Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Eshraghi A, Osman NA, Gholizadeh H, Ali S, Shadgan B
    Biomed Eng Online, 2013;12:119.
    PMID: 24237942 DOI: 10.1186/1475-925X-12-119
    Research has tremendously contributed to the developments in both practical and fundamental aspects of limb prosthetics. These advancements are reflected in scientific articles, particularly in the most cited papers. This article aimed to identify the 100 top-cited articles in the field of limb prosthetics and to investigate their main characteristics. Articles related to the field of limb prosthetics and published in the Web of Knowledge database of the Institute for Scientific Information (ISI) from the period of 1980 to 2012. The 100 most cited articles in limb prosthetics were selected based on the citation index report. All types of articles except for proceedings and letters were included in the study. The study design and level of evidence were determined using Sackett's initial rules of evidence. The level of evidence was categorized either as a systematic review or meta-analysis, randomized controlled trial, cohort study, case-control study, case series, expert opinion, or design and development. The top cited articles in prosthetics were published from 1980 to 2012 with a citation range of 11 to 90 times since publication. The mean citation rate was 24.43 (SD 16.7) times. Eighty-four percent of the articles were original publications and were most commonly prospective (76%) and case series studies (67%) that used human subjects (96%) providing level 4 evidence. Among the various fields, rehabilitation (47%), orthopedics (29%), and sport sciences (28%) were the most common fields of study. The study established that studies conducted in North America and were written in English had the highest citations. Top cited articles primarily dealt with lower limb prosthetics, specifically, on transtibial and transradial prosthetic limbs. Majority of the articles were experimental studies.
  2. Zourmand A, Mirhassani SM, Ting HN, Bux SI, Ng KH, Bilgen M, et al.
    Biomed Eng Online, 2014;13:103.
    PMID: 25060583 DOI: 10.1186/1475-925X-13-103
    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.
  3. Chai HY, Wee LK, Swee TT, Salleh ShH, Chea LY
    Biomed Eng Online, 2011;10:87.
    PMID: 21952080 DOI: 10.1186/1475-925X-10-87
    Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction.
  4. Krupa N, Ali M, Zahedi E, Ahmed S, Hassan FM
    Biomed Eng Online, 2011;10:6.
    PMID: 21244712 DOI: 10.1186/1475-925X-10-6
    Cardiotocography (CTG) is the most widely used tool for fetal surveillance. The visual analysis of fetal heart rate (FHR) traces largely depends on the expertise and experience of the clinician involved. Several approaches have been proposed for the effective interpretation of FHR. In this paper, a new approach for FHR feature extraction based on empirical mode decomposition (EMD) is proposed, which was used along with support vector machine (SVM) for the classification of FHR recordings as 'normal' or 'at risk'.
  5. Mohamad Saberi FN, Sukumaran P, Ung NM, Liew YM
    Biomed Eng Online, 2022 Dec 03;21(1):83.
    PMID: 36463182 DOI: 10.1186/s12938-022-01055-x
    Tooth demineralization is one of the most common intraoral diseases, encompassing (1) caries caused by acid-producing bacteria and (2) erosion induced by acid of non-bacterial origin from intrinsic sources (e.g. stomach acid reflux) and extrinsic sources (e.g. carbonated drinks). Current clinical assessment based on visual-tactile examination and standardized scoring systems is insufficient for early detection. A combination of clinical examination and technology is therefore increasingly adapted. This paper reviews various procedures and technologies that have been invented to diagnose and assess the severity of tooth demineralization, with focus on optical coherence tomography (OCT). As a micron-resolution non-invasive 3D imaging modality, variants of OCT are now available, offering many advantages under different working principles for detailed analytical assessment of tooth demineralization. The roles, capabilities and impact of OCT against other state-of-the-art technologies in both clinical and research settings are described. (139 words).
  6. Uwamahoro R, Sundaraj K, Subramaniam ID
    Biomed Eng Online, 2021 Jan 03;20(1):1.
    PMID: 33390158 DOI: 10.1186/s12938-020-00840-w
    This research has proved that mechanomyographic (MMG) signals can be used for evaluating muscle performance. Stimulation of the lost physiological functions of a muscle using an electrical signal has been determined crucial in clinical and experimental settings in which voluntary contraction fails in stimulating specific muscles. Previous studies have already indicated that characterizing contractile properties of muscles using MMG through neuromuscular electrical stimulation (NMES) showed excellent reliability. Thus, this review highlights the use of MMG signals on evaluating skeletal muscles under electrical stimulation. In total, 336 original articles were identified from the Scopus and SpringerLink electronic databases using search keywords for studies published between 2000 and 2020, and their eligibility for inclusion in this review has been screened using various inclusion criteria. After screening, 62 studies remained for analysis, with two additional articles from the bibliography, were categorized into the following: (1) fatigue, (2) torque, (3) force, (4) stiffness, (5) electrode development, (6) reliability of MMG and NMES approaches, and (7) validation of these techniques in clinical monitoring. This review has found that MMG through NMES provides feature factors for muscle activity assessment, highlighting standardized electromyostimulation and MMG parameters from different experimental protocols. Despite the evidence of mathematical computations in quantifying MMG along with NMES, the requirement of the processing speed, and fluctuation of MMG signals influence the technique to be prone to errors. Interestingly, although this review does not focus on machine learning, there are only few studies that have adopted it as an alternative to statistical analysis in the assessment of muscle fatigue, torque, and force. The results confirm the need for further investigation on the use of sophisticated computations of features of MMG signals from electrically stimulated muscles in muscle function assessment and assistive technology such as prosthetics control.
  7. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014;13:134.
    PMID: 25208636 DOI: 10.1186/1475-925X-13-134
    Understanding of kinematics force applied at the elbow is important in many fields, including biomechanics, biomedical engineering and rehabilitation. This paper provides a comparison of a mathematical model of elbow joint using three different types of prosthetics for transhumeral user, and characterizes the forces required to overcome the passive mechanical of the prosthetics at the residual limb.
  8. Major VJ, Chiew YS, Shaw GM, Chase JG
    Biomed Eng Online, 2018 Nov 12;17(1):169.
    PMID: 30419903 DOI: 10.1186/s12938-018-0599-9
    BACKGROUND: Mechanical ventilation is an essential therapy to support critically ill respiratory failure patients. Current standards of care consist of generalised approaches, such as the use of positive end expiratory pressure to inspired oxygen fraction (PEEP-FiO2) tables, which fail to account for the inter- and intra-patient variability between and within patients. The benefits of higher or lower tidal volume, PEEP, and other settings are highly debated and no consensus has been reached. Moreover, clinicians implicitly account for patient-specific factors such as disease condition and progression as they manually titrate ventilator settings. Hence, care is highly variable and potentially often non-optimal. These conditions create a situation that could benefit greatly from an engineered approach. The overall goal is a review of ventilation that is accessible to both clinicians and engineers, to bridge the divide between the two fields and enable collaboration to improve patient care and outcomes. This review does not take the form of a typical systematic review. Instead, it defines the standard terminology and introduces key clinical and biomedical measurements before introducing the key clinical studies and their influence in clinical practice which in turn flows into the needs and requirements around how biomedical engineering research can play a role in improving care. Given the significant clinical research to date and its impact on this complex area of care, this review thus provides a tutorial introduction around the review of the state of the art relevant to a biomedical engineering perspective.

    DISCUSSION: This review presents the significant clinical aspects and variables of ventilation management, the potential risks associated with suboptimal ventilation management, and a review of the major recent attempts to improve ventilation in the context of these variables. The unique aspect of this review is a focus on these key elements relevant to engineering new approaches. In particular, the need for ventilation strategies which consider, and directly account for, the significant differences in patient condition, disease etiology, and progression within patients is demonstrated with the subsequent requirement for optimal ventilation strategies to titrate for patient- and time-specific conditions.

    CONCLUSION: Engineered, protective lung strategies that can directly account for and manage inter- and intra-patient variability thus offer great potential to improve both individual care, as well as cohort clinical outcomes.

  9. Selvaraj J, Murugappan M, Wan K, Yaacob S
    Biomed Eng Online, 2013;12:44.
    PMID: 23680041 DOI: 10.1186/1475-925X-12-44
    Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. However, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals.
  10. Ferdowsi M, Kwan BH, Tan MP, Saedon NI, Subramaniam S, Abu Hashim NFI, et al.
    Biomed Eng Online, 2024 Mar 30;23(1):37.
    PMID: 38555421 DOI: 10.1186/s12938-024-01229-9
    BACKGROUND: The diagnostic test for vasovagal syncope (VVS), the most common cause of syncope is head-up tilt test (HUTT) assessment. During the test, subjects experienced clinical symptoms such as nausea, sweating, pallor, the feeling of palpitations, being on the verge of passing out, and fainting. The study's goal is to develop an algorithm to classify VVS patients based on physiological signals blood pressure (BP) and electrocardiography (ECG) obtained from the HUTT.

    METHODS: After 10 min of supine rest, the subject was tilted at a 70-degree angle on a tilt table for approximately a total of 35 min. 400 µg of glyceryl trinitrate (GTN) was administered sublingually after the first 20 min and monitoring continued for another 15 min. Mean imputation and K-nearest neighbors (KNN) imputation approaches to handle missing values. Next, feature selection techniques were implemented, including genetic algorithm, recursive feature elimination, and feature importance, to determine the crucial features. The Mann-Whitney U test was then performed to determine the statistical difference between two groups. Patients with VVS are categorized via machine learning models including Support Vector Machine (SVM), Gaussian Naïve Bayes (GNB), Multinomial Naïve Bayes (MNB), KNN, Logistic Regression (LR), and Random Forest (RF). The developed model is interpreted using an explainable artificial intelligence (XAI) model known as partial dependence plot.

    RESULTS: A total of 137 subjects aged between 9 and 93 years were recruited for this study, 54 experienced clinical symptoms were considered positive tests, while the remaining 83 tested negative. Optimal results were obtained by combining the KNN imputation technique and three tilting features with SVM with 90.5% accuracy, 87.0% sensitivity, 92.7% specificity, 88.6% precision, 87.8% F1 score, and 95.4% ROC (receiver operating characteristics) AUC (area under curve).

    CONCLUSIONS: The proposed algorithm effectively classifies VVS patients with over 90% accuracy. However, the study was confined to a small sample size. More clinical datasets are required to ensure that our approach is generalizable.

  11. Gholizadeh H, Osman NA, Eshraghi A, Abd Razak NA
    Biomed Eng Online, 2014;13:89.
    PMID: 24981801 DOI: 10.1186/1475-925X-13-89
    Prosthesis suspension systems can alter the distribution of pressure within the prosthetic socket. This study evaluates a new suspension system for lower limb prostheses, and aims to compare the interface pressure and amputees' satisfaction with the new system compared with a common prosthetic suspension system (pin/lock).
  12. Gupta R, Elamvazuthi I, Dass SC, Faye I, Vasant P, George J, et al.
    Biomed Eng Online, 2014;13:157.
    PMID: 25471386 DOI: 10.1186/1475-925X-13-157
    Disorders of rotator cuff tendons results in acute pain limiting the normal range of motion for shoulder. Of all the tendons in rotator cuff, supraspinatus (SSP) tendon is affected first of any pathological changes. Diagnosis of SSP tendon using ultrasound is considered to be operator dependent with its accuracy being related to operator's level of experience.
  13. Mustapha A, Hussain A, Samad SA, Zulkifley MA, Diyana Wan Zaki WM, Hamid HA
    Biomed Eng Online, 2015;14:6.
    PMID: 25595511 DOI: 10.1186/1475-925X-14-6
    Content-based medical image retrieval (CBMIR) system enables medical practitioners to perform fast diagnosis through quantitative assessment of the visual information of various modalities.
  14. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014 Apr 23;13:49.
    PMID: 24755242 DOI: 10.1186/1475-925X-13-49
    BACKGROUND: The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user.

    METHODS: The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements.

    RESULTS: The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45°-55° of rotation or about 14 cm-16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation.

    CONCLUSION: The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics.

  15. Malik AS, Khairuddin RN, Amin HU, Smith ML, Kamel N, Abdullah JM, et al.
    Biomed Eng Online, 2015;14:21.
    PMID: 25886584 DOI: 10.1186/s12938-015-0006-8
    Consumer preference is rapidly changing from 2D to 3D movies due to the sensational effects of 3D scenes, like those in Avatar and The Hobbit. Two 3D viewing technologies are available: active shutter glasses and passive polarized glasses. However, there are consistent reports of discomfort while viewing in 3D mode where the discomfort may refer to dizziness, headaches, nausea or simply not being able to see in 3D continuously.
  16. Hamedi M, Salleh ShH, Astaraki M, Noor AM
    Biomed Eng Online, 2013;12:73.
    PMID: 23866903 DOI: 10.1186/1475-925X-12-73
    Recently, the recognition of different facial gestures using facial neuromuscular activities has been proposed for human machine interfacing applications. Facial electromyograms (EMGs) analysis is a complicated field in biomedical signal processing where accuracy and low computational cost are significant concerns. In this paper, a very fast versatile elliptic basis function neural network (VEBFNN) was proposed to classify different facial gestures. The effectiveness of different facial EMG time-domain features was also explored to introduce the most discriminating.
  17. Hannan MA, Mutashar S, Samad SA, Hussain A
    Biomed Eng Online, 2014;13:79.
    PMID: 24950601 DOI: 10.1186/1475-925X-13-79
    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries.
  18. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, Arifin N, Wan Abas WA
    Biomed Eng Online, 2014;13:1.
    PMID: 24410918 DOI: 10.1186/1475-925X-13-1
    Good prosthetic suspension system secures the residual limb inside the prosthetic socket and enables easy donning and doffing. This study aimed to introduce, evaluate and compare a newly designed prosthetic suspension system (HOLO) with the current suspension systems (suction, pin/lock and magnetic systems).
  19. Ho CS, Horiuchi T, Taniguchi H, Umetsu A, Hagisawa K, Iwaya K, et al.
    Biomed Eng Online, 2016 Aug 20;15(1):98.
    PMID: 27542354 DOI: 10.1186/s12938-016-0220-z
    Composition of atherosclerotic arterial walls is rich in lipids such as cholesterol, unlike normal arterial walls. In this study, we aimed to utilize this difference to diagnose atherosclerosis via multispectral fluorescence imaging, which allows for identification of fluorescence originating from the substance in the arterial wall.
  20. Shahzad A, Saad MN, Walter N, Malik AS, Meriaudeau F
    Biomed Eng Online, 2014;13:109.
    PMID: 25087016 DOI: 10.1186/1475-925X-13-109
    Subcutaneous veins localization is usually performed manually by medical staff to find suitable vein to insert catheter for medication delivery or blood sample function. The rule of thumb is to find large and straight enough vein for the medication to flow inside of the selected blood vessel without any obstruction. The problem of peripheral difficult venous access arises when patient's veins are not visible due to any reason like dark skin tone, presence of hair, high body fat or dehydrated condition, etc.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links