Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Singh VA, Nagalingam J, Saad M, Pailoor J
    Biomed Eng Online, 2010;9:48.
    PMID: 20831801 DOI: 10.1186/1475-925X-9-48
    Sterilization and re-usage of tumour bone for reconstruction after tumour resection is now gaining popularity in the East. This recycle tumour bone needs to be sterilized in order to eradicate the tumour cells before re-implantation for limb salvage procedures. The effect of some of these treatments on the integrity and sterility of the bone after treatment has been published but there has yet been a direct comparison between the various methods of sterilization to determine the one method that gives the best tumour kill without compromising the bone's structural integrity.
  2. Mat Zin S, Md Rasib SZ, Suhaimi FM, Mariatti M
    Biomed Eng Online, 2021 Feb 06;20(1):17.
    PMID: 33549118 DOI: 10.1186/s12938-021-00854-y
    The tongue and hard palate play an essential role in the production of sound during continuous speech. Appropriate tongue and hard palate contacts will ensure proper sound production. Electropalatography, also known as EPG, is a device that can be used to identify the location of the tongue and hard palate contact. It can also be used by a speech therapist to help patients who have a speech disorder. Among the group with the disease are cleft palate, Down syndrome, glossectomy, and autism patients. Besides identifying the contact location, EPG is a useful medical device that has been continuously developed based on the patient's needs and treatment advancement. This article reviews the technology of electropalatography since the early introduction of the device. It also discusses the development process and the drawbacks of the previous EPG systems, resulting in the EPG's upgraded system and technology. This review suggests additional features that can be useful for the future development of the EPG. The latest technology can be incorporated into the EPG system to provide a more convenient method. There are some elements to be considered in the development of EPG's new technology that were discussed in this study. The elements are essential to provide more convenience for the patient during speech therapy. New technology can accelerate the growth of medical devices, particularly on the development of speech therapy equipment that should be based on the latest technological advancements available. Thus, the advanced EPG system suggested in this article may expand the usage of the EPG and serve as a tool to provide speech therapy treatment services and not limited to monitoring only.
  3. Arifin N, Abu Osman NA, Ali S, Wan Abas WA
    Biomed Eng Online, 2014;13(1):23.
    PMID: 24597518 DOI: 10.1186/1475-925X-13-23
    Achieving independent upright posture has known to be one of the main goals in rehabilitation following lower limb amputation. The purpose of this study was to compare postural steadiness of below knee amputees with visual alterations while wearing three different prosthetic feet.
  4. Abdul Karim R, Zakaria NF, Zulkifley MA, Mustafa MM, Sagap I, Md Latar NH
    Biomed Eng Online, 2013;12:21.
    PMID: 23496940 DOI: 10.1186/1475-925X-12-21
    Telepointer is a powerful tool in the telemedicine system that enhances the effectiveness of long-distance communication. Telepointer has been tested in telemedicine, and has potential to a big influence in improving quality of health care, especially in the rural area. A telepointer system works by sending additional information in the form of gesture that can convey more accurate instruction or information. It leads to more effective communication, precise diagnosis, and better decision by means of discussion and consultation between the expert and the junior clinicians. However, there is no review paper yet on the state of the art of the telepointer in telemedicine. This paper is intended to give the readers an overview of recent advancement of telepointer technology as a support tool in telemedicine. There are four most popular modes of telepointer system, namely cursor, hand, laser and sketching pointer. The result shows that telepointer technology has a huge potential for wider acceptance in real life applications, there are needs for more improvement in the real time positioning accuracy. More results from actual test (real patient) need to be reported. We believe that by addressing these two issues, telepointer technology will be embraced widely by researchers and practitioners.
  5. Yahya N, Kamel NS, Malik AS
    Biomed Eng Online, 2014;13(1):154.
    PMID: 25421914 DOI: 10.1186/1475-925X-13-154
    Ultrasound imaging is a very essential technique in medical diagnosis due to its being safe, economical and non-invasive nature. Despite its popularity, the US images, however, are corrupted with speckle noise, which reduces US images qualities, hampering image interpretation and processing stage. Hence, there are many efforts made by researches to formulate various despeckling methods for speckle reduction in US images.
  6. Lee JWW, Chiew YS, Wang X, Mat Nor MB, Chase JG, Desaive T
    Biomed Eng Online, 2022 Feb 11;21(1):13.
    PMID: 35148759 DOI: 10.1186/s12938-022-00981-0
    BACKGROUND AND OBJECTIVE: Mechanical ventilation (MV) is the primary form of care for respiratory failure patients. MV settings are based on general clinical guidelines, intuition, and experience. This approach is not patient-specific and patients may thus experience suboptimal, potentially harmful MV care. This study presents the Stochastic integrated VENT (SiVENT) protocol which combines model-based approaches of the VENT protocol from previous works, with stochastic modelling to take the variation of patient respiratory elastance over time into consideration.

    METHODS: A stochastic model of Ers is integrated into the VENT protocol from previous works to develop the SiVENT protocol, to account for both intra- and inter-patient variability. A cohort of 20 virtual MV patients based on retrospective patient data are used to validate the performance of this method for volume-controlled (VC) ventilation. A performance evaluation was conducted where the SiVENT and VENT protocols were implemented in 1080 instances each to compare the two protocols and evaluate the difference in reduction of possible MV settings achieved by each.

    RESULTS: From an initial number of 189,000 possible MV setting combinations, the VENT protocol reduced this number to a median of 10,612, achieving a reduction of 94.4% across the cohort. With the integration of the stochastic model component, the SiVENT protocol reduced this number from 189,000 to a median of 9329, achieving a reduction of 95.1% across the cohort. The SiVENT protocol reduces the number of possible combinations provided to the user by more than 1000 combinations as compared to the VENT protocol.

    CONCLUSIONS: Adding a stochastic model component into a model-based approach to selecting MV settings improves the ability of a decision support system to recommend patient-specific MV settings. It specifically considers inter- and intra-patient variability in respiratory elastance and eliminates potentially harmful settings based on clinically recommended pressure thresholds. Clinical input and local protocols can further reduce the number of safe setting combinations. The results for the SiVENT protocol justify further investigation of its prediction accuracy and clinical validation trials.

  7. Ding CCA, Dokos S, Bakir AA, Zamberi NJ, Liew YM, Chan BT, et al.
    Biomed Eng Online, 2024 Feb 22;23(1):24.
    PMID: 38388416 DOI: 10.1186/s12938-024-01206-2
    Aortic stenosis, hypertension, and left ventricular hypertrophy often coexist in the elderly, causing a detrimental mismatch in coupling between the heart and vasculature known as ventricular-vascular (VA) coupling. Impaired left VA coupling, a critical aspect of cardiovascular dysfunction in aging and disease, poses significant challenges for optimal cardiovascular performance. This systematic review aims to assess the impact of simulating and studying this coupling through computational models. By conducting a comprehensive analysis of 34 relevant articles obtained from esteemed databases such as Web of Science, Scopus, and PubMed until July 14, 2022, we explore various modeling techniques and simulation approaches employed to unravel the complex mechanisms underlying this impairment. Our review highlights the essential role of computational models in providing detailed insights beyond clinical observations, enabling a deeper understanding of the cardiovascular system. By elucidating the existing models of the heart (3D, 2D, and 0D), cardiac valves, and blood vessels (3D, 1D, and 0D), as well as discussing mechanical boundary conditions, model parameterization and validation, coupling approaches, computer resources and diverse applications, we establish a comprehensive overview of the field. The descriptions as well as the pros and cons on the choices of different dimensionality in heart, valve, and circulation are provided. Crucially, we emphasize the significance of evaluating heart-vessel interaction in pathological conditions and propose future research directions, such as the development of fully coupled personalized multidimensional models, integration of deep learning techniques, and comprehensive assessment of confounding effects on biomarkers.
  8. Ramli MI, Hamzaid NA, Engkasan JP, Usman J
    Biomed Eng Online, 2023 May 22;22(1):50.
    PMID: 37217941 DOI: 10.1186/s12938-023-01103-0
    BACKGROUND: Over the decades, many publications have established respiratory muscle training (RMT) as an effective way in improving respiratory dysfunction in multiple populations. The aim of the paper is to determine the trend of research and multidisciplinary collaboration in publications related to RMT over the last 6 decades. The authors also sought to chart the advancement of RMT among people with spinal cord injury (SCI) over the last 60 years.

    METHODS: Bibliometric analysis was made, including the publications' profiles, citation analysis and research trends of the relevant literature over the last 60 years. Publications from all time frames were retrieved from Scopus database. A subgroup analysis of publications pertinent to people with SCI was also made.

    RESULTS: Research on RMT has been steadily increasing over the last 6 decades and across geographical locations. While medicine continues to dominate the research on RMT, this topic also continues to attract researchers and publications from other areas such as engineering, computer science and social science over the last 10 years. Research collaboration between authors in different backgrounds was observed since 2006. Source titles from non-medical backgrounds have also published articles pertinent to RMT. Among people with SCI, researchers utilised a wide range of technology from simple spirometers to electromyography in both intervention and outcome measures. With various types of interventions implemented, RMT generally improves pulmonary function and respiratory muscle strength among people with SCI.

    CONCLUSIONS: While research on RMT has been steadily increasing over the last 6 decades, more collaborations are encouraged in the future to produce more impactful and beneficial research on people who suffer from respiratory disorders.

  9. Razak NA, Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014;13:108.
    PMID: 25085005 DOI: 10.1186/1475-925X-13-108
    The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system.
  10. Latifi MH, Ganthel K, Rukmanikanthan S, Mansor A, Kamarul T, Bilgen M
    Biomed Eng Online, 2012;11:23.
    PMID: 22545650 DOI: 10.1186/1475-925X-11-23
    Effective fixation of fracture requires careful selection of a suitable implant to provide stability and durability. Implant with a feature of locking plate (LP) has been used widely for treating distal fractures in femur because of its favourable clinical outcome, but its potential in fixing proximal fractures in the subtrochancteric region has yet to be explored. Therefore, this comparative study was undertaken to demonstrate the merits of the LP implant in treating the subtrochancteric fracture by comparing its performance limits against those obtained with the more traditional implants; angle blade plate (ABP) and dynamic condylar screw plate (DCSP).
  11. Ooi JH, Lim R, Seng H, Tan MP, Goh CH, Lovell NH, et al.
    Biomed Eng Online, 2024 Feb 20;23(1):23.
    PMID: 38378540 DOI: 10.1186/s12938-024-01202-6
    PURPOSE: Non-invasive, beat-to-beat variations in physiological indices provide an opportunity for more accessible assessment of autonomic dysfunction. The potential association between the changes in these parameters and arterial stiffness in hypertension remains poorly understood. This systematic review aims to investigate the association between non-invasive indicators of autonomic function based on beat-to-beat cardiovascular signals with arterial stiffness in individuals with hypertension.

    METHODS: Four electronic databases were searched from inception to June 2022. Studies that investigated non-invasive parameters of arterial stiffness and autonomic function using beat-to-beat cardiovascular signals over a period of > 5min were included. Study quality was assessed using the STROBE criteria. Two authors screened the titles, abstracts, and full texts independently.

    RESULTS: Nineteen studies met the inclusion criteria. A comprehensive overview of experimental design for assessing autonomic function in terms of baroreflex sensitivity and beat-to-beat cardiovascular variabilities, as well as arterial stiffness, was presented. Alterations in non-invasive indicators of autonomic function, which included baroreflex sensitivity, beat-to-beat cardiovascular variabilities and hemodynamic changes in response to autonomic challenges, as well as arterial stiffness, were identified in individuals with hypertension. A mixed result was found in terms of the association between non-invasive quantitative autonomic indices and arterial stiffness in hypertensive individuals. Nine out of 12 studies which quantified baroreflex sensitivity revealed a significant association with arterial stiffness parameters. Three studies estimated beat-to-beat heart rate variability and only one study reported a significant relationship with arterial stiffness indices. Three out of five studies which studied beat-to-beat blood pressure variability showed a significant association with arterial structural changes. One study revealed that hemodynamic changes in response to autonomic challenges were significantly correlated with arterial stiffness parameters.

    CONCLUSIONS: The current review demonstrated alteration in autonomic function, which encompasses both the sympathetic and parasympathetic modulation of sinus node function and vasomotor tone (derived from beat-to-beat cardiovascular signals) in hypertension, and a significant association between some of these parameters with arterial stiffness. By employing non-invasive measurements to monitor changes in autonomic function and arterial remodeling in individuals with hypertension, we would be able to enhance our ability to identify individuals at high risk of cardiovascular disease. Understanding the intricate relationships among these cardiovascular variability measures and arterial stiffness could contribute toward better individualized treatment for hypertension in the future.

    SYSTEMATIC REVIEW REGISTRATION: PROSPERO ID: CRD42022336703. Date of registration: 12/06/2022.

  12. Chase JG, Preiser JC, Dickson JL, Pironet A, Chiew YS, Pretty CG, et al.
    Biomed Eng Online, 2018 Feb 20;17(1):24.
    PMID: 29463246 DOI: 10.1186/s12938-018-0455-y
    Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care.
  13. Chai HY, Swee TT, Seng GH, Wee LK
    Biomed Eng Online, 2013;12:27.
    PMID: 23565999 DOI: 10.1186/1475-925X-12-27
    The high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task.
  14. Wong JW, Chiew YS, Desaive T, Chase JG
    Biomed Eng Online, 2022 Feb 09;21(1):11.
    PMID: 35139858 DOI: 10.1186/s12938-022-00983-y
    BACKGROUND: Surges of COVID-19 infections have led to insufficient supply of mechanical ventilators (MV), resulting in rationing of MV care. In-parallel, co-mechanical ventilation (Co-MV) of multiple patients is a potential solution. However, due to lack of testing, there is currently no means to match ventilation requirements or patients, with no guidelines to date. In this research, we have developed a model-based method for patient matching for pressure control mode MV.

    METHODS: The model-based method uses a single-compartment lung model (SCM) to simulate the resultant tidal volume of patient pairs at a set ventilation setting. If both patients meet specified safe ventilation criteria under similar ventilation settings, the actual mechanical ventilator settings for Co-MV are determined via simulation using a double-compartment lung model (DCM). This method allows clinicians to analyse Co-MV in silico, before clinical implementation.

    RESULTS: The proposed method demonstrates successful patient matching and MV setting in a model-based simulation as well as good discrimination to avoid mismatched patient pairs. The pairing process is based on model-based, patient-specific respiratory mechanics identified from measured data to provide useful information for guiding care. Specifically, the matching is performed via estimation of MV delivered tidal volume (mL/kg) based on patient-specific respiratory mechanics. This information can provide insights for the clinicians to evaluate the subsequent effects of Co-MV. In addition, it was also found that Co-MV patients with highly restrictive respiratory mechanics and obese patients must be performed with extra care.

    CONCLUSION: This approach allows clinicians to analyse patient matching in a virtual environment without patient risk. The approach is tested in simulation, but the results justify the necessary clinical validation in human trials.

  15. Alsaih K, Lemaitre G, Rastgoo M, Massich J, Sidibé D, Meriaudeau F
    Biomed Eng Online, 2017 Jun 07;16(1):68.
    PMID: 28592309 DOI: 10.1186/s12938-017-0352-9
    BACKGROUND: Spectral domain optical coherence tomography (OCT) (SD-OCT) is most widely imaging equipment used in ophthalmology to detect diabetic macular edema (DME). Indeed, it offers an accurate visualization of the morphology of the retina as well as the retina layers.

    METHODS: The dataset used in this study has been acquired by the Singapore Eye Research Institute (SERI), using CIRRUS TM (Carl Zeiss Meditec, Inc., Dublin, CA, USA) SD-OCT device. The dataset consists of 32 OCT volumes (16 DME and 16 normal cases). Each volume contains 128 B-scans with resolution of 1024 px × 512 px, resulting in more than 3800 images being processed. All SD-OCT volumes are read and assessed by trained graders and identified as normal or DME cases based on evaluation of retinal thickening, hard exudates, intraretinal cystoid space formation, and subretinal fluid. Within the DME sub-set, a large number of lesions has been selected to create a rather complete and diverse DME dataset. This paper presents an automatic classification framework for SD-OCT volumes in order to identify DME versus normal volumes. In this regard, a generic pipeline including pre-processing, feature detection, feature representation, and classification was investigated. More precisely, extraction of histogram of oriented gradients and local binary pattern (LBP) features within a multiresolution approach is used as well as principal component analysis (PCA) and bag of words (BoW) representations.

    RESULTS AND CONCLUSION: Besides comparing individual and combined features, different representation approaches and different classifiers are evaluated. The best results are obtained for LBP[Formula: see text] vectors while represented and classified using PCA and a linear-support vector machine (SVM), leading to a sensitivity(SE) and specificity (SP) of 87.5 and 87.5%, respectively.

  16. Zamhuri A, Lim GP, Ma NL, Tee KS, Soon CF
    Biomed Eng Online, 2021 Apr 01;20(1):33.
    PMID: 33794899 DOI: 10.1186/s12938-021-00873-9
    MXene is a recently emerged multifaceted two-dimensional (2D) material that is made up of surface-modified carbide, providing its flexibility and variable composition. They consist of layers of early transition metals (M), interleaved with n layers of carbon or nitrogen (denoted as X) and terminated with surface functional groups (denoted as Tx/Tz) with a general formula of Mn+1XnTx, where n = 1-3. In general, MXenes possess an exclusive combination of properties, which include, high electrical conductivity, good mechanical stability, and excellent optical properties. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). Due to the attractive physicochemical and biocompatibility properties, the novel 2D materials have enticed an uprising research interest for application in biomedicine and biotechnology. Although some potential applications of MXenes in biomedicine have been explored recently, the types of MXene applied in the perspective of biomedical engineering and biomedicine are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper aims to provide an overview of the structural organization of MXenes, different top-down and bottom-up approaches for synthesis of MXenes, whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. MXenes can be further modified to enhance the biodegradability and reduce the cytotoxicity of the material for biosensing, cancer theranostics, drug delivery and bio-imaging applications. The antimicrobial activity of MXene and the mechanism of MXenes in damaging the cell membrane were also discussed. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in biomedical devices were demystified. Overall, this review puts into perspective the current advancements and prospects of MXenes in realizing this 2D nanomaterial as a versatile biological tool.
  17. Wan Ahmad WS, Zaki WM, Ahmad Fauzi MF
    Biomed Eng Online, 2015;14:20.
    PMID: 25889188 DOI: 10.1186/s12938-015-0014-8
    Unsupervised lung segmentation method is one of the mandatory processes in order to develop a Content Based Medical Image Retrieval System (CBMIRS) of CXR. The purpose of the study is to present a robust solution for lung segmentation of standard and mobile chest radiographs using fully automated unsupervised method.
  18. Singh V, Elamvazuthi I, Jeoti V, George J, Swain A, Kumar D
    Biomed Eng Online, 2016;15:13.
    PMID: 26838596 DOI: 10.1186/s12938-016-0129-6
    Anterior talofibular ligament (ATFL) is considered as the weakest ankle ligament that is most prone to injuries. Ultrasound imaging with its portable, non-invasive and non-ionizing radiation nature is increasingly being used for ATFL diagnosis. However, diagnosis of ATFL injuries requires its segmentation from ultrasound images that is a challenging task due to the existence of homogeneous intensity regions, homogeneous textures and low contrast regions in ultrasound images. To address these issues, this research has developed an efficient ATFL segmentation framework that would contribute to accurate and efficient diagnosis of ATFL injuries for clinical evaluation.
  19. Shahzad A, Saad MN, Walter N, Malik AS, Meriaudeau F
    Biomed Eng Online, 2014;13:109.
    PMID: 25087016 DOI: 10.1186/1475-925X-13-109
    Subcutaneous veins localization is usually performed manually by medical staff to find suitable vein to insert catheter for medication delivery or blood sample function. The rule of thumb is to find large and straight enough vein for the medication to flow inside of the selected blood vessel without any obstruction. The problem of peripheral difficult venous access arises when patient's veins are not visible due to any reason like dark skin tone, presence of hair, high body fat or dehydrated condition, etc.
  20. Ho CS, Horiuchi T, Taniguchi H, Umetsu A, Hagisawa K, Iwaya K, et al.
    Biomed Eng Online, 2016 Aug 20;15(1):98.
    PMID: 27542354 DOI: 10.1186/s12938-016-0220-z
    Composition of atherosclerotic arterial walls is rich in lipids such as cholesterol, unlike normal arterial walls. In this study, we aimed to utilize this difference to diagnose atherosclerosis via multispectral fluorescence imaging, which allows for identification of fluorescence originating from the substance in the arterial wall.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links