Displaying publications 1 - 20 of 147 in total

Abstract:
Sort:
  1. Zulkifli MH, Viswenaden P, Jasamai M, Azmi N, Yaakob NS
    Biomed Pharmacother, 2019 Feb 20;112:108630.
    PMID: 30797147 DOI: 10.1016/j.biopha.2019.108630
    5-HT3R antagonists such as ondansetron, granisetron and tropisetron have been clinically used to treat nausea and vomiting in chemotherapy patients. However, current study and research revealed novel potentials of these ligands in other diseases like inflammation, Alzheimer's, and drug abuse. Towards utilising these drugs as anti-smoking agents to treat nicotine dependence problem, there are conflicting reports regarding the potential of these ligands in modulating the effects of nicotine in both human and animal behavioural studies. This is complicated by the heterogeneity of 5-HT3R itself, cross regulation between nicotinic acetylcholinergic receptor (nAChR) and distinct pharmacological profiles of 5-HT3R antagonists. This review gathered existing studies conducted investigating the potential of "-setron" class of 5-HT3R antagonists in modulating nicotine effects. We proposed that the mechanism where 5-HT3R antagonists mediate the effects of nicotine could be attributed by both direct at 5-HT3R and indirect mechanism in nicotine addiction downstream regulation. The indirect mechanism mediated by the 5-HT3R antagonist could be through α7 nAChR, 5-HT1B receptor (5-HT1BR), 5-HT1C receptor (5-HT1CR), calcineurin activity, p38 MAPK level, PPAR-γ and NF-κβ. Our review suggested that future studies should focus on newer 5-HT3R antagonist with superior pharmacological profile or the one with multitarget action rather than high selectivity at single receptor.
  2. Zulkhairi A, Zaiton Z, Jamaluddin M, Sharida F, Mohd TH, Hasnah B, et al.
    Biomed Pharmacother, 2008 Dec;62(10):716-22.
    PMID: 18538528 DOI: 10.1016/j.biopha.2006.12.003
    There is accumulating data demonstrated hypercholesterolemia and oxidative stress play an important role in the development of atherosclerosis. In the present study, a protective activity of alpha-lipoic acid; a metabolic antioxidant in hypercholesterolemic-induced animals was investigated. Eighteen adult male New Zealand White (NZW) rabbit were segregated into three groups labelled as group K, AT and ALA (n=6). While group K was fed with normal chow and acted as a control, the rest fed with 100 g/head/day with 1% high cholesterol diet to induce hypercholesterolemia. 4.2 mg/body weight of alpha lipoic acid was supplemented daily to the ALA group. Drinking water was given ad-libitum. The study was designed for 10 weeks. Blood sampling was taken from the ear lobe vein at the beginning of the study, week 5 and week 10 and plasma was prepared for lipid profile estimation and microsomal lipid peroxidation index indicated with malondialdehyde (MDA) formation. Animals were sacrificed at the end of the study and the aortas were excised for intimal lesion analysis. The results showed a significant reduction of lipid peroxidation index indicated with low MDA level (p<0.05) in ALA group compared to that of the AT group. The blood total cholesterol (TCHOL) and low density lipoprotein (LDL) levels were found to be significantly low in ALA group compared to that of the AT group (p<0.05). Histomorphometric intimal lesion analysis of the aorta showing less of atheromatous plaque formation in alpha lipoic acid supplemented group (p<0.05) compared to that of AT group. These findings suggested that apart from its antioxidant activity, alpha lipoic acid may also posses a lipid lowering effect indicated with low plasma TCHOL and LDL levels and reduced the athero-lesion formation in rabbits fed a high cholesterol diet.
  3. Zin SRM, Kassim NM, Alshawsh MA, Hashim NE, Mohamed Z
    Biomed Pharmacother, 2017 Jul;91:611-620.
    PMID: 28486192 DOI: 10.1016/j.biopha.2017.05.011
    Anastatica hierochuntica L. (A. hierochuntica) is a desert plant consumed by people across the globe to treat various medical conditions. This review is aimed at providing a summary of the scientific findings on biological activities of A. hierochuntica and suggests areas in which further research is needed. This systematic review was synthesized from the literature obtained from the following databases; PubMed, Science Direct, Web of Science, Ovid Medline, Scopus, Google Scholar and WorldCat. Previous studies have indicated that the methanolic and aqueous extracts of this plant have antioxidant, antifungal and antimicrobial activities. It was shown to have the ability to activate phagocytes and to possess microbicidal activity, thereby causing increased resistance to infection. Both methanolic and aqueous extracts of this plant were also demonstrated to have a hypoglycaemic property, whilst the methanolic extract significantly exhibited hypolipidaemic effects in diabetic rats. Moreover, the methanolic extract of A. hierochuntica has been suggested to have hepatoprotective properties. This is supported by its ability to significantly decrease transaminase and alkaline phosphatase activities in alloxan-induced diabetic rats. Besides, this desert plant exhibited anti-inflammatory, anti-melanogenic and gastroprotective activities. Even though A. hierochuntica is widely used, studies on this plant are still scarce, thus its reputed biological activities and medical benefits require critical evaluation. Before A. hierochuntica can be used clinically, further studies need to be conducted to increase our understanding of the effects of this plant, its constituents, and possible mechanisms of action.
  4. Zaid SSM, Othman S, Kassim NM
    Biomed Pharmacother, 2021 Aug;140:111757.
    PMID: 34044283 DOI: 10.1016/j.biopha.2021.111757
    BACKGROUND: Numerous scientific studies have found that young women are at a high risk of reproductive infertility due to their routine exposure to numerous bisphenol A (BPA) products. This risk is highly associated with the production of reactive oxygen species from BPA products. Ficus deltoidea, which has strong antioxidant properties, was selected as a potential protective agent to counter the detrimental effects of BPA in the rat uterus.

    METHODS: Female Sprague-Dawley rats were allocated into four groups (n = 8) as follows: (i) the Normal Control group (NC), (ii) the BPA-exposed group (PC), (iii) the group concurrently treated with BPA and F. deltoidea (FC) and (iv) the group treated with F. deltoidea alone (F).

    RESULTS: After 6 weeks of concurrent treatment with F. deltoidea, uterine abnormalities in the BPA-exposed rats showed a significant improvement. Specifically, the size of stromal cells increased; interstitial spaces between stromal cells expanded; the histology of the glandular epithelium and the myometrium appeared normal and mitotic figures were present. The suppressive effects of BPA on the expression levels of sex steroid receptors (ERα and ERβ) and the immunity gene C3 were significantly normalised by F. deltoidea treatment. The role of F. deltoidea as an antioxidant agent was proven by the significant reduction in malondialdehyde level in BPA-exposed rats. Moreover, in BPA-exposed rats, concurrent treatment with F. deltoidea could normalise the level of the gonadotropin hormone, which could be associated with an increase in the percentage of rats with a normal oestrous cycle.

    CONCLUSION: F. deltoidea has the potential to counter the toxic effects of BPA on the female reproductive system. These protective effects might be due to the phytochemical properties of F. deltoidea. Therefore, future study is warranted to identify the bioactive components that contribute to the protective effects of F. deltoidea.

  5. Yin LJ, Bin Ahmad Kamar AKD, Fung GT, Liang CT, Avupati VR
    Biomed Pharmacother, 2022 Jan;145:112406.
    PMID: 34785416 DOI: 10.1016/j.biopha.2021.112406
    Rhodanine has been recognized as a privileged scaffold in medicinal chemistry due to its well-known ability to demonstrate a broad range of biological activities. The possibility of structural diversification has contributed to the significance of rhodanine structure in effective drug discovery and design. Many studies have confirmed the potential of rhodanine-derived compounds in the treatment of different types of cancer through the apoptosis induction mechanism. Furthermore, most of the rhodanine derivatives exhibited remarkable anticancer activity in the micromolar range while causing negligible cytotoxicity to normal cells. This review critically describes the anticancer activity profile of reported rhodanine compounds and the structure-activity relationships (SAR) to highlight the value of rhodanine as the core structure for future cancer drug development as well as to assist the researchers in rational drug design.
  6. Wyer S, Townsend DM, Ye Z, Kourtidis A, Choo YM, de Barros ALB, et al.
    Biomed Pharmacother, 2022 Feb 08;148:112676.
    PMID: 35149387 DOI: 10.1016/j.biopha.2022.112676
    Since the discovery of the kahalalide family of marine depsipeptides in 1993, considerable work has been done to develop these compounds as new and biologically distinct anti-cancer agents. Clinical trials and laboratory research have yielded a wealth of data that indicates tolerance of kahalalides in healthy cells and selective activity against diseased cells. Currently, two molecules have attracted the greates level of attention, kahalalide F (KF) and isokahalalide F (isoKF, Irvalec, PM 02734, elisidepsin). Both compounds were originally isolated from the sarcoglossan mollusk Elysia rufescens but due to distinct structural characteristics it has been hypothesized and recently shown that the ultimate origin of the molecules is microbial. The search for their true source has been a subject of considerable research in the anticipation of finding new analogs and a culturable expression system that can produce sufficient material through fermentation to be industrially relevant.
  7. Wong ZW, Thanikachalam PV, Ramamurthy S
    Biomed Pharmacother, 2017 Oct;94:1145-1166.
    PMID: 28826162 DOI: 10.1016/j.biopha.2017.08.009
    Modern medicine has been used to treat myocardial infarction, a subset of cardiovascular diseases, and have been relatively effective but not without adverse effects. Consequently, this issue has stimulated interest in the use of natural products, which may be equally effective and better tolerated. Many studies have investigated the cardioprotective effect of natural products, such as plant-derived phytochemicals, against isoproterenol (ISO)-induced myocardial damage; these have produced promising results on the basis of their antioxidant, anti-atherosclerotic, anti-apoptotic and anti-inflammatory activities. This review briefly introduces the pathophysiology of myocardial infarction (MI) and then addresses the progress of natural product research towards its treatment. We highlight the promising applications and mechanisms of action of plant extracts, phytochemicals and polyherbal formulations towards the treatment of ISO-induced myocardial damage. Most of the products displayed elevated antioxidant levels with decreased oxidative stress and lipid peroxidation, along with restoration of ionic balance and lowered expression of myocardial injury markers, pro-inflammatory cytokines, and apoptotic parameters. Likewise, lipid profiles were positively altered and histopathological improvements could be seen from, for example, the better membrane integrity, decreased necrosis, edema, infarct size, and leukocyte infiltration. This review highlights promising results towards the amelioration of ISO-induced myocardial damage, which suggest the direction for future research on natural products that could be used to treat MI.
  8. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Jamil NA, Ima-Nirwana S
    Biomed Pharmacother, 2018 Feb;98:191-200.
    PMID: 29257979 DOI: 10.1016/j.biopha.2017.12.042
    This study aimed to investigate the bone quality in rats induced with metabolic syndrome (MetS) using high-carbohydrate high-fat (HCHF) diet. Male Wistar rats (n = 14) were randomized into two groups. The normal group was given standard rat chow. The MetS group was given HCHF diet. Diet regimen was assigned for a period of 20 weeks. Metabolic syndrome parameters were measured monthly until MetS was established. Left tibiae were scanned using micro-computed tomography at week 0, 8, 12, 16, and 20 to analyze the trabecular and cortical bone structure. At the end of the study, rats were euthanized and their bones were harvested for analysis. Metabolic syndrome was established at week 12 in the HCHF rats. Significant deterioration of trabecular bone was observed at week 20 in the HCHF group (p  0.05). Femur length and width in the HCHF group were significantly shorter than the normal group (p 
  9. Wong JH, Muthuraju S, Reza F, Senik MH, Zhang J, Mohd Yusuf Yeo NAB, et al.
    Biomed Pharmacother, 2019 Feb;110:168-180.
    PMID: 30469081 DOI: 10.1016/j.biopha.2018.11.044
    Centella asiatica (CA) is a widely used traditional herb, notably for its cognitive enhancing effect and potential to increase synaptogenesis. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-aspartate receptors (NMDARs) mediate fast excitatory neurotransmission with key roles in long-term potentiation which is believed to be the cellular mechanism of learning and memory. Improved learning and memory can be an indication to the surface expression level of these receptors. Our previous study demonstrated that administration of CA extract improved learning and memory and enhanced expression of AMPAR GluA1 subunit while exerting no significant effects on GABAA receptors of the hippocampus in rats. Hence, to further elucidate the effects of CA, this study investigated the effects of CA extract in recognition memory and spatial memory, and its effects on AMPAR GluA1 and GluA2 subunit and NMDAR GluN2 A and GluN2B subunit expression in the entorhinal cortex (EC) and hippocampal subfields CA1 and CA3. The animals were administered with saline, 100 mg/kg, 300 mg/kg, and 600 mg/kg of CA extract through oral gavage for 14 days, followed by behavioural analysis through Open Field Test (OFT), Novel Object Recognition Task (NORT), and Morris Water Maze (MWM) and lastly morphological and immunohistochemical analysis of the surface expression of AMPAR and NMDAR subunits were performed. The results showed that 14 days of administration of 600 mg/kg of CA extract significantly improved memory assessed through NORT while 300 mg/kg of CA extract significantly improved memory of the animals assessed through MWM. Immunohistochemical analysis revealed differential modulation effects on the expressions of receptor subunits across CA1, CA3 and EC. The CA extract at the highest dose (600 mg/kg) significantly enhanced the expression of AMPAR subunit GluA1 and GluA2 in CA1, CA3 and EC, and NMDAR subunit GluN2B in CA1 and CA3 compared to control. At 300 mg/kg, CA significantly increased expression of AMPAR GluA1 in CA1 and EC, and GluA2 in CA1, CA3 and EC while 100 mg/kg of CA significantly increased expression of only AMPAR subunit GluA2 in CA3 and EC. Expression of NMDAR subunit GluN2 A was significantly reduced in the CA3 (at 100, 300, and 600 mg/kg) while no significant changes of subunit expression was observed in CA1 and EC compared to control. The results suggest that the enhanced learning and memory observed in animals administered with CA was mainly mediated through increased expression of AMPAR GluA1 and GluA2 subunits and differential expression of NMDAR GluN2 A and GluN2B subunits in the hippocampal subfields and EC. With these findings, the study revealed a new aspect of cognitive enhancing effect of CA and its therapeutic potentials through modulating receptor subunit expression.
  10. Wen Jun L, Pit Foong C, Abd Hamid R
    Biomed Pharmacother, 2019 Oct;118:109221.
    PMID: 31545225 DOI: 10.1016/j.biopha.2019.109221
    Ardisia crispa Thunb. A. DC. (Primulaceae) has been used extensively as folk-lore medicine in South East Asia including China and Japan to treat various inflammatory related diseases. Ardisia crispa root hexane fraction (ACRH) has been thoroughly studied by our group and it has been shown to exhibit anti-inflammatory, anti-hyperalgesic, anti-arthritic, anti-ulcer, chemoprevention and suppression against inflammation-induced angiogenesis in various animal model. Nevertheless, its effect against human endothelial cells in vitro has not been reported yet. Hence, the aim of the study is to investigate the potential antiangiogenic property of ACRH in human umbilical vein endothelial cells (HUVECs) and zebrafish embryo model. ACRH was separated from the crude ethanolic extract of the plant's root in prior to experimental studies. MTT assay revealed that ACRH exerted a concentration-dependent antiproliferative effect on HUVEC with the IC50 of 2.49 ± 0.04 μg/mL. At higher concentration (10 μg/mL), apoptosis was induced without affecting the cell cycle distribution. Angiogenic properties including migration, invasion and differentiation of HUVECs, evaluated via wound healing, trans-well invasion and tube formation assay respectively, were significantly suppressed by ACRH in a concentration-dependent manner. Noteworthily, significant antiangiogenic effects were observed even at the lowest concentration used (0.1 μg/mL). Expression of proMMP-2, vascular endothelial growth factor (VEGF)-C, VEGF-D, Angiopoietin-2, fibroblast growth factor (FGF)-1, FGF-2, Follistatin, and hepatocyte growth factor (HGF) were significantly reduced in various degrees by ACRH. The ISV formation in zebrafish embryo was significantly suppressed by ACRH at the concentration of 5 μg/mL. These findings revealed the potential of ACRH as antiangiogenic agent by suppressing multiple proangiogenic proteins. Thus, it can be further verified via the transcription of these proteins from their respective DNA, in elucidating their exact pathways.
  11. Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 Jul;91:366-377.
    PMID: 28463800 DOI: 10.1016/j.biopha.2017.04.112
    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis.
  12. Vijayarathna S, Oon CE, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 May;89:499-514.
    PMID: 28249252 DOI: 10.1016/j.biopha.2017.02.075
    Medicinal plants have been accepted as a gold mine, with respect to the diversity of their phytochemicals. Many medicinal plants extracts are potential anticancer agents. Polyalthia longifolia var. angustifolia Thw. (Annonaceae) is one of the most significant native medicinal plants and is found throughout Malaysia. Hence, the present study was intended to assess the anticancer properties of P. longifolia leaf methanolic extract (PLME) and its underlying mechanisms. The Annexin V/PI flow cytometry analysis showed that PLME induces apoptosis in HeLa cells in dose-dependent manner whereas the PI flow cytometric analysis for cell cycle demonstrated the accumulation of cells at sub G0/G1, G0/G1 and G2/M phases. Investigation with JC-1 flow cytometry analysis indicated increase in mitochondria membrane potential depolarisation corresponding to increase in PLME concentrations. PLME was also shown to influence intracellular reactive oxygen species (ROS) by exerting anti-oxidant (half IC50) and pro-oxidant (IC50and double IC50) affect against HeLa cells. PLME treatment also displayed DNA damage in HeLa cells in concentration depended fashion. The proteomic profiling array exposed the expression of pro-apoptotic and anti-apoptotic proteins upon PLME treatment at IC50concentration in HeLa cells. Pro-apoptotic proteins; BAX, BAD, cytochrome c, caspase-3, p21, p27 and p53 were found to be significantly up-regulated while anti-apoptotic proteins; BCL-2 and BCL-w were found to be significantly down-regulated. This investigation postulated the role of p53 into mediating apoptosis, cell cycle arrest and mitochondrial potential depolarisation by modulating the redox status of HeLa cells.
  13. Venugopalan SK, T S S, V N, S M M, S R
    Biomed Pharmacother, 2016 Oct;83:1485-1492.
    PMID: 27619103 DOI: 10.1016/j.biopha.2016.08.068
    Thymus mitochondria play a crucial role in immune function. This study identifies the novel protective role of N-Acetylglucosamine (NAG) in dexamethasone (DEX) induced mitochondrial perturbations in mice thymus. Mice were induced with DEX (5mg/kg) and treated with NAG i.p. (266μg/kg, 400μg/kg and 800μg/kg) for 14 days, Withanolide A (800μg/kg) has been used as positive control. Dose dependent treatment of NAG against DEX significantly restored the mitochondrial enzyme levels (ICDH, KDH, SDH and MDH) and elevated the mitochondrial glutathione antioxidants defense (GSH, SOD, GPX and GST) thus improving the ATP status which was confirmed by ultrastructural alterations in mitochondria and nucleus using TEM studies. Further histopathological studies also revealed that NAG attenuate DEX induced thymotoxicity. Finally, the study concludes that dose dependent treatment of NAG supports a potential role in preventing DEX induced thymotoxicity and NAG acts as a beneficial pharmacological intervention in the DEX induced thymic repercussions.
  14. Uti DE, Atangwho IJ, Eyong EU, Umoru GU, Egbung GE, Nna VU, et al.
    Biomed Pharmacother, 2020 Apr;124:109879.
    PMID: 31991383 DOI: 10.1016/j.biopha.2020.109879
    AIMS: African walnuts were previously shown to modulate hepatic lipid bio-accumulation in obesity. Herein, we investigated the impact of the nuts on fat accumulation in adipose and ectopic regions, and associated oxidatiive stress status in obese rats.

    MATERIALS AND METHODS: Whole ethanol extract (WE) of the nuts, and its liquid-liquid fractions-ethyl acetate (ET) and residue (RES) were separately administered to obese rats for 6 weeks. The normal (NC) and obese (OC) controls received normal saline and the standard control (SC), orlistat (5.14 mg/kg b.w.), during the same period. Thereafter, the animals were euthanized and the adipose, brain, kidneys and heart tissues were studied.

    RESULTS: The change in body weight to naso-anal length which increased by 63.52 % in OC compared to NC (p < 0.05), decreased by 57.88, 85.80 and 70.20 % in WE, ET and RES-treated groups, respectively, relative to the OC (p < 0.05). Also, adipose tissue weights were lowered upon treatment with the extracts and fractions versus OC (p < 0.05). Total lipids, phospholipids, triacylglycerol and cholesterol concentrations in the studied tissues which were higher in OC (p < 0.05) were lowered (p < 0.05) and compared favorably with SC. Further, malondialdehyde levels in the tissues were lowered upon treatment, compared to the OC (p < 0.05). Glutathione level and activities of glutathione peroxidase, superoxide dismutase and glutathione-S-transferase which were decreased (p < 0.05) in OC, were restored upon treatment with the extracts, relative to the obese control (p < 0.05).

    SIGNIFICANCE: African walnuts assuaged lipogenesis, oxidative stress and peroxidation in extra-hepatic tissues of obese rats, hence, may attenuate ectopic fat accumulation and its associated pathogenesis.

  15. Tufail S, Sherwani MA, Shamim Z, Abdullah, Goh KW, Alomary MN, et al.
    Biomed Pharmacother, 2024 Jan;170:116070.
    PMID: 38163396 DOI: 10.1016/j.biopha.2023.116070
    Two-dimensional (2D) nanomaterials have garnered enormous attention seemingly due to their unusual architecture and properties. Graphene and graphene oxide based 2D nanomaterials remained the most sought after for several years but the quest to design superior 2D nanomaterials which can find wider application gave rise to development of non-graphene 2D materials as well. Consequently, in addition to graphene based 2D nanomaterials, 2D nanostructures designed using macromolecules (such as DNAs, proteins, peptides and peptoids), transition metal dichalcogenides, transition-metal carbides and/or nitrides (MXene), black phosphorous, chitosan, hexagonal boron nitrides, and graphitic carbon nitride, and covalent organic frameworks have been developed. Interestingly, these 2D nanomaterials have found applications in diagnosis and treatment of various diseases including Alzheimer's disease (AD). Although AD is one of the most debilitating neurodegenerative conditions across the globe; unfortunately, there remains a paucity of effective diagnostic and/or therapeutic intervention for it till date. In this scenario, nanomaterial-based biosensors, or therapeutics especially 2D nanostructures are emerging to be promising in this regard. This review summarizes the diagnostic and therapeutic platforms developed for AD using 2D nanostructures. Collectively, it is worth mentioning that these 2D nanomaterials would seemingly provide an alternative and intriguing platform for biomedical interventions.
  16. Thabethe KR, Adefolaju GA, Hosie MJ
    Biomed Pharmacother, 2015 Apr;71:227-32.
    PMID: 25960241 DOI: 10.1016/j.biopha.2015.03.001
    Cervical cancer is the third most commonly diagnosed cancer globally and it is one of three AIDS defining malignancies. Highly active antiretroviral therapy (HAART) is a combination of three or more antiretroviral drugs and has been shown to play a significant role in reducing the incidence of some AIDS defining malignancies, although its effect on cervical cancer is still unclear. The aim of this study was to investigate the relationship between cervical cancer and HAART. This was achieved by studying the expression of two signalling molecules expressed in cervical cancer; MUC1 and P65. Following the 24-hour treatment of a cervical cancer cell line, HCS-2, with drugs, which are commonly used as part of HAART at their clinical plasma concentrations, real-time qPCR and immunofluorescence were used in order to study gene and protein expression. A one-way ANOVA followed by a Tukey-Kramer post-hoc test was conducted using JMP 11 software on both sets of data. The drug classified as a protease inhibitor (PI) (i.e. LPV/r) reduced MUC1 and P65 gene and protein expression more than the other drug tested. PIs are known to play a significant role in cell death; therefore, the cells were thought to be more susceptible to cell death following treatment with PIs. In conclusion, the drugs used, especially the PI showed some anticancer effects by facilitating cell death through decreased gene and protein expression of MUC1 and P65 and present promising agents for cancer treatment.
  17. Tew WY, Tan CS, Yan CS, Loh HW, Wen X, Wei X, et al.
    Biomed Pharmacother, 2023 Jan;157:114020.
    PMID: 36469968 DOI: 10.1016/j.biopha.2022.114020
    Chrysin, a bioflavonoid belonging to the flavone, occurs naturally in plants such as the passionflower, honey and propolis. Few studies have demonstrated that chrysin can promote vasorelaxant activities in rats' aorta and mesenteric arteries. To date, no research has explored the signalling system routes that chrysin may utilise to produce its vasorelaxant action. Therefore, this study aimed to investigate the underlying mechanisms involved in chrysin-induced vasorelaxant in rats' aortic rings and assess the antihypertensive effect of chrysin in spontaneously hypertensive rats (SHRs). The findings revealed that chrysin utilised both endothelium-dependent and endothelium-independent mechanisms. The presence of L-NAME (endothelial NO synthase inhibitor), ODQ (sGC inhibitor), methylene blue (cGMP lowering agent), 4-AP (voltage-gated potassium channel inhibitor), atropine (muscarinic receptors inhibitor) and propranolol (β-adrenergic receptors inhibitor) significantly reduced the chrysin's vasorelaxant action. Furthermore, chrysin can reduce intracellular Ca2+ levels by limiting the extracellular intake of Ca2+ through voltage-operated calcium channels and blocking the intracellular release of Ca2+ from the sarcoplasmic reticulum via the IP3 receptor. These indicate that chrysin-induced vasorelaxants involved NO/sGC/cGMP signalling cascade, muscarinic and β-adrenergic receptors, also the potassium and calcium channels. Although chrysin had vasorelaxant effects in in vitro studies, the in vivo antihypertensive experiment discovered chrysin does not significantly reduce the blood pressure of SHRs following 21 days of oral treatment. This study proved that chrysin utilised multiple signalling pathways to produce its vasorelaxant effect in the thoracic aorta of rats; however, it had no antihypertensive effect on SHRs.
  18. Tan SH, Karri V, Tay NWR, Chang KH, Ah HY, Ng PQ, et al.
    Biomed Pharmacother, 2019 Mar;111:765-777.
    PMID: 30612001 DOI: 10.1016/j.biopha.2018.12.101
    Neurodegenerative diseases are usually sporadic in nature and commonly influenced by a wide range of genetic, life style and environmental factors. A unifying feature of Alzheimer's disease (AD) and Parkinson's disease (PD) is the abnormal accumulation and processing of mutant or damaged intra and extracellular proteins; this leads to neuronal vulnerability and dysfunction in the brain. Through a detailed review of ubiquitin proteasome, mRNA splicing, mitochondrial dysfunction, and oxidative stress pathway interrelation on neurodegeneration can improve the understanding of the disease mechanism. The identified pathways common to AD and PD nominate promising new targets for further studies, and as well as biomarkers. These insights suggested would likely provide major stimuli for developing unified treatment approaches to combat neurodegeneration. More broadly, pathways can serve as vehicles for integrating findings from diverse studies of neurodegeneration. The evidence examined in this review provides a brief overview of the current literature on significant pathways in promoting in AD, PD. Additionally, these insights suggest that biomarkers and treatment strategies may require simultaneous targeting of multiple components.
  19. Tan KX, Lau SY, Danquah MK
    Biomed Pharmacother, 2018 May;101:996-1002.
    PMID: 29635910 DOI: 10.1016/j.biopha.2018.03.052
    Targeted drug delivery is a promising strategy to promote effective delivery of conventional and emerging pharmaceuticals. The emergence of aptamers as superior targeting ligands to direct active drug molecules specifically to desired malignant cells has created new opportunities to enhance disease therapies. The application of biodegradable polymers as delivery carriers to develop aptamer-navigated drug delivery system is a promising approach to effectively deliver desired drug dosages to target cells. This study reports the development of a layer-by-layer aptamer-mediated drug delivery system (DPAP) via a w/o/w double emulsion technique homogenized by ultrasonication or magnetic stirring. Experimental results showed no significant differences in the biophysical characteristics of DPAP nanoparticles generated using the two homogenization techniques. The DPAP formulation demonstrated a strong targeting performance and selectivity towards its target receptor molecules in the presence of non-targets. The DPAP formulation demonstrated a controlled and sustained drug release profile under the conditions of pH 7 and temperature 37 °C. Also, the drug release rate of DPAP formulation was successfully accelerated under an endosomal acidic condition of ∼pH 5.5, indicating the potential to enhance drug delivery within the endosomal micro-environment. The findings from this work are useful to understanding polymer-aptamer-drug relationship and their impact on developing effective targeted delivery systems.
  20. Tan CS, Loh YC, Ng CH, Ch'ng YS, Asmawi MZ, Ahmad M, et al.
    Biomed Pharmacother, 2018 Jan;97:985-994.
    PMID: 29136777 DOI: 10.1016/j.biopha.2017.11.021
    Although Banxia Baizhu Tianma Tang (BBT) has been long administered for hypertensive treatment in Traditional Chinese Medicine (TCM), the ratio of the herbal components that makes up the formulation has not been optimized with respect to the anti-hypertensive effect that it inherently possesses. A newly amended BBT (ABBT) formulation was developed using the evidence-based approach of orthogonal stimulus-response compatibility model. The ABBT showed enhanced therapeutic effect while maintaining its traditional theoretical approach rooted in TCM. This study was designed to investigate the possible mechanism of actions involved in the vasodilatory activity of ABBT-50 by evaluating its vasodilative effect on isolated Sprague Dawley rats in the presence of absence of various antagonists. When pre-contracted with phenylephrine, relaxation was observed in endothelium intact (EC50=0.027±0.003mg/ml, Rmax=109.8±2.12%) and denuded aortic rings (EC50=0.409±0.073mg/ml, Rmax=63.15±1.78%), as well as in endothelium intact aortic rings pre-contracted with potassium chloride (EC50=32.7±12.16mg/ml, Rmax=34.02±3.82%). Significant decrease in the vasodilative effect of ABBT-50 was observed in the presence of Nω-nitro-l-arginine methyl ester (EC50=0.12±0.021mg/ml, Rmax=75.33±3.28%), 1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one (EC50=0.463±0.18mg/ml, Rmax=54.48±2.02%), methylene blue (EC50=0.19±0.037mg/ml, Rmax=83.69±3.19%), indomethacin (EC50=0.313±0.046mg/ml, Rmax=71.33±4.12%), atropine (EC50=0.146±0.013mg/ml, Rmax=77.2±3.41%), and 4-aminopyridine (EC50=0.045±0.008mg/ml, Rmax=95.55±2.36%). ABBT-50 was also suppressing Ca2+ release from sarcoplasmic reticulum and inhibiting calcium channels. Vasodilatory effects of ABBT-50 are mediated through NO/sGC/cGMP cascade and PGI2, followed by muscarinic pathways and calcium channels.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links