Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Selvaraj J, Murugappan M, Wan K, Yaacob S
    Biomed Eng Online, 2013;12:44.
    PMID: 23680041 DOI: 10.1186/1475-925X-12-44
    Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. However, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals.
  2. Chai HY, Swee TT, Seng GH, Wee LK
    Biomed Eng Online, 2013;12:27.
    PMID: 23565999 DOI: 10.1186/1475-925X-12-27
    The high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task.
  3. Arifin N, Abu Osman NA, Ali S, Wan Abas WA
    Biomed Eng Online, 2014;13(1):23.
    PMID: 24597518 DOI: 10.1186/1475-925X-13-23
    Achieving independent upright posture has known to be one of the main goals in rehabilitation following lower limb amputation. The purpose of this study was to compare postural steadiness of below knee amputees with visual alterations while wearing three different prosthetic feet.
  4. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, Arifin N, Wan Abas WA
    Biomed Eng Online, 2014;13:1.
    PMID: 24410918 DOI: 10.1186/1475-925X-13-1
    Good prosthetic suspension system secures the residual limb inside the prosthetic socket and enables easy donning and doffing. This study aimed to introduce, evaluate and compare a newly designed prosthetic suspension system (HOLO) with the current suspension systems (suction, pin/lock and magnetic systems).
  5. Ramli MI, Hamzaid NA, Engkasan JP, Usman J
    Biomed Eng Online, 2023 May 22;22(1):50.
    PMID: 37217941 DOI: 10.1186/s12938-023-01103-0
    BACKGROUND: Over the decades, many publications have established respiratory muscle training (RMT) as an effective way in improving respiratory dysfunction in multiple populations. The aim of the paper is to determine the trend of research and multidisciplinary collaboration in publications related to RMT over the last 6 decades. The authors also sought to chart the advancement of RMT among people with spinal cord injury (SCI) over the last 60 years.

    METHODS: Bibliometric analysis was made, including the publications' profiles, citation analysis and research trends of the relevant literature over the last 60 years. Publications from all time frames were retrieved from Scopus database. A subgroup analysis of publications pertinent to people with SCI was also made.

    RESULTS: Research on RMT has been steadily increasing over the last 6 decades and across geographical locations. While medicine continues to dominate the research on RMT, this topic also continues to attract researchers and publications from other areas such as engineering, computer science and social science over the last 10 years. Research collaboration between authors in different backgrounds was observed since 2006. Source titles from non-medical backgrounds have also published articles pertinent to RMT. Among people with SCI, researchers utilised a wide range of technology from simple spirometers to electromyography in both intervention and outcome measures. With various types of interventions implemented, RMT generally improves pulmonary function and respiratory muscle strength among people with SCI.

    CONCLUSIONS: While research on RMT has been steadily increasing over the last 6 decades, more collaborations are encouraged in the future to produce more impactful and beneficial research on people who suffer from respiratory disorders.

  6. Uwamahoro R, Sundaraj K, Subramaniam ID
    Biomed Eng Online, 2021 Jan 03;20(1):1.
    PMID: 33390158 DOI: 10.1186/s12938-020-00840-w
    This research has proved that mechanomyographic (MMG) signals can be used for evaluating muscle performance. Stimulation of the lost physiological functions of a muscle using an electrical signal has been determined crucial in clinical and experimental settings in which voluntary contraction fails in stimulating specific muscles. Previous studies have already indicated that characterizing contractile properties of muscles using MMG through neuromuscular electrical stimulation (NMES) showed excellent reliability. Thus, this review highlights the use of MMG signals on evaluating skeletal muscles under electrical stimulation. In total, 336 original articles were identified from the Scopus and SpringerLink electronic databases using search keywords for studies published between 2000 and 2020, and their eligibility for inclusion in this review has been screened using various inclusion criteria. After screening, 62 studies remained for analysis, with two additional articles from the bibliography, were categorized into the following: (1) fatigue, (2) torque, (3) force, (4) stiffness, (5) electrode development, (6) reliability of MMG and NMES approaches, and (7) validation of these techniques in clinical monitoring. This review has found that MMG through NMES provides feature factors for muscle activity assessment, highlighting standardized electromyostimulation and MMG parameters from different experimental protocols. Despite the evidence of mathematical computations in quantifying MMG along with NMES, the requirement of the processing speed, and fluctuation of MMG signals influence the technique to be prone to errors. Interestingly, although this review does not focus on machine learning, there are only few studies that have adopted it as an alternative to statistical analysis in the assessment of muscle fatigue, torque, and force. The results confirm the need for further investigation on the use of sophisticated computations of features of MMG signals from electrically stimulated muscles in muscle function assessment and assistive technology such as prosthetics control.
  7. Zamhuri A, Lim GP, Ma NL, Tee KS, Soon CF
    Biomed Eng Online, 2021 Apr 01;20(1):33.
    PMID: 33794899 DOI: 10.1186/s12938-021-00873-9
    MXene is a recently emerged multifaceted two-dimensional (2D) material that is made up of surface-modified carbide, providing its flexibility and variable composition. They consist of layers of early transition metals (M), interleaved with n layers of carbon or nitrogen (denoted as X) and terminated with surface functional groups (denoted as Tx/Tz) with a general formula of Mn+1XnTx, where n = 1-3. In general, MXenes possess an exclusive combination of properties, which include, high electrical conductivity, good mechanical stability, and excellent optical properties. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). Due to the attractive physicochemical and biocompatibility properties, the novel 2D materials have enticed an uprising research interest for application in biomedicine and biotechnology. Although some potential applications of MXenes in biomedicine have been explored recently, the types of MXene applied in the perspective of biomedical engineering and biomedicine are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper aims to provide an overview of the structural organization of MXenes, different top-down and bottom-up approaches for synthesis of MXenes, whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. MXenes can be further modified to enhance the biodegradability and reduce the cytotoxicity of the material for biosensing, cancer theranostics, drug delivery and bio-imaging applications. The antimicrobial activity of MXene and the mechanism of MXenes in damaging the cell membrane were also discussed. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in biomedical devices were demystified. Overall, this review puts into perspective the current advancements and prospects of MXenes in realizing this 2D nanomaterial as a versatile biological tool.
  8. Malik AS, Khairuddin RN, Amin HU, Smith ML, Kamel N, Abdullah JM, et al.
    Biomed Eng Online, 2015;14:21.
    PMID: 25886584 DOI: 10.1186/s12938-015-0006-8
    Consumer preference is rapidly changing from 2D to 3D movies due to the sensational effects of 3D scenes, like those in Avatar and The Hobbit. Two 3D viewing technologies are available: active shutter glasses and passive polarized glasses. However, there are consistent reports of discomfort while viewing in 3D mode where the discomfort may refer to dizziness, headaches, nausea or simply not being able to see in 3D continuously.
  9. Eshraghi A, Osman NA, Gholizadeh H, Ali S, Shadgan B
    Biomed Eng Online, 2013;12:119.
    PMID: 24237942 DOI: 10.1186/1475-925X-12-119
    Research has tremendously contributed to the developments in both practical and fundamental aspects of limb prosthetics. These advancements are reflected in scientific articles, particularly in the most cited papers. This article aimed to identify the 100 top-cited articles in the field of limb prosthetics and to investigate their main characteristics. Articles related to the field of limb prosthetics and published in the Web of Knowledge database of the Institute for Scientific Information (ISI) from the period of 1980 to 2012. The 100 most cited articles in limb prosthetics were selected based on the citation index report. All types of articles except for proceedings and letters were included in the study. The study design and level of evidence were determined using Sackett's initial rules of evidence. The level of evidence was categorized either as a systematic review or meta-analysis, randomized controlled trial, cohort study, case-control study, case series, expert opinion, or design and development. The top cited articles in prosthetics were published from 1980 to 2012 with a citation range of 11 to 90 times since publication. The mean citation rate was 24.43 (SD 16.7) times. Eighty-four percent of the articles were original publications and were most commonly prospective (76%) and case series studies (67%) that used human subjects (96%) providing level 4 evidence. Among the various fields, rehabilitation (47%), orthopedics (29%), and sport sciences (28%) were the most common fields of study. The study established that studies conducted in North America and were written in English had the highest citations. Top cited articles primarily dealt with lower limb prosthetics, specifically, on transtibial and transradial prosthetic limbs. Majority of the articles were experimental studies.
  10. Singh VA, Nagalingam J, Saad M, Pailoor J
    Biomed Eng Online, 2010;9:48.
    PMID: 20831801 DOI: 10.1186/1475-925X-9-48
    Sterilization and re-usage of tumour bone for reconstruction after tumour resection is now gaining popularity in the East. This recycle tumour bone needs to be sterilized in order to eradicate the tumour cells before re-implantation for limb salvage procedures. The effect of some of these treatments on the integrity and sterility of the bone after treatment has been published but there has yet been a direct comparison between the various methods of sterilization to determine the one method that gives the best tumour kill without compromising the bone's structural integrity.
  11. Hamedi M, Salleh ShH, Astaraki M, Noor AM
    Biomed Eng Online, 2013;12:73.
    PMID: 23866903 DOI: 10.1186/1475-925X-12-73
    Recently, the recognition of different facial gestures using facial neuromuscular activities has been proposed for human machine interfacing applications. Facial electromyograms (EMGs) analysis is a complicated field in biomedical signal processing where accuracy and low computational cost are significant concerns. In this paper, a very fast versatile elliptic basis function neural network (VEBFNN) was proposed to classify different facial gestures. The effectiveness of different facial EMG time-domain features was also explored to introduce the most discriminating.
  12. Ho CS, Horiuchi T, Taniguchi H, Umetsu A, Hagisawa K, Iwaya K, et al.
    Biomed Eng Online, 2016 Aug 20;15(1):98.
    PMID: 27542354 DOI: 10.1186/s12938-016-0220-z
    Composition of atherosclerotic arterial walls is rich in lipids such as cholesterol, unlike normal arterial walls. In this study, we aimed to utilize this difference to diagnose atherosclerosis via multispectral fluorescence imaging, which allows for identification of fluorescence originating from the substance in the arterial wall.
  13. Shahzad A, Saad MN, Walter N, Malik AS, Meriaudeau F
    Biomed Eng Online, 2014;13:109.
    PMID: 25087016 DOI: 10.1186/1475-925X-13-109
    Subcutaneous veins localization is usually performed manually by medical staff to find suitable vein to insert catheter for medication delivery or blood sample function. The rule of thumb is to find large and straight enough vein for the medication to flow inside of the selected blood vessel without any obstruction. The problem of peripheral difficult venous access arises when patient's veins are not visible due to any reason like dark skin tone, presence of hair, high body fat or dehydrated condition, etc.
  14. Alsaih K, Lemaitre G, Rastgoo M, Massich J, Sidibé D, Meriaudeau F
    Biomed Eng Online, 2017 Jun 07;16(1):68.
    PMID: 28592309 DOI: 10.1186/s12938-017-0352-9
    BACKGROUND: Spectral domain optical coherence tomography (OCT) (SD-OCT) is most widely imaging equipment used in ophthalmology to detect diabetic macular edema (DME). Indeed, it offers an accurate visualization of the morphology of the retina as well as the retina layers.

    METHODS: The dataset used in this study has been acquired by the Singapore Eye Research Institute (SERI), using CIRRUS TM (Carl Zeiss Meditec, Inc., Dublin, CA, USA) SD-OCT device. The dataset consists of 32 OCT volumes (16 DME and 16 normal cases). Each volume contains 128 B-scans with resolution of 1024 px × 512 px, resulting in more than 3800 images being processed. All SD-OCT volumes are read and assessed by trained graders and identified as normal or DME cases based on evaluation of retinal thickening, hard exudates, intraretinal cystoid space formation, and subretinal fluid. Within the DME sub-set, a large number of lesions has been selected to create a rather complete and diverse DME dataset. This paper presents an automatic classification framework for SD-OCT volumes in order to identify DME versus normal volumes. In this regard, a generic pipeline including pre-processing, feature detection, feature representation, and classification was investigated. More precisely, extraction of histogram of oriented gradients and local binary pattern (LBP) features within a multiresolution approach is used as well as principal component analysis (PCA) and bag of words (BoW) representations.

    RESULTS AND CONCLUSION: Besides comparing individual and combined features, different representation approaches and different classifiers are evaluated. The best results are obtained for LBP[Formula: see text] vectors while represented and classified using PCA and a linear-support vector machine (SVM), leading to a sensitivity(SE) and specificity (SP) of 87.5 and 87.5%, respectively.

  15. Abdul Karim R, Zakaria NF, Zulkifley MA, Mustafa MM, Sagap I, Md Latar NH
    Biomed Eng Online, 2013;12:21.
    PMID: 23496940 DOI: 10.1186/1475-925X-12-21
    Telepointer is a powerful tool in the telemedicine system that enhances the effectiveness of long-distance communication. Telepointer has been tested in telemedicine, and has potential to a big influence in improving quality of health care, especially in the rural area. A telepointer system works by sending additional information in the form of gesture that can convey more accurate instruction or information. It leads to more effective communication, precise diagnosis, and better decision by means of discussion and consultation between the expert and the junior clinicians. However, there is no review paper yet on the state of the art of the telepointer in telemedicine. This paper is intended to give the readers an overview of recent advancement of telepointer technology as a support tool in telemedicine. There are four most popular modes of telepointer system, namely cursor, hand, laser and sketching pointer. The result shows that telepointer technology has a huge potential for wider acceptance in real life applications, there are needs for more improvement in the real time positioning accuracy. More results from actual test (real patient) need to be reported. We believe that by addressing these two issues, telepointer technology will be embraced widely by researchers and practitioners.
  16. Mat Zin S, Md Rasib SZ, Suhaimi FM, Mariatti M
    Biomed Eng Online, 2021 Feb 06;20(1):17.
    PMID: 33549118 DOI: 10.1186/s12938-021-00854-y
    The tongue and hard palate play an essential role in the production of sound during continuous speech. Appropriate tongue and hard palate contacts will ensure proper sound production. Electropalatography, also known as EPG, is a device that can be used to identify the location of the tongue and hard palate contact. It can also be used by a speech therapist to help patients who have a speech disorder. Among the group with the disease are cleft palate, Down syndrome, glossectomy, and autism patients. Besides identifying the contact location, EPG is a useful medical device that has been continuously developed based on the patient's needs and treatment advancement. This article reviews the technology of electropalatography since the early introduction of the device. It also discusses the development process and the drawbacks of the previous EPG systems, resulting in the EPG's upgraded system and technology. This review suggests additional features that can be useful for the future development of the EPG. The latest technology can be incorporated into the EPG system to provide a more convenient method. There are some elements to be considered in the development of EPG's new technology that were discussed in this study. The elements are essential to provide more convenience for the patient during speech therapy. New technology can accelerate the growth of medical devices, particularly on the development of speech therapy equipment that should be based on the latest technological advancements available. Thus, the advanced EPG system suggested in this article may expand the usage of the EPG and serve as a tool to provide speech therapy treatment services and not limited to monitoring only.
  17. Yahya N, Kamel NS, Malik AS
    Biomed Eng Online, 2014;13(1):154.
    PMID: 25421914 DOI: 10.1186/1475-925X-13-154
    Ultrasound imaging is a very essential technique in medical diagnosis due to its being safe, economical and non-invasive nature. Despite its popularity, the US images, however, are corrupted with speckle noise, which reduces US images qualities, hampering image interpretation and processing stage. Hence, there are many efforts made by researches to formulate various despeckling methods for speckle reduction in US images.
  18. Ding CCA, Dokos S, Bakir AA, Zamberi NJ, Liew YM, Chan BT, et al.
    Biomed Eng Online, 2024 Feb 22;23(1):24.
    PMID: 38388416 DOI: 10.1186/s12938-024-01206-2
    Aortic stenosis, hypertension, and left ventricular hypertrophy often coexist in the elderly, causing a detrimental mismatch in coupling between the heart and vasculature known as ventricular-vascular (VA) coupling. Impaired left VA coupling, a critical aspect of cardiovascular dysfunction in aging and disease, poses significant challenges for optimal cardiovascular performance. This systematic review aims to assess the impact of simulating and studying this coupling through computational models. By conducting a comprehensive analysis of 34 relevant articles obtained from esteemed databases such as Web of Science, Scopus, and PubMed until July 14, 2022, we explore various modeling techniques and simulation approaches employed to unravel the complex mechanisms underlying this impairment. Our review highlights the essential role of computational models in providing detailed insights beyond clinical observations, enabling a deeper understanding of the cardiovascular system. By elucidating the existing models of the heart (3D, 2D, and 0D), cardiac valves, and blood vessels (3D, 1D, and 0D), as well as discussing mechanical boundary conditions, model parameterization and validation, coupling approaches, computer resources and diverse applications, we establish a comprehensive overview of the field. The descriptions as well as the pros and cons on the choices of different dimensionality in heart, valve, and circulation are provided. Crucially, we emphasize the significance of evaluating heart-vessel interaction in pathological conditions and propose future research directions, such as the development of fully coupled personalized multidimensional models, integration of deep learning techniques, and comprehensive assessment of confounding effects on biomarkers.
  19. Ooi JH, Lim R, Seng H, Tan MP, Goh CH, Lovell NH, et al.
    Biomed Eng Online, 2024 Feb 20;23(1):23.
    PMID: 38378540 DOI: 10.1186/s12938-024-01202-6
    PURPOSE: Non-invasive, beat-to-beat variations in physiological indices provide an opportunity for more accessible assessment of autonomic dysfunction. The potential association between the changes in these parameters and arterial stiffness in hypertension remains poorly understood. This systematic review aims to investigate the association between non-invasive indicators of autonomic function based on beat-to-beat cardiovascular signals with arterial stiffness in individuals with hypertension.

    METHODS: Four electronic databases were searched from inception to June 2022. Studies that investigated non-invasive parameters of arterial stiffness and autonomic function using beat-to-beat cardiovascular signals over a period of > 5min were included. Study quality was assessed using the STROBE criteria. Two authors screened the titles, abstracts, and full texts independently.

    RESULTS: Nineteen studies met the inclusion criteria. A comprehensive overview of experimental design for assessing autonomic function in terms of baroreflex sensitivity and beat-to-beat cardiovascular variabilities, as well as arterial stiffness, was presented. Alterations in non-invasive indicators of autonomic function, which included baroreflex sensitivity, beat-to-beat cardiovascular variabilities and hemodynamic changes in response to autonomic challenges, as well as arterial stiffness, were identified in individuals with hypertension. A mixed result was found in terms of the association between non-invasive quantitative autonomic indices and arterial stiffness in hypertensive individuals. Nine out of 12 studies which quantified baroreflex sensitivity revealed a significant association with arterial stiffness parameters. Three studies estimated beat-to-beat heart rate variability and only one study reported a significant relationship with arterial stiffness indices. Three out of five studies which studied beat-to-beat blood pressure variability showed a significant association with arterial structural changes. One study revealed that hemodynamic changes in response to autonomic challenges were significantly correlated with arterial stiffness parameters.

    CONCLUSIONS: The current review demonstrated alteration in autonomic function, which encompasses both the sympathetic and parasympathetic modulation of sinus node function and vasomotor tone (derived from beat-to-beat cardiovascular signals) in hypertension, and a significant association between some of these parameters with arterial stiffness. By employing non-invasive measurements to monitor changes in autonomic function and arterial remodeling in individuals with hypertension, we would be able to enhance our ability to identify individuals at high risk of cardiovascular disease. Understanding the intricate relationships among these cardiovascular variability measures and arterial stiffness could contribute toward better individualized treatment for hypertension in the future.

    SYSTEMATIC REVIEW REGISTRATION: PROSPERO ID: CRD42022336703. Date of registration: 12/06/2022.

  20. Mohamad Saberi FN, Sukumaran P, Ung NM, Liew YM
    Biomed Eng Online, 2022 Dec 03;21(1):83.
    PMID: 36463182 DOI: 10.1186/s12938-022-01055-x
    Tooth demineralization is one of the most common intraoral diseases, encompassing (1) caries caused by acid-producing bacteria and (2) erosion induced by acid of non-bacterial origin from intrinsic sources (e.g. stomach acid reflux) and extrinsic sources (e.g. carbonated drinks). Current clinical assessment based on visual-tactile examination and standardized scoring systems is insufficient for early detection. A combination of clinical examination and technology is therefore increasingly adapted. This paper reviews various procedures and technologies that have been invented to diagnose and assess the severity of tooth demineralization, with focus on optical coherence tomography (OCT). As a micron-resolution non-invasive 3D imaging modality, variants of OCT are now available, offering many advantages under different working principles for detailed analytical assessment of tooth demineralization. The roles, capabilities and impact of OCT against other state-of-the-art technologies in both clinical and research settings are described. (139 words).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links