Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Pettit GR, Tan R, Melody N, Kielty JM, Pettit RK, Herald DL, et al.
    Bioorg Med Chem, 1999 May;7(5):895-9.
    PMID: 10400343
    A Montana soil actinomycete, Streptomyces anulatus, produced (1 x 10(-2)% yield) a new cancer cell growth inhibitory cyclooctadepsipeptide named montanastatin (1) accompanied by the potent anticancer antibiotic valinomycin (2) in very high (5.1%) yields. Valinomycin but not montanastatin inhibited growth of a number of pathogenic bacteria and fungi. Interpretation of high-field (500 MHz) NMR and high-resolution FAB mass spectral data allowed assignment of the structure cyclo-(D-Val-L-Lac-L-Val-D-Hiv) to montanastatin. Valinomycin (2) was also isolated from actinomycetes cultured from a tree branch and animal feces collected in Malaysia. Streptomyces exfoliatus, isolated from the tree branch, was found to contain valinomycin in 1.6% yield, while the fecal isolate, S. anulatus, gave valinomycin in 0.9% yield.
  2. Awang K, Lim CS, Mohamad K, Morita H, Hirasawa Y, Takeya K, et al.
    Bioorg Med Chem, 2007 Sep 1;15(17):5997-6002.
    PMID: 17576066
    Five new cytotoxic limonoids, erythrocarpines A-E (1-5), were isolated from the bark of Chisocheton erythrocarpus Hiern. Chemical structures, stereochemistry, and conformation were fully elucidated and characterized by 2D NMR, MS, and computational methods.
  3. Awang K, Chan G, Litaudon M, Ismail NH, Martin MT, Gueritte F
    Bioorg Med Chem, 2010 Nov 15;18(22):7873-7.
    PMID: 20943395 DOI: 10.1016/j.bmc.2010.09.044
    A significant acetylcholinesterase (AChE) inhibitory activity was observed for the hexane extract from the bark of Mesua elegans (Clusiaceae). Thus, the hexane extract was subjected to chemical investigation, which led to the isolation of nine 4-phenylcoumarins, in which three are new; mesuagenin A (1), mesuagenin C (3), mesuagenin D (4) and one new natural product; mesuagenin B (2). The structures of the isolated compounds were characterized by spectroscopic data interpretation, especially 1D and 2D NMR. Four compounds showed significant AChE inhibitory activity, with mesuagenin B (2) being the most potent (IC(50)=0.7μM).
  4. Shaari K, Suppaiah V, Wai LK, Stanslas J, Tejo BA, Israf DA, et al.
    Bioorg Med Chem, 2011 Nov 1;19(21):6340-7.
    PMID: 21958738 DOI: 10.1016/j.bmc.2011.09.001
    A bioassay-guided investigation of Melicope ptelefolia Champ ex Benth (Rutaceae) resulted in the identification of an acyphloroglucinol, 2,4,6-trihydroxy-3-geranylacetophenone or tHGA, as the active principle inhibiting soybean 15-LOX. The anti-inflammatory action was also demonstrated on human leukocytes, where the compound showed prominent inhibitory activity against human PBML 5-LOX, with an IC(50) value of 0.42 μM, very close to the effect produced by the commonly used standard, NDGA. The compound concentration-dependently inhibited 5-LOX product synthesis, specifically inhibiting cysteinyl leukotriene LTC(4) with an IC(50) value of 1.80 μM, and showed no cell toxicity effects. The anti-inflammatory action does not seem to proceed via redox or metal chelating mechanism since the compound tested negative for these bioactivities. Further tests on cyclooxygenases indicated that the compound acts via a dual LOX/COX inhibitory mechanism, with greater selectivity for 5-LOX and COX-2 (IC(50) value of 0.40 μM). The molecular features that govern the 5-LOX inhibitory activity was thus explored using in silico docking experiments. The residues Ile 553 and Hie 252 were the most important residues in the interaction, each contributing significant energy values of -13.45 (electrostatic) and -5.40 kcal/mol (electrostatic and Van der Waals), respectively. The hydroxyl group of the phloroglucinol core of the compound forms a 2.56Å hydrogen bond with the side chain of the carboxylate group of Ile 553. Both Ile 553 and Hie 252 are crucial amino acid residues which chelate with the metal ion in the active site. Distorting the geometry of these ligands could be the reason for the inhibition activity shown by tHGA. The molecular simulation studies supported the bioassay results and served as a good model for understanding the way tHGA binds in the active site of human 5-LOX enzyme.
  5. Kia Y, Osman H, Kumar RS, Murugaiyah V, Basiri A, Perumal S, et al.
    Bioorg Med Chem, 2013 Apr 1;21(7):1696-707.
    PMID: 23454132 DOI: 10.1016/j.bmc.2013.01.066
    Three-component reaction of a series of 1-acryloyl-3,5-bisbenzylidenepiperidin-4-ones with isatin and L-proline in 1:1:1 and 1:2:2 molar ratios in methanol afforded, respectively the piperidone-grafted novel mono- and bisspiro heterocyclic hybrids comprising functionalized piperidine, pyrrolizine and oxindole ring systems in good yields. The in vitro evaluation of cholinesterase enzymes inhibitory activity of these cycloadducts disclosed that monospiripyrrolizines (8a-k), are more active with IC50 ranging from 3.36 to 20.07 μM than either the dipolarophiles (5a-k) or bisspiropyrrolizines (9a-k). The compounds, 8i and 8e with IC50 values of 3.36 and 3.50 μM, respectively showed the maximum inhibition of acethylcholinesterase (AChE) and butrylylcholinestrase (BuChE). Molecular modeling simulation, disclosed the binding interactions of the most active compounds to the active site residues of their respective enzymes. The docking results were in accordance with the IC50 values obtained from in vitro cholinesterase assay.
  6. Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Ali MA
    Bioorg Med Chem, 2013 Jun 1;21(11):3022-31.
    PMID: 23602518 DOI: 10.1016/j.bmc.2013.03.058
    A series of hitherto unreported pyrido-pyrimidine-2-ones/pyrimidine-2-thiones were synthesized under microwave assisted solvent free reaction conditions in excellent yields and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Among the pyridopyrimidine derivatives, 7e and 7l displayed 2.5- and 1.5-fold higher enzyme inhibitory activities against AChE as compared to standard drug, galanthamine, with IC50 of 0.80 and 1.37 μM, respectively. Interestingly, all the compounds except 6k, 7j and 7k displayed higher inhibitory potential against BChE enzyme in comparison to standard with IC50 ranging from 1.18 to 18.90 μM. Molecular modeling simulations of 7e and 7l was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) and human butyrylcholinesterase (hBChE) enzymes to disclose binding interaction and orientation of these molecule into the active site gorge of respective receptors.
  7. Yoon YK, Ali MA, Wei AC, Choon TS, Osman H, Parang K, et al.
    Bioorg Med Chem, 2014 Jan 15;22(2):703-10.
    PMID: 24387981 DOI: 10.1016/j.bmc.2013.12.029
    A total of 15 novel benzimidazole derivatives were designed, synthesized and evaluated for their SIRT1 and SIRT2 inhibitory activity. All compounds showed better inhibition on SIRT2 as compared to SIRT1. Among these, compound 5j displayed the best inhibitory activity for SIRT1 (IC50=58.43μM) as well as for SIRT2 (IC50=45.12μM). Cell cytotoxicity assays also showed that compound 5j possesses good antitumor activity against two different cancer cell lines derived from breast cancer (MCF-7 and MDA-MB-468). A simple structure-activity-relationship (SAR) study of the newly synthesized benzimidazole derivatives was also discussed.
  8. Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Hooda A, et al.
    Bioorg Med Chem, 2014 Jan 15;22(2):906-16.
    PMID: 24369842 DOI: 10.1016/j.bmc.2013.11.020
    Novel thiazolopyrimidine derivatives have been synthesized via microwave assisted, domino cascade methodology in ionic liquid and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Among the newly synthesized compounds 6d, 6a, 6e and 6b displayed higher AChE inhibitory activity than standard drug, galanthamine, with IC50 values of 0.53, 1.47, 1.62 and 2.05μM, respectively. Interestingly, all the compounds except for 6m-r and 6x displayed higher BChE inhibitory potentials than galanthamine with IC50 values ranging from 1.09 to 18.56μM. Molecular docking simulations for 6d possessing the most potent AChE and BChE inhibitory activities, disclosed its binding interactions at the active site gorge of AChE and BChE enzymes.
  9. Kia Y, Osman H, Kumar RS, Basiri A, Murugaiyah V
    Bioorg Med Chem, 2014 Feb 15;22(4):1318-28.
    PMID: 24461561 DOI: 10.1016/j.bmc.2014.01.002
    One pot, three-component reaction of 1-acryloyl-3,5-bisarylmethylidenepiperidin-4-ones with isatin and sarcosine in molar ratios of 1:1:1 and 1:2:2 furnished to mono- and bis-spiropyrrolidine heterocyclic hybrids comprising functionalized piperidine, pyrrolidine and oxindole structural motifs. Both mono and bis-spiropyrrolidines displayed good inhibitory activity against acetylcholinesterase (AChE) with IC₅₀ values of 2.36-9.43 μM. For butyrylcholinesterase (BChE), mono-cycloadducts in series 8 with IC₅₀ values of lower than 10 μM displayed better inhibitory activities than their bis-cycloadduct analogs in series 9 with IC₅₀ values of 7.44-19.12 μM. The cycloadducts 9j and 8e were found to be the most potent AChE and BChE inhibitors with IC₅₀ values of 2.35 and 3.21 μM, respectively. Compound 9j was found to be competitive inhibitor of AChE while compound 8e was a mixed-mode inhibitor of BChE with calculated Ki values of 2.01 and 6.76 μM, respectively. Molecular docking on Torpedo californica AChE and human BChE showed good correlation between IC₅₀ values and free binding energy values of the synthesized compounds docked into the active site of the enzymes.
  10. Khan KM, Saad SM, Shaikh NN, Hussain S, Fakhri MI, Perveen S, et al.
    Bioorg Med Chem, 2014 Jul 1;22(13):3449-54.
    PMID: 24844756 DOI: 10.1016/j.bmc.2014.04.039
    2-Arylquinazolin-4(3H)-ones 1-25 were synthesized by reacting anthranilamide with various benzaldehydes using CuCl2·2H2O as a catalyst in ethanol under reflux. Synthetic 2-arylquinazolin-4(3H)-ones 1-25 were evaluated for their β-glucuronidase inhibitory potential. A trend of inhibition IC50 against the enzyme in the range of 0.6-198.2μM, was observed and compared with the standard d-saccharic acid 1,4-lactone (IC50=45.75±2.16μM). Compounds 13, 19, 4, 12, 14, 22, 23, 25, 15, 8, 17, 11, 21, 1, 3, 18, 9, 2, and 24 with the IC50 values within the range of 0.6-44.0μM, indicated that the compounds have superior activity than the standard. The compounds showed no cytotoxic effects against PC-3 cells. A structure-activity relationship is established.
  11. Bukhari SN, Lauro G, Jantan I, Bifulco G, Amjad MW
    Bioorg Med Chem, 2014 Aug 1;22(15):4151-61.
    PMID: 24938495 DOI: 10.1016/j.bmc.2014.05.052
    Arachidonic acid and its metabolites have generated high level of interest among researchers due to their vital role in inflammation. The inhibition of enzymes involved in arachidonic acid metabolism has been considered as synergistic anti-inflammatory effect. A series of novel α,β-unsaturated carbonyl based compounds were synthesized and evaluated for their inhibitory activity on secretory phospholipase A₂ (sPLA₂), cyclooxygenases (COX), soybean lipoxygenase (LOX) in addition to proinflammatory cytokines comprising IL-6 and TNF-α. Six α,β-unsaturated carbonyl based compounds (2, 3, 4, 12, 13 and 14) exhibited strong inhibition of sPLA₂ activity, with IC₅₀ values in the range of 2.19-8.76 μM. Nine compounds 1-4 and 10-14 displayed inhibition of COX-1 with IC₅₀ values ranging from 0.37 to 1.77 μM (lower than that of reference compound), whereas compounds 2, 10, 13 and 14 strongly inhibited the COX-2. The compounds 10-14 exhibited strong inhibitory activity against LOX enzyme. All compounds were evaluated for the inhibitory activities against LPS-induced TNF-α and IL-6 release in the macrophages. On the basis of screening results, five active compounds 3, 4, 12, 13 and 14 were found strong inhibitors of TNF-α and IL-6 release in a dose-dependent manner. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX and LOX inhibitory activities of the investigated compounds. Present findings increases the possibility that these α,β-unsaturated carbonyl based compounds might serve as beneficial starting point for the design and development of improved anti-inflammatory agents.
  12. Khan KM, Rahim F, Khan A, Shabeer M, Hussain S, Rehman W, et al.
    Bioorg Med Chem, 2014 Aug 1;22(15):4119-23.
    PMID: 24986232 DOI: 10.1016/j.bmc.2014.05.057
    A series of thiobarbituric acid derivatives 1-27 were synthesized and evaluated for their urease inhibitory potential. Exciting results were obtained from the screening of these compounds 1-27. Compounds 5, 7, 8, 11, 16, 17, 22, 23 and 24 showed excellent urease inhibition with IC50 values 18.1 ± 0.52, 16.0 ± 0.45, 16.0 ± 0.22, 14.3 ± 0.27, 6.7 ± 0.27, 10.6 ± 0.17, 19.2 ± 0.29, 18.2 ± 0.76 and 1.61 ± 0.18 μM, respectively, much better than the standard urease inhibitor thiourea (IC₅₀=21 ± 0.11 μM). Compound 3, 4, 10, and 26 exhibited comparable activities to the standard with IC₅₀ values 21.4 ± 1.04 and 21.5 ± 0.61 μM, 22.8 ± 0.32, 25.2 ± 0.63, respectively. However the remaining compounds also showed prominent inhibitory potential The structure-activity relationship was established for these compounds. This study identified a novel class of urease inhibitors. The structures of all compounds were confirmed through spectroscopic techniques such as EI-MS and (1)H NMR.
  13. Azmi F, Ahmad Fuaad AA, Giddam AK, Batzloff MR, Good MF, Skwarczynski M, et al.
    Bioorg Med Chem, 2014 Nov 15;22(22):6401-8.
    PMID: 25438764 DOI: 10.1016/j.bmc.2014.09.042
    Peptides are of great interest to be used as vaccine antigens due to their safety, ease of manufacturing and specificity in generating immune response. There have been massive discoveries of peptide antigens over the past decade. However, peptides alone are poorly immunogenic, which demand co-administration with strong adjuvant to enhance their immunogenicity. Recently, fibril-forming peptides such as Q11 and lipoamino acid-based carrier have been identified to induce substantial immune responses when covalently linked to peptide epitope. In this study, we have incorporated either Q11 or lipoamino acids to a peptide epitope (J14) derived from M protein of group A streptococcus to develop self-adjuvanting vaccines. J14, Q11 and lipoamino acids were also conjugated together in a single vaccine construct in an attempt to evaluate the synergy effect of combining multiple adjuvants. Physicochemical characterization demonstrated that the vaccine constructs folded differently and self-assembled into nanoparticles. Significantly, only vaccine constructs containing double copies of lipoamino acids (regardless in conjugation with Q11 or not) were capable to induce significant dendritic cells uptake and subsequent J14-specific antibody responses in non-sizes dependent manners. Q11 had minimal impact in enhancing the immunogenicity of J14 even when it was used in combination with lipoamino acids. These findings highlight the impact of lipoamino acids moiety as a promising immunostimulant carrier and its number of attachment to peptide epitope was found to have a profound effect on the vaccine immunogenicity.
  14. Zawawi NK, Taha M, Ahmat N, Wadood A, Ismail NH, Rahim F, et al.
    Bioorg Med Chem, 2015 Jul 1;23(13):3119-25.
    PMID: 26001340 DOI: 10.1016/j.bmc.2015.04.081
    A library of novel 2,5-disubtituted-1,3,4-oxadiazoles with benzimidazole backbone (3a-3r) was synthesized and evaluated for their potential as β-glucuronidase inhibitors. Several compounds such as 3a-3d, 3e-3j, 3l-3o, 3q and 3r showed excellent inhibitory potentials much better than the standard (IC50=48.4±1.25μM: d-saccharic acid 1,4-lactone). All the synthesized compounds were characterized satisfactorily by using different spectroscopic methods. We further evaluated the interaction of the active compounds and the enzyme active site with the help of docking studies.
  15. Taha M, Ismail NH, Imran S, Rokei MQB, Saad SM, Khan KM
    Bioorg Med Chem, 2015 Aug 01;23(15):4155-4162.
    PMID: 26183542 DOI: 10.1016/j.bmc.2015.06.060
    Oxadiazole derivatives (6-28) having hydrazone linkage, were synthesized through condensation reaction between benzohydrazide 5 with various benzaldehydes. The oxadiazoles derivatives (6-28) were evaluated for their α-glucosidase inhibitory activity. The IC50 values for inhibition activity vary in the range between 2.64 ± 0.05 and 460.14 ± 3.25 μM. The IC50 values were being compared to the standard acarbose (IC50=856.45 ± 5.60 μM) and it was found that compounds 6-9, 12, 13, 16, 18, 20, 22-28 were found to be more active than acarbose, while other compounds showed no activity. Structure-activity relationship (SAR) studies suggest that oxadiazole benzohydrazones (6-28) inhibitory potential is dependent on substitution of the N-benzylidene part. Compound 18 (IC50=2.64 ± 0.05 μM), which has trihydroxy substitution at C-2', C-4', and C-5' on N-benzylidene moiety, recorded the highest inhibition activity that is three-hundred times more active than the standard drug, acarbose (IC50=856.45 ± 5.60 μM). Compound 23 (IC50=34.64 ± 0.35 μM) was found to be the most active among compounds having single hydroxyl substitution. Shifting hydroxyl from C-2' to C-4' (6) and C-3' (7) reduces inhibitory activity significantly. Compounds with chlorine substituent (compounds 16, 28, and 27) showed potent activities but lower as compared to hydroxyl analogs. Substituent like nitro or methyl groups at any position suppresses enzyme inhibition activity. This reveals the important presence of hydroxyl and halo groups to have enzyme inhibitory potential.
  16. Brahmachari G, Choo C, Ambure P, Roy K
    Bioorg Med Chem, 2015 Aug 01;23(15):4567-4575.
    PMID: 26105711 DOI: 10.1016/j.bmc.2015.06.005
    A series of densely functionalized piperidine (FP) scaffolds was synthesized following a diastereoselective one-pot multicomponent protocol under eco-friendly conditions. The FPs were evaluated in vitro for their acetylcholinesterase (AChE) inhibitory activity, and in silico studies for all the target compounds were carried out using pharmacophore mapping, molecular docking and quantitative structure-activity relationship (QSAR) analysis in order to understand the structural features required for interaction with the AChE enzyme and the key active site residues involved in the intermolecular interactions. Halogenation, nitration or 3,4-methylenedixoxy-substitution at the phenyl ring attached to the 2- and 6-positions of 1,2,5,6-tetrahydropyridine nucleus in compounds 14-17, 19, 20, 24 and 26 greatly enhanced the AChE inhibitory activity. The docking analysis demonstrated that the inhibitors are well-fitted in the active sites. The in silico studies enlighten the future course of studies in modifying the scaffolds for better therapeutic efficacy against the deadly Alzheimer's disease.
  17. Abdullah I, Chee CF, Lee YK, Thunuguntla SSR, Satish Reddy K, Nellore K, et al.
    Bioorg Med Chem, 2015 Aug 01;23(15):4669-4680.
    PMID: 26088338 DOI: 10.1016/j.bmc.2015.05.051
    Poly (ADP-ribose) polymerases (PARPs) play diverse roles in various cellular processes that involve DNA repair and programmed cell death. Amongst these polymerases is PARP-1 which is the key DNA damage-sensing enzyme that acts as an initiator for the DNA repair mechanism. Dihydroorotate dehydrogenase (DHODH) is an enzyme in the pyrimidine biosynthetic pathway which is an important target for anti-hyperproliferative and anti-inflammatory drug design. Since these enzymes share a common role in the DNA replication and repair mechanisms, it may be beneficial to target both PARP-1 and DHODH in attempts to design new anti-cancer agents. Benzimidazole derivatives have shown a wide variety of pharmacological activities including PARP and DHODH inhibition. We hereby report the design, synthesis and bioactivities of a series of benzimidazole derivatives as inhibitors of both the PARP-1 and DHODH enzymes.
  18. Rauf A, Shahzad S, Bajda M, Yar M, Ahmed F, Hussain N, et al.
    Bioorg Med Chem, 2015 Sep 1;23(17):6049-58.
    PMID: 26081763 DOI: 10.1016/j.bmc.2015.05.038
    In this study 36 new compounds were synthesized by condensing barbituric acid or thiobarbituric acid and respective anilines (bearing different substituents) in the presence of triethyl orthoformate in good yields. In vitro urease inhibition studies against jack bean urease revealed that barbituric acid derived compounds (1-9 and 19-27) were found to exhibit low to moderate activity however thiobarbituric acid derived compounds (10-18 and 28-36) showed significant inhibition activity at low micro-molar concentrations. Among the synthesized compounds, compounds (15), (12), (10), (36), (16) and (35) showed excellent urease inhibition with IC50 values 8.53 ± 0.027, 8.93 ± 0.027, 12.96 ± 0.13, 15 ± 0.098, 18.9 ± 0.027 and 19.7 ± 0.63 μM, respectively, even better than the reference compound thiourea (IC50 = 21 ± 0.011). The compound (11) exhibited comparable activity to the standard with IC50 value 21.83 ± 0.19 μM. In silico molecular docking studies for most active compounds (10), (12), (15), (16), (35) and (36) and two inactive compounds (3) and (6) were performed to predict the binding patterns.
  19. Barakat A, Islam MS, Al-Majid AM, Ghabbour HA, Fun HK, Javed K, et al.
    Bioorg Med Chem, 2015 Oct 15;23(20):6740-8.
    PMID: 26381063 DOI: 10.1016/j.bmc.2015.09.001
    We describe here the synthesis of dihydropyrimidines derivatives 3a-p, and evaluation of their α-glucosidase enzyme inhibition activities. Compounds 3b (IC50=62.4±1.5 μM), 3c (IC50=25.3±1.26 μM), 3d (IC50=12.4±0.15 μM), 3e (IC50=22.9±0.25 μM), 3g (IC50=23.8±0.17 μM), 3h (IC50=163.3±5.1 μM), 3i (IC50=30.6±0.6 μM), 3m (IC50=26.4±0.34 μM), and 3o (IC50=136.1±6.63 μM) were found to be potent α-glucosidase inhibitors in comparison to the standard drug acarbose (IC50=840±1.73 μM). The compounds were also evaluated for their in vitro cytotoxic activity against PC-3, HeLa, and MCF-3 cancer cell lines, and 3T3 mouse fibroblast cell line. All compounds were found to be non cytotoxic, except compounds 3f and 3m (IC50=17.79±0.66-20.44±0.30 μM), which showed a weak cytotoxic activity against the HeLa, and 3T3 cell lines. In molecular docking simulation study, all the compounds were docked into the active site of the predicted homology model of α-glucosidase enzyme. From the docking result, it was observed that most of the synthesized compounds showed interaction through carbonyl oxygen atom and polar phenyl ring with active site residues of the enzyme.
  20. Stone EL, Citossi F, Singh R, Kaur B, Gaskell M, Farmer PB, et al.
    Bioorg Med Chem, 2015 Nov 01;23(21):6891-9.
    PMID: 26474663 DOI: 10.1016/j.bmc.2015.09.052
    Potent, selective antitumour AhR ligands 5F 203 and GW 610 are bioactivated by CYPs 1A1 and 2W1. Herein we reason that DNA adducts' generation resulting in lethal DNA double strand breaks (DSBs) underlies benzothiazoles' activity. Treatment of sensitive carcinoma cell lines with GW 610 generated co-eluting DNA adducts (R(2)>0.7). Time-dependent appearance of γ-H2AX foci revealed subsequent DNA double strand breaks. Propensity for systemic toxicity of benzothiazoles steered development of prodrugs' hydrogels for localised delivery. Clinical applications of targeted therapies include prevention or treatment of recurrent disease after surgical resection of solid tumours. In vitro evaluation of 5F 203 prodrugs' activity demonstrated nanomolar potency against MCF-7 breast and IGROV-1 ovarian carcinoma cell lines.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links