMID: 31101941 DOI: 10.1007/s00253-019-09879-9
    The system of rice intensification (SRI) is an agroecological approach to rice cultivation that seeks to create optimal conditions for healthy plant growth by minimizing inter-plant competition, transplanting widely spaced young single seedlings, and optimizing favorable soil conditions with organic amendments, increased soil aeration by weeding, and controlled water management. These practices improve rice plant growth with yields up to three times more than with conventional cultivation methods, and increase crop resilience under biotic and abiotic stresses. This review discusses the roles of beneficial microbes in improving rice plant growth, yield, and resilience when SRI practices are used, and how these modifications in plant, soil, water, and nutrient management affect the populations and diversity of soil microorganisms. Mechanisms whereby symbiotic microbes support rice plants' growth and performance are also discussed.
  13. Ejike UC, Chan CJ, Lim CSY, Lim RLH
    Appl Microbiol Biotechnol, 2021 Apr;105(7):2799-2813.
    PMID: 33763709 DOI: 10.1007/s00253-021-11225-x
    Fungal immunomodulatory proteins (FIPs) are bioactive proteins with immunomodulatory properties. We previously reported the heterologous production in Escherichia coli of FIP-Lrh from Tiger milk mushroom (Lignosus rhinocerus) with potent cytotoxic effect on cancer cell lines. However, protein produced in E. coli lacks post-translational modifications and may be contaminated with lipopolysaccharide (LPS) endotoxin. Therefore, in this study, yFIP-Lrh produced in Pichia pastoris was functionally compared with eFIP-Lrh produced in E. coli. Expression construct of FIP-Lrh cDNA in pPICZα was generated, transformed into P. pastoris X-33 and Mut+ transformants were verified by colony PCR. Induction with 0.5% or 1% methanol resulted in a secreted 13.6 kDa yFIP-Lrh which was subsequently purified and verified using LCMS/MS analysis. Size exclusion chromatography confirmed eFIP-Lrh as a homodimer whereas the larger size of yFIP-Lrh may indicate post-translational modification despite negative for glycoproteins staining. At lower concentration (4-8 μg/mL), yFIP-Lrh induced significantly higher Th1 (IFN-γ, TNF-α) and Th2 (IL-6, IL-4, IL-5, IL-13) cytokines production in mice splenocytes, whereas 16 μg/mL eFIP-Lrh induced significantly higher pro-inflammatory cytokines (TNF-α, IL-6, IL-10), possibly due to higher residual LPS endotoxin (0.082 EU/mL) in eFIP-Lrh compared to negligible level in yFIP-Lrh (0.001 EU/mL). Furthermore, yFIP-Lrh showed higher cytotoxic effect on MCF-7 and HeLa cancer cells. Since both recombinant proteins of FIP-Lrh have the same peptide sequence, besides glycosylation, other post-translational modifications in yFIP-Lrh may account for its enhanced immunomodulatory and anti-proliferative activities. In conclusion, P. pastoris is preferred over E. coli for production of a functionally active yFIP-Lrh devoid of endotoxin contamination. KEY POINTS: • FIP-Lrh can induced production of Th1 and Th2 cytokines by mouse splenocytes. • Higher cytotoxic effect on cancer cells observed for yeast compared to E. coli produced FIP-Lrh. • P. pastoris allows production of an endotoxin-free and functionally active recombinant FIP-Lrh.
  14. Gantait S, El-Dawayati MM, Panigrahi J, Labrooy C, Verma SK
    Appl Microbiol Biotechnol, 2018 Oct;102(19):8229-8259.
    PMID: 30054703 DOI: 10.1007/s00253-018-9232-x
    Date palm (Phoenix dactylifera L.) is one of the most important fruit trees that contribute a major part to the economy of Middle East and North African countries. It is quintessentially called "tree of life" owing to its resilience to adverse climatic conditions, along with manifold nutritional-cum-medicinal attributes that comes from its fruits and other plant parts. Being a tree with such immense utility, it has gained substantial attention of tree breeders for its genetic advancement via in vitro biotechnological interventions. Herein, an extensive review of biotechnological research advances in date palm has been consolidated as one of the major research achievements during the past two decades. This article compares the different biotechnological techniques used in this species such as: tissue and organ culture, bioreactor-mediated large-scale propagation, cell suspension culture, embryogenic culture, protoplast culture, conservation (for short- and long-term) of germplasms, in vitro mutagenesis, in vitro selection against biotic and abiotic stresses, secondary metabolite production in vitro, and genetic transformation. This review provides an insight on crop improvement and breeding programs for improved yield and quality fruits; besides, it would undeniably facilitate the tissue culture-based research on date palm for accelerated propagation and enhanced production of quality planting materials, along with conservation and exchange of germplasms, and genetic engineering. In addition, the unexplored research methodologies and major bottlenecks identified in this review should be contemplated on in near future.
  15. Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, et al.
    Appl Microbiol Biotechnol, 2013 Feb;97(4):1475-88.
    PMID: 23324802 DOI: 10.1007/s00253-012-4663-2
    The Bacillaceae family members are a good source of bacteria for bioprocessing and biotransformation involving whole cells or enzymes. In contrast to Bacillus and Geobacillus, Anoxybacillus is a relatively new genus that was proposed in the year 2000. Because these bacteria are alkali-tolerant thermophiles, they are suitable for many industrial applications. More than a decade after the first report of Anoxybacillus, knowledge accumulated from fundamental and applied studies suggests that this genus can serve as a good alternative in many applications related to starch and lignocellulosic biomasses, environmental waste treatment, enzyme technology, and possibly bioenergy production. This current review provides the first summary of past and recent discoveries regarding the isolation of Anoxybacillus, its medium requirements, its proteins that have been characterized and cloned, bioremediation applications, metabolic studies, and genomic analysis. Comparisons to some other members of Bacillaceae and possible future applications of Anoxybacillus are also discussed.
  16. Gopinath SC, Lakshmipriya T, Chen Y, Arshad MK, Kerishnan JP, Ruslinda AR, et al.
    Appl Microbiol Biotechnol, 2016 Aug;100(16):6955-69.
    PMID: 27350620 DOI: 10.1007/s00253-016-7686-2
    Aptamers are single-stranded nucleic acids or peptides identified from a randomized combinatorial library through specific interaction with the target of interest. Targets can be of any size, from small molecules to whole cells, attesting to the versatility of aptamers for binding a wide range of targets. Aptamers show drug properties that are analogous to antibodies, with high specificity and affinity to their target molecules. Aptamers can penetrate disease-causing microbial and mammalian cells. Generated aptamers that target surface biomarkers act as cell-targeting agents and intracellular delivery vehicles. Within this context, the "cell-internalizing aptamers" are widely investigated via the process of cell uptake with selective binding during in vivo systematic evolution of ligands by exponential enrichment (SELEX) or by cell-internalization SELEX, which targets cell surface antigens to be receptors. These internalizing aptamers are highly preferable for the localization and functional analyses of multiple targets. In this overview, we discuss the ways by which internalizing aptamers are generated and their successful applications. Furthermore, theranostic approaches featuring cell-internalized aptamers are discussed with the purpose of analyzing and diagnosing disease-causing pathogens.
  17. Hamdan SH, Maiangwa J, Ali MSM, Normi YM, Sabri S, Leow TC
    Appl Microbiol Biotechnol, 2021 Oct;105(19):7069-7094.
    PMID: 34487207 DOI: 10.1007/s00253-021-11520-7
    Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
  18. Hamdan SH, Maiangwa J, Nezhad NG, Ali MSM, Normi YM, Shariff FM, et al.
    Appl Microbiol Biotechnol, 2023 Mar;107(5-6):1673-1686.
    PMID: 36752811 DOI: 10.1007/s00253-023-12396-5
    Lipase biocatalysts offer unique properties which are often impaired by low thermal and methanol stability. In this study, the rational design was employed to engineer a disulfide bond in the protein structure of Geobacillus zalihae T1 lipase in order to improve its stability. The selection of targeted disulfide bond sites was based on analysis of protein spatial configuration and change of Gibbs free energy. Two mutation points (S2C and A384C) were generated to rigidify the N-terminal and C-terminal regions of T1 lipase. The results showed the mutant 2DC lipase improved methanol stability from 35 to 40% (v/v) after 30 min of pre-incubation. Enhancement in thermostability for the mutant 2DC lipase at 70 °C and 75 °C showed higher half-life at 70 °C and 75 °C for 30 min and 52 min, respectively. The mutant 2DC lipase maintained the same optimum temperature (70 °C) as T1 lipase, while thermally induced unfolding showed the mutant maintained higher rigidity. The kcat/Km values demonstrated a relatively small difference between the T1 lipase (WT) and 2DC lipase (mutant). The kcat/Km (s-1 mM-1) of the T1 and 2DC showed values of 13,043 ± 224 and 13,047 ± 312, respectively. X-ray diffraction of 2DC lipase crystal structure with a resolution of 2.04 Å revealed that the introduced single disulfide bond did not lower initial structural interactions within the residues. Enhanced methanol and thermal stability are suggested to be strongly related to the newly disulfide bridge formation and the enhanced compactness and rigidity of the mutant structure. KEY POINTS: • Protein engineering via rational design revealed relative improved enzymatic performance. • The presence of disulfide bond impacts on the rigidity and structural function of proteins. • X-ray crystallography reveals structural changes accompanying protein modification.
  19. Jamek SB, Nyffenegger C, Muschiol J, Holck J, Meyer AS, Mikkelsen JD
    Appl Microbiol Biotechnol, 2017 Jun;101(11):4533-4546.
    PMID: 28280871 DOI: 10.1007/s00253-017-8198-4
    Type A chitinases (EC 3.2.1.14), GH family 18, attack chitin ((1 → 4)-2-acetamido-2-deoxy-β-D-glucan) and chito-oligosaccharides from the reducing end to catalyze release of chitobiose (N,N'-diacetylchitobiose) via hydrolytic cleavage of N-acetyl-β-D-glucosaminide (1 → 4)-β-linkages and are thus "exo-chitobiose hydrolases." In this study, the chitinase type A from Serratia marcescens (SmaChiA) was used as a template for identifying two novel exo-chitobiose hydrolase type A enzymes, FbalChi18A and MvarChi18A, originating from the marine organisms Ferrimonas balearica and Microbulbifer variabilis, respectively. Both FbalChi18A and MvarChi18A were recombinantly expressed in Escherichia coli and were confirmed to exert exo-chitobiose hydrolase activity on chito-oligosaccharides, but differed in temperature and pH activity response profiles. Amino acid sequence comparison of the catalytic β/α barrel domain of each of the new enzymes showed individual differences, but ~69% identity of each to that of SmaChiA and highly conserved active site residues. Superposition of a model substrate on 3D structural models of the catalytic domain of the enzymes corroborated exo-chitobiose hydrolase type A activity for FbalChi18A and MvarChi18A, i.e., substrate attack from the reducing end. A main feature of both of the new enzymes was the presence of C-terminal 5/12 type carbohydrate-binding modules (SmaChiA has no C-terminal carbohydrate binding module). These new enzymes may be useful tools for utilization of chitin as an N-acetylglucosamine donor substrate via chitobiose.
  20. Jiang L, Huang P, Ren B, Song Z, Zhu G, He W, et al.
    Appl Microbiol Biotechnol, 2021 Jun;105(12):4975-4986.
    PMID: 34146138 DOI: 10.1007/s00253-021-11226-w
    Marine microbes provide an important resource to discover new chemical compounds with biological activities beneficial to drug discovery. In our study, two new polyene macrolides, pyranpolyenolides A (1) and B (2), and one new natural cyclic peptide (9), together with two known polyenes (7 and 8) and three known cyclic peptides (10-12), were isolated from a culture of the marine Streptomyces sp. MS110128. In addition, four new polyene macrolides, pyranpolyenolides C-F (3-6), were identified as olefin geometric isomers that were most likely produced by photochemical conversion during the cultivation or isolation procedures. The pyranpolyenolides are 32-membered macrolides endowed with a conjugated tetraene and several pairs of 1,3-dihydroxyl groups. Pyranpolyenolides that contain a hydropyran group have not been previously reported. Four cyclic peptides (9-12) showed significant activities against Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant S. aureus with supporting MIC values ranging from 0.025 to 1.25 μg/mL. These cyclic peptides containing piperazic moieties showed moderate activities with MIC values of 12.5 μg/mL against Bacille Calmette Guerin (BCG), an attenuated form of the bovine. Additionally, cyclic peptide 12 showed moderate antifungal activity against Candida albicans with an MIC value of 12.5 μg/mL. KEY POINTS: • Discovery of new polyenes and cyclic peptides from a marine-derived Actinomycete. • Cyclic peptides containing piperazic moieties exhibited good antibacterial activity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links