Displaying publications 1 - 20 of 134 in total

Abstract:
Sort:
  1. Begum M, Rahman AK, Abdul-Rashid HA, Yusoff Z, Begum M, Mat-Sharif KA, et al.
    Appl Radiat Isot, 2015 Jun;100:79-83.
    PMID: 25468288 DOI: 10.1016/j.apradiso.2014.10.025
    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1Gy to 10Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5cm length are annealed at temperature of 400°C for 1h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1h at 400°C and subsequently 2h at 100°C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Zeff) is found in the range (13.25-13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation dosimetry.
  2. Alawiah A, Alina MS, Bauk S, Abdul-Rashid HA, Gieszczyk W, Noramaliza MN, et al.
    Appl Radiat Isot, 2015 Apr;98:80-6.
    PMID: 25644081 DOI: 10.1016/j.apradiso.2015.01.016
    The thermoluminescence (TL) glow curves and kinetics parameters of Thulium (Tm) doped silica cylindrical fibers (CF) are presented. A linear accelerator (LINAC) was used to deliver high-energy radiation of 21MeV electrons and 10MV photons. The CFs were irradiated in the dose range of 0.2-10Gy. The experimental glow curve data was reconstructed by using WinREMS. The WinGCF software was used for the kinetic parameters evaluation. The TL sensitivity of Tm-doped silica CF is about 2 times higher as compared to pure silica CF. Tm-doped silica CF seems to be more sensitive to 21MeV electrons than to 10MV photons. Surprisingly, no supralinearity was displayed and a sub-linear response of Tm-doped silica CF was observed within the analyzed dose range for both 21MeV electrons and 10MV photons. The Tm-doped silica CF glow curve consists of 5 individual glow peaks. The Ea of peak 4 and peak 5 was highly dependent on dose when irradiated with photons. We also noticed that the electron radiation (21MeV) caused a shift of glow peak by 7-13°C to the higher temperature region compared with photons radiation (10MV). Our Tm-doped fibers seem to give high TL response after 21MeV electrons, which gives around 2 times higher peak integral as compared with 10MV photon radiation. We concluded that peak 4 is the first-order kinetic peak and can be used as the main dosimetric peak of Tm-doped silica CF.
  3. Bradley DA, Mahdiraji GA, Ghomeishi M, Dermosesian E, Adikan FR, Rashid HA, et al.
    Appl Radiat Isot, 2015 Jun;100:43-9.
    PMID: 25533626 DOI: 10.1016/j.apradiso.2014.12.005
    A method for improving the thermoluminescence (TL) yield of silica-based optical fibres is demonstrated. Using silica obtained from a single manufacturer, three forms of pure (undoped) fibre (capillary-, flat-, and photonic crystal fibre (PCF)) and two forms of Ge-doped fibre (capillary- and flat-fibre) were fabricated. The pure fibre samples were exposed to 6 and 21MeV electrons, the doped fibres to 6MV photons. The consistent observation of large TL yield enhancement is strongly suggestive of surface-strain defects generation. For 6MeV irradiations of flat-fibre and PCF, respective TL yields per unit mass of about 12.0 and 17.5 times that of the undoped capillary-fibre have been observed. Similarly, by making a Ge-doped capillary-fibre into flat-fibre, the TL response is found to increase by some 6.0 times. Thus, in addition to TL from the presence of a dopant, the increase in fused surface areas of flat-fibres and PCF is seen to be a further important source of TL. The glow-curves of the undoped fibres have been analysed by computational deconvolution. Trap centre energies have been estimated and compared for the various fibre samples. Two trap centre types observed in capillary-fibre are also observed in flat-fibre and PCF. An additional trap centre in flat-fibre and one further trap centre in PCF are observed when compared to capillary fibre. These elevated-energy trap centres are linked with strain-generated defects in the collapsed regions of the flat fibre and PCF.
  4. Yeong CH, Ng KH, Abdullah BJJ, Chung LY, Goh KL, Perkins AC
    Appl Radiat Isot, 2014 Dec;94:216-220.
    PMID: 25222875 DOI: 10.1016/j.apradiso.2014.08.009
    Radionuclide imaging using (111)In, (99m)Tc and (153)Sm is commonly undertaken for the clinical investigation of gastric emptying, intestinal motility and whole gut transit. However the documented evidence concerning internal radiation dosimetry for such studies is not readily available. This communication documents the internal radiation dosimetry for whole gastrointestinal transit studies using (111)In, (99m)Tc and (153)Sm labeled formulations. The findings were compared to the diagnostic reference levels recommended by the United Kingdom Administration of Radioactive Substances Advisory Committee, for gastrointestinal transit studies.
  5. Hashim S, Alajerami YS, Ramli AT, Ghoshal SK, Saleh MA, Abdul Kadir AB, et al.
    Appl Radiat Isot, 2014 Sep;91:126-30.
    PMID: 24929526 DOI: 10.1016/j.apradiso.2014.05.023
    Lithium potassium borate (LKB) glasses co-doped with TiO2 and MgO were prepared using the melt quenching technique. The glasses were cut into transparent chips and exposed to gamma rays of (60)Co to study their thermoluminescence (TL) properties. The TL glow curve of the Ti-doped material featured a single prominent peak at 230 °C. Additional incorporation of MgO as a co-activator enhanced the TL intensity threefold. LKB:Ti,Mg is a low-Z material (Z(eff)=8.89) with slow signal fading. Its radiation sensitivity is 12 times lower that the sensitivity of TLD-100. The dose response is linear at doses up to 10(3) Gy. The trap parameters, such as the kinetics order, activation energy, and frequency factor, which are related to the glow peak, were determined using TolAnal software.
  6. Refaei A, Wagiran H, Saeed MA, Hosssain I
    Appl Radiat Isot, 2014 Dec;94:89-92.
    PMID: 25146569 DOI: 10.1016/j.apradiso.2014.07.012
    Thermoluminescence (TL) properties (radiation sensitivity, dose response, signal fading) of Nd-doped SiO2 optical fibers irradiated with 1.25MeV photons to 1-50Gy were studied. The peak of the glow curve is around 190°C regardless of the dose. The dose response is linear up to 50Gy. The radiation sensitivity is 219nCmg(-1)Gy(-1). The fiber can be a potential candidate for photon radiotherapy dosimetry due to its high radiation sensitivity, linear dose response in a wide range, slow fading, and high spatial resolution due to the small size of the fiber.
  7. Sahini MH, Hossain I, Wagiran H, Saeed MA, Ali H
    Appl Radiat Isot, 2014 Sep;92:18-21.
    PMID: 24973463 DOI: 10.1016/j.apradiso.2014.05.024
    Characteristics of the thermoluminescence (TL) responses of Yb- and Yb-Tb-doped optical fibers irradiated with 6MV photons are reported. The concentration of Yb in the Yb-doped optical fiber was 0.26mol%; the concentrations of Yb and Tb in the Yb-Tb-doped optical fiber were 0.62 and 0.2mol%, respectively. The TL dose responses are linear in the dose range 0.5-4Gy. The radiation sensitivity of the Yb-Tb material is almost two orders of magnitude higher than the sensitivity of the material doped with Yb alone.
  8. Hashim S, Ibrahim SA, Che Omar SS, Alajerami YS, Saripan MI, Noor NM, et al.
    Appl Radiat Isot, 2014 Aug;90:258-60.
    PMID: 24858954 DOI: 10.1016/j.apradiso.2014.04.016
    Radiation effects of photon irradiation in pure Photonic Crystal Fibres (PCF) and Flat fibres (FF) are still much less investigated in thermoluminescense dosimetry (TLD). We have reported the TL response of PCF and FF subjected to 6 MV photon irradiation. The proposed dosimeter shows good linearity at doses ranging from 1 to 4 Gy. The small size of these detectors points to its use as a dosimeter at megavoltage energies, where better tissue-equivalence and the Bragg-Gray cavity theory prevails.
  9. Aboud H, Wagiran H, Hussin R, Ali H, Alajerami Y, Saeed MA
    Appl Radiat Isot, 2014 Aug;90:35-9.
    PMID: 24681645 DOI: 10.1016/j.apradiso.2014.01.012
    Characteristics of lithium potassium borate glasses with various copper concentrations are reported. The glasses were prepared by the melt quenching method and irradiated with photons to doses in the 0.5-4.0 Gy range. Glowing curves, dose response curves, reproducibility of the response, dose threshold, thermal fading and optical bleaching were studied.
  10. Yunos MA, Hussain SA, Yusoff HM, Abdullah J
    Appl Radiat Isot, 2014 Sep;91:57-61.
    PMID: 24907683 DOI: 10.1016/j.apradiso.2014.05.015
    Radioactive particle tracking (RPT) has emerged as a promising and versatile technique that can provide rich information about a variety of multiphase flow systems. However, RPT is not an off-the-shelf technique, and thus, users must customize RPT for their applications. This paper presents a simple procedure for preparing radioactive tracer particles created via irradiation with neutrons from the TRIGA Mark II research reactor. The present study focuses on the performance evaluation of encapsulated gold and scandium particles for applications as individual radioactive tracer particles using qualitative and quantitative neutron activation analysis (NAA) and an X-ray microcomputed tomography (X-ray Micro-CT) scanner installed at the Malaysian Nuclear Agency.
  11. Al-Hinai KH, Benkara Mohd N, Rozullyah Zulkepely N, Md Nor R, Mohd Amin Y, Bradley DA
    Appl Radiat Isot, 2013 Dec;82:126-9.
    PMID: 23978507 DOI: 10.1016/j.apradiso.2013.07.013
    We describe two example pilot efforts to help define new thermoluminescent dosimeter media. The first concerns ZnS:Mn nanophosphors, prepared by chemical precipitation using zinc and sodium sulfate, doped with manganese sulfate at concentrations varying from 1 to 3mol. The second concerns chemical vapor deposited diamond, produced as a thin film or as amorphous carbon on a single-crystal silicon substrate, each deposited under the same conditions, use being made of the hot filament-chemical vapor deposition (HFCVD) technique. The gas concentrations used were 1% CH4 in 99% H2 and 25% CH4 in 75% H2. Characterization of formations used FESEM, XRD and EDX. The nanophosphors consisted of particles of sizes in the range 85-150nm, the thermoluminescence (TL)-based radiation detection medium giving rise to a single peaked glow curve of maximum yield at a temperature of 250°C at a heating rate of 5°C/s. The TL response increased linearly with radiation dose, ZnS doped to 2mol of Mn being found the most sensitive. Regarding chemical vapor deposited (CVD) carbon, inappreciable TL was found for the resultant ball-like amorphous carbon films, graphite, and the silicon substrate, whereas CVD diamond films showed a promising degree of linearity with dose. For both the ZnS and diamond samples, TL signal fading was appreciable, being some 40% per day for ZnS and>50% per day for CVD films even under storage in the dark at room temperature, making it apparent that there is need to adjust parameters such as the size of nanoparticles.
  12. Amin YM, Khandaker MU, Shyen AK, Mahat RH, Nor RM, Bradley DA
    Appl Radiat Isot, 2013 Oct;80:109-16.
    PMID: 23891979 DOI: 10.1016/j.apradiso.2013.06.014
    Current study concerns measurement of radioactivity levels in areas surrounding a 2420 MW thermal power plant fueled predominantly by bituminous coal. The concentrations of (226)Ra, (232)Th and (40)K in onsite bottom-ash were found to be 139 Bq/kg, 108 Bq/kg and 291 Bq/kg, respectively, the levels for these radiolnuclides in soil decreasing with distance from the power plant. At the plant perimeter the respective radionuclide concentrations were 87 Bq/kg, 74 Bq/kg and 297 Bq/kg. In a nearby town, the corresponding concentrations were 104 Bq/kg, 52 Bq/kg and 358 Bq/kg, suggestive of use of TENORM affected soils. The mean radium equivalent activities (Raeq) in soil and ash sample in the town were 205 Bq/kg and 316 Bq/kg, respectively. The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste. For the prevailing levels of exposure and a worst case senario, the predicted committed effective dose due to ingestion and inhalation for intake durations of 1- and 30 years would be 4.2 μSv and 220 μSv, respectively.
  13. Alajerami YS, Hashim S, Ghoshal SK, Ramli AT, Saleh MA, Ibrahim Z, et al.
    Appl Radiat Isot, 2013 Dec;82:12-9.
    PMID: 23948307 DOI: 10.1016/j.apradiso.2013.07.005
    Understanding the influence of co-dopants in the luminescence enhancement of carbonate glasses is the key issue in dosimetry. A series of borate glasses modified by lithium and potassium carbonate were synthesized by the melt-quenching method. The glass mixture activated with various concentrations of TiO2 and MgO was subjected to various doses of gamma-rays ((60)Co). The amorphous nature of the samples was confirmed by x-ray diffraction (XRD) spectra. The simple glowing curve of the glass doped with TiO2 features a peak at 230°C, whose intensity is maximal at 0.5 mol% of the dopant. The intensity of the glowing curve increases with the concentration of MgO added as a co-dopant up to 0.25 mol%, where it is two times higher than for the material without MgO thermoluminescence properties, including dose response, reproducibility, and fading were studied. The effective atomic number of the material was also determined. Kinetic parameters, such as kinetics order, activation energy, and frequency factor are estimated. The photoluminescence spectra of the titanium-doped glass consist of a prominent peaks at 480 nm when laser excitation at 650 nm is used. A three-fold photoluminescence enhancement and a blue shift of the peak were observed when 0.1% MgO was introduced. In addition, various physical parameters, such as ion concentration, polaron radius and internuclear distances were calculated. The mechanism for the thermoluminescence and photoluminescence enhancements are discussed.
  14. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Saripan MI, Alzimami K, et al.
    Appl Radiat Isot, 2013 Aug;78:21-5.
    PMID: 23644162 DOI: 10.1016/j.apradiso.2013.03.095
    New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry.
  15. Almayahi BA, Tajuddin AA, Jaafar MS
    Appl Radiat Isot, 2012 Nov;70(11):2652-60.
    PMID: 22982603 DOI: 10.1016/j.apradiso.2012.07.021
    The radioactivity quantity and quality were determined in soil and water samples in Northern Malaysian Peninsula (NMP) using HPGe spectroscopy and GR-135 spectrometer. The (226)Ra, (232)Th and (40)K concentrations in soil samples are 57±2, 68±4 and 427±17 Bq kg(-1), respectively, whereas in water samples were found to be 2.86±0.79, 3.78±1.73 and 152±12 Bq l(-1), respectively. These concentrations are within those reported from literature in other countries in the world. The radiological hazard indices of the samples were also calculated. The mean values obtained from soil samples are 186 Bq kg(-1), 88 nGy h(-1), 108 μSv y(-1), 0.50 and 0.65 for Radium Equivalent Activity (Ra(eq)), Absorbed Dose Rates (D(R)), Annual Effective Dose Rates (ED), External Hazard Index (H(ex)) and Internal Hazard Index (H(in)) respectively, whereas, for water samples were found to be 20, 10, 13, 0.05 and 0.06, respectively. All the health hazard indices are well below their recommended limits, except in two soil sampling sites which were found to be (*)025 (1.1 H(ex)) and (*)026 (1.1 H(ex), 1.6 H(in)). The calculated and the measured gamma dose rates had a good correlation coefficient, R=0.88. Moreover, the average value radon is 20 (in the range of 7-64) Bq m(-3), a positive correlation (R=0.81) was observed between the (222)Rn and (226)Ra concentrations in samples measured by the SNC continuous radon monitor (model 1029, Sun Nuclear Corporation) and HPGe detector, respectively. Some soils in this study with H(in) and H(ex)<1 are suitable for use in agriculture and as building materials. Also, in this study H(in) and H(ex)<1 for water samples, therefore, water after processing and filtration is safe and suitable for use in household and industrial purposes.
  16. Marashdeh MW, Bauk S, Tajuddin AA, Hashim R
    Appl Radiat Isot, 2012 Apr;70(4):656-62.
    PMID: 22304963 DOI: 10.1016/j.apradiso.2012.01.008
    The mass attenuation coefficients of Rhizophora spp. binderless particleboard with four different particle sizes (samples A, B, C and D) and natural raw Rhizophora spp. wood (sample E) were determined using single-beam photon transmission in the energy range between 16.59 and 25.26 keV. This was done by determining the attenuation of K(α1) X-ray fluorescent (XRF) photons from niobium, molybdenum, palladium, silver and tin targets. The results were compared with theoretical values of young-age breast (Breast 1) and water calculated using a XCOM computer program. It was found that the mass attenuation coefficient of Rhizophora spp. binderless particleboards to be close to the calculated XCOM values in water than natural Rhizophora spp. wood. Computed tomography (CT) scans were then used to determine the density profile of the samples. The CT scan results showed that the Rhizophora spp. binderless particleboard has uniform density compared to natural Rhizophora spp. wood. In general, the differences in the variability of the profile density decrease as the particle size of the pellet samples decreases.
  17. Yavar AR, Khalafi H, Kasesaz Y, Sarmani S, Yahaya R, Wood AK, et al.
    Appl Radiat Isot, 2012 Oct;70(10):2488-93.
    PMID: 22885391 DOI: 10.1016/j.apradiso.2012.06.015
    A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results.
  18. Salehi Z, Ya Ali NK, Yusoff AL
    Appl Radiat Isot, 2012 Nov;70(11):2586-9.
    PMID: 22940409 DOI: 10.1016/j.apradiso.2011.12.007
    BEAMnrc was used to derive the X-ray spectra, from which HVL and homogeneity coefficient were determined, for different kVp and filtration settings. Except for the peak at 61 keV, the spectra are in good agreement with the IPEM report 78 data for the case of filtered beams, whereas the unfiltered beams exhibit softer spectra. Although the current attenuation data deviates from the IPEM 78 data by ~±0.5%, this has negligible effects on the calculated HVL values.
  19. Yeong CH, Abdullah BJ, Ng KH, Chung LY, Goh KL, Sarji SA, et al.
    Appl Radiat Isot, 2012 Mar;70(3):450-5.
    PMID: 22178699 DOI: 10.1016/j.apradiso.2011.11.056
    We produced an enteric-coated gelatine capsule containing neutron-activated (153)Sm-labelled resin beads for use in gastrointestinal motility studies. In vitro test in simulated gastrointestinal environment and in vivo study on volunteers were performed. Scintigraphic images were acquired from ten volunteers over 24h while blood and urine samples were collected to monitor the presence of (153)Sm. All the capsules remained intact in stomach. This proved to be a safe and practical oral capsule formulation for whole gut transit scintigraphy.
  20. Yaakob NH, Wagiran H, Hossain MI, Ramli AT, Bradley DA, Ali H
    Appl Radiat Isot, 2011 Sep;69(9):1189-92.
    PMID: 21507665 DOI: 10.1016/j.apradiso.2011.03.039
    We have investigated the thermoluminescent response and fading characteristics of germanium- and aluminium-doped SiO(2) optical fibres. These optical fibres were placed in a solid phantom and irradiated using 6 and 10 MV photon beams at doses ranging from 0.02 to 0.24 Gy delivered using a linear accelerator. In fading studies, the TL measurements were continued up to 14 days post-irradation. We have investigated the linearity of TL response as a function of dose for Ge-, Al-doped optical fibre and TLD-100 obtained for 6 and 10 MV photon irradiations. We have concentrated on doses that represent a small fraction of that delivered to the tumour to establish sensitivity of measurement for peripheral exposures in external beam radiotherapy.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links