Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Zambry NS, Ayoib A, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2017 Jul;40(7):1007-1016.
    PMID: 28389850 DOI: 10.1007/s00449-017-1764-4
    The present study focused on developing a wild-type actinomycete isolate as a model for a non-pathogenic filamentous producer of biosurfactants. A total of 33 actinomycetes isolates were screened and their extracellular biosurfactants production was evaluated using olive oil as the main substrate. Out of 33 isolates, 32 showed positive results in the oil spreading technique (OST). All isolates showed good emulsification activity (E24) ranging from 84.1 to 95.8%. Based on OST and E24 values, isolate R1 was selected for further investigation in biosurfactant production in an agitated submerged fermentation. Phenotypic and genotypic analyses tentatively identified isolate R1 as a member of the Streptomyces genus. A submerged cultivation of Streptomyces sp. R1 was carried out in a 3-L stirred-tank bioreactor. The influence of impeller tip speed on volumetric oxygen transfer coefficient (k L a), growth, cell morphology and biosurfactant production was observed. It was found that the maximum biosurfactant production, indicated by the lowest surface tension measurement (40.5 ± 0.05 dynes/cm) was obtained at highest k L a value (50.94 h-1) regardless of agitation speed. The partially purified biosurfactant was obtained at a concentration of 7.19 g L-1, characterized as a lipopeptide biosurfactant and was found to be stable over a wide range of temperature (20-121 °C), pH (2-12) and salinity [5-20% (w/v) of NaCl].
  2. Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2021 Jul;44(7):1577-1592.
    PMID: 33687550 DOI: 10.1007/s00449-021-02543-5
    The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.
  3. Wafti NSA, Yunus R, Lau HLN, Yaw TCS, Aziz SA
    Bioprocess Biosyst Eng, 2021 Nov;44(11):2429-2444.
    PMID: 34269888 DOI: 10.1007/s00449-021-02615-6
    The present study reports the effects of three commercial immobilized lipases namely Novozyme 435 from Candida antarctica lipase B (CALB), Lipozyme TL IM from Thermomyces lanuginosus and Lipozyme RM IM from Rhizomucor miehei on the production of trimethylolpropane (TMP) ester from high oleic palm methyl ester (HO-PME) and TMP. The TMP ester is a promising base oil for biolubricants that are easily biodegradable and non-toxic to humans and the environment. Enzymatic catalysts are insensitive to free fatty acid (FFA) content, hence able to mitigate the side reactions and consequently reduce product separation cost. The potential of these enzymes to produce TMP ester in a solvent-free medium was screened at various reaction time (8, 23, 30 and 48 h), operating pressure (0.1, 0.3 and 1.0 mbar) and enzyme dosage (1, 3, 5 and 10% w/w). The reaction was conducted at a constant temperature of 70 °C and a molar ratio of 3.9:1 (HO-PME: TMP). Novozyme 435 produced the highest yield of TMP ester of 95.68 ± 3.60% under the following conditions: 23 h reaction time, 0.1 mbar operating pressure and 5% w/w of enzyme dosage. The key lubrication properties of the produced TMP ester are viscosity index (208 ± 2), pour point (- 30 ± - 2 °C), cloud point (- 15 ± - 2 °C), onset thermal degradation temperature (427.8 °C), and oxidation stability, RPVOT (42 ± 4 min). The properties of the TMP ester produced from the enzymatic transesterification are comparable to other vegetable oil-based biolubricants produced by chemical transesterification.
  4. Venkatraman G, Mohan PS, Abdul-Rahman PS, Sonsudin F, Muttiah B, Hirad AH, et al.
    PMID: 38509421 DOI: 10.1007/s00449-024-02995-5
    This study used Morinda citrifolia leaf (MCL) extract to synthesise Zinc oxide nanoparticles (ZnO NPs) and ZnO decorated silver nanocomposites (ZnO/Ag NCs). The synthesized nanomaterials structural morphology and crystallinity were characterized using a Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) analysis. The antimicrobial activity of ZnO NPs and ZnO/Ag NCs was evaluated using human nosocomial bacterial pathogens. The highest antimicrobial activity was recorded for ZnO/Ag NCs at the minimum inhibitory concentration (MIC) at 80 and 100 μg/mL for Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, Staphylococcus aureus than ZnO NPs at the MIC of 120 and 140 μg/mL for Bacillus subtilis and Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. Furthermore, ROS detection, viability assay and bacterial membrane integrity analysis of ZnO/Ag NCs treated P. aeruginosa and S. aureus revealed the fundamental bactericidal mechanism involving cell wall, cell membrane interaction and release of cytoplasmic contents. In addition, ZnO/Ag NCs and ZnO NPs showed higher toxicity towards A549 lung cancer cells than the non-cancerous RAW264 macrophage cells, with IC50 of 242 and 398 µg/mL respectively, compared to IC50 of 402 and 494 µg/mL for the macrophage cells. These results suggest that the ZnO/Ag NCs can be effectively used to develop antimicrobial and anticancer materials.
  5. Venkatraman G, Mohan PS, Mashghan MM, Wong KC, Abdul-Rahman PS, Vellasamy KM, et al.
    PMID: 38491194 DOI: 10.1007/s00449-024-02984-8
    Alternanthera sessilis (AS) leaf extract was used to synthesize zinc oxide nanoparticles (ZnO NPs). Bioanalytical characterization techniques such as X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) confirmed the formation of crystalline ZnO NPs with average sizes of 40 nm. The AS-ZnO NPs antimicrobial activity was analyzed under dark (D) and white light (WL) conditions. The improved antimicrobial activity was observed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at the minimal inhibitory concentration (MIC) of 125 and 62.5 µg/mL under WL than the D at 125 and 250 µg/mL for E. coli, B. subtilis, and Pseudomonas aeruginosa, respectively. In contrast, the growth of P. aeruginosa and S. aureus was not completely inhibited until 1 mg/mL AS-ZnO NPs under WL and D. Similarly, AS-ZnO NPs displayed a weaker inhibitory effect against carbapenem-sensitive P. aeruginosa (CSPA) and carbapenem-resistant P. aeruginosa (CRPA) strains of PAC023, PAC041 and PAC032, PAC045 under D. Interestingly, the distinct inhibitory effect was recorded against CSPA PAC041 and CRPA PAC032 in which the bacteria growth was inhibited 99.9% at 250, 500 µg/mL under WL. The cytotoxicity results suggested AS-ZnO NPs demonstrated higher toxicity to MCF-7 breast cancer cells than the RAW264.7 macrophage cells. Further, AS-ZnO NPs exhibited higher catalytic potential against tetracycline hydrochloride (TC-H) degradation at 65.6% and 60.8% under WL than the dark at 59.35% and 48.6% within 120 min. Therefore, AS-ZnO NPs can be used to design a photo-improved antimicrobial formulation and environmental catalyst for removing TC-H from wastewater.
  6. Syafiuddin A, Salmiati, Hadibarata T, Salim MR, Kueh ABH, Sari AA
    Bioprocess Biosyst Eng, 2017 Sep;40(9):1349-1361.
    PMID: 28597212 DOI: 10.1007/s00449-017-1793-z
    Green procedure for synthesizing silver nanoparticles (AgNPs) is currently considered due to its economy and toxic-free effects. Several existing works on synthesizing AgNPs using leaves extract still involve the use of physical or mechanical treatment such as heating or stirring, which consume a lot of energy. To extend and explore the green extraction philosophy, we report here the synthesis and antibacterial evaluations of a purely green procedure to synthesize AgNPs using Carica papaya, Manihot esculenta, and Morinda citrifolia leaves extract without the aforementioned additional treatment. The produced AgNPs were characterized using the ultraviolet-visible spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and antibacterial investigations. For antibacterial tests, two bacteria namely Escherichia coli and Bacillus cereus were selected. The presently employed method has successfully produced spherical AgNPs having sizes ranging from 9 to 69 nm, with plasmonic characteristics ranging from 356 to 485 nm, and energy-dispersive X-ray peak at approximately 3 keV. In addition, the smallest particles can be produced when Manihot esculenta leaves extract was applied. Moreover, this study also confirmed that both the leaves and synthesized AgNPs exhibit the antibacterial capability, depending on their concentration and the bacteria type.
  7. Suriyakala G, Sathiyaraj S, Balasundaram M, Murugan K, Babujanarthanam R, Gandhi AD
    Bioprocess Biosyst Eng, 2023 Oct;46(10):1483-1498.
    PMID: 37552312 DOI: 10.1007/s00449-023-02915-z
    In the current scenario, many synthetic chemicals have used long-term to control pests and mosquitoes, leading to the resistance of strains and toxicity effect on human beings. To overcome the adverse problem in recent advances, the scientific community is looking into nanofabricated pesticides and mosquitoes. This study aims to synthesize the recyclable chitosan-coated cadmium nanoparticles (Ch-CdNps) using Plumeria alba flower extract, which was further applied for insecticidal and mosquitocidal activities. The synthesized Ch-CdNps were confirmed by UV spectroscopy and FTIR analysis. The XRD, TEM, and DLS results confirmed the crystallinity with a spherical shape at 80-100 nm. The insecticidal activity proves that Ch-CdNps inhibited Helicoverpa armigera and Spodoptera litura at 100 ppm. In mosquitocidal, LC50 values of larvicidal of 1st instar were 4.116, 4.33, and 4.564 µg/mL, and the remaining three stages of instars, pupicidal, adulticidal, longevity, fecundity, and ovicidal assays inhibit the Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus. Further, the first-order kinetics of photocatalytic degradation of methylene blue and methyl orange was confirmed. Based on the obtained results, Ch-CdNps can inhibit the pest, mosquitoes, and photocatalytic degradation.
  8. Serri NA, Kamaruddin AH, Long WS
    Bioprocess Biosyst Eng, 2006 Oct;29(4):253-60.
    PMID: 16868763
    Immobilized Candida rugosa lipase was used for the synthesis of citronellyl laurate from citronellol and lauric acid. Screening of different types of support (Amberlite MB-1 and Celite) for immobilization of lipase and solvent (n-hexane, n-heptane, and iso-octane) and optimization of reaction conditions, such as catalyst loading, effect of substrates molar ratio and temperature, have been studied. The maximum enzyme activity was obtained at 310 K. The immobilized C. rugosa lipase onto Amberlite MB-1 support was found to be the best support with a conversion of 89% of citronellyl laurate ester in iso-octane compared to Celite 545. Deactivation of C. rugosa lipase at 313, 318 and 323 K were observed. Ordered bi bi mechanism with dead end complex of lauric acid was found to fit the initial rate data and the kinetic parameters were obtained by non-linear regression analysis.
  9. Seng B, Kristanti RA, Hadibarata T, Hirayama K, Katayama-Hirayama K, Kaneko H
    Bioprocess Biosyst Eng, 2016 Jan;39(1):81-94.
    PMID: 26522660 DOI: 10.1007/s00449-015-1492-6
    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.
  10. Sathishkumar P, Vennila K, Jayakumar R, Yusoff AR, Hadibarata T, Palvannan T
    Bioprocess Biosyst Eng, 2016 Apr;39(4):651-9.
    PMID: 26801668 DOI: 10.1007/s00449-016-1546-4
    In this study, phyto-synthesis of silver nanoparticles (AgNPs) was achieved using an aqueous leaf extract of Alternanthera tenella. The phytochemical screening results revealed that flavonoids are responsible for the AgNPs formation. The AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray, transmission electron microscopy, fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction. The average size of the nanoparticles was found to be ≈48 nm. The EDX results show that strong signals were observed for the silver atoms. The strong band appearing at 1601-1595 cm(-1) correspond to C-C stretching vibration from dienes in FT-IR spectrum indicating the formation of AgNPs. Human breast adenocarcinoma (MCF-7) cells treated with various concentrations of AgNPs showed a dose-dependent increase in cell inhibition. The IC50 value of the AgNPs was calculated to be 42.5 μg mL(-1). The AgNPs showed a significant reduction in the migration of MCF-7 cells.
  11. Santhoshkumar M, Perumal D, Narenkumar J, Ramachandran V, Muthusamy K, Alfarhan A, et al.
    PMID: 36977929 DOI: 10.1007/s00449-023-02858-5
    This study showed that bio-functional silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) were synthesized in aqueous extracts of Gymnema sylvestre leaves and tested for toxicity assessment against triple-negative breast cancer cells (TNBC). Biofunctional nanoparticle (NPs) samples were characterized using UV-Vis spectroscopy, FT-IR, XRD, SEM, and TEM. The results showed that the phytofabrication of AgNPs resulted in a dark brown, UV-vis maximum absorbance peak at 413 nm. The AgNPs were crystalline and spherical, with sizes ranging from 20 to 60 nm, as confirmed by the XRD pattern and TEM images. Another phytofabrication of ZnONPs exhibited a white precipitate corresponding to a UV-Vis maximum absorption peak at 377 nm and a fine micro flower morphology with a particle-sized tribution between 100 and 200 nm. In addition, FT-IR spectra showed that bioorganic compounds are associated with NPs that respond to reduced Ag+ ions and AgNPs tabilizers. Invitro cytotoxicity studies revealed the potent anti-cancer effects of phytofabricated AgNPs and ZnONPs on TNBC cells. Furthermore, the AO/EB double staining assay results proved that apoptotic cells are distinguished by greenish-yellow fluorescence of the cell nuclei with IC50 concentrations of 44 ± 0.8 µg/mL for AgNPs and 26.2 ± 0.5 µg/mL for ZnONPs, respectively. Based on our results, we expect that the anticancer function of the biofunctional NPs is due to the apoptotic activation of TNBC cells by increased ROS. Therefore, the presented study demonstrated that biofunctional AgNPs and ZnONPs have excellent prospects for the anti-cancer activity that can be used in pharmaceutical and medical fields.
  12. Salehmin MN, Annuar MS, Chisti Y
    Bioprocess Biosyst Eng, 2013 Nov;36(11):1527-43.
    PMID: 23539203 DOI: 10.1007/s00449-013-0943-1
    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.
  13. Saat MN, Annuar MS, Alias Z, Chuan LT, Chisti Y
    Bioprocess Biosyst Eng, 2014 May;37(5):765-75.
    PMID: 24005762 DOI: 10.1007/s00449-013-1046-8
    Production of extracellular laccase by the white-rot fungus Pycnoporus sanguineus was examined in batch submerged cultures in shake flasks, baffled shake flasks and a stirred tank bioreactor. The biomass growth in the various culture systems closely followed a logistic growth model. The production of laccase followed a Luedeking-Piret model. A modified Luedeking-Piret model incorporating logistic growth effectively described the consumption of glucose. Biomass productivity, enzyme productivity and substrate consumption were enhanced in baffled shake flasks relative to the cases for the conventional shake flasks. This was associated with improved oxygen transfer in the presence of the baffles. The best results were obtained in the stirred tank bioreactor. At 28 °C, pH 4.5, an agitation speed of 600 rpm and a dissolved oxygen concentration of ~25 % of air saturation, the laccase productivity in the bioreactor exceeded 19 U L(-1 )days(-1), or 1.5-fold better than the best case for the baffled shake flask. The final concentration of the enzyme was about 325 U L(-1).
  14. Razia S, Hadibarata T, Lau SY
    Bioprocess Biosyst Eng, 2023 Mar;46(3):341-358.
    PMID: 36602611 DOI: 10.1007/s00449-022-02844-3
    Acidophiles are a group of microorganisms that thrive in acidic environments where pH level is far below the neutral value 7.0. They belong to a larger family called extremophiles, which is a group that thrives in various extreme environmental conditions which are normally inhospitable to other organisms. Several human activities such as mining, construction and other industrial processes release highly acidic effluents and wastes into the environment. Those acidic wastes and wastewaters contain different types of pollutants such as heavy metals, radioactive, and organic, whose have adverse effects on human being as well as on other living organisms. To protect the whole ecosystem, those pollutants containing effluents or wastes must be clean properly before releasing into environment. Physicochemical cleanup processes under extremely acidic conditions are not always successful due to high cost and release of toxic byproducts. While in case of biological methods, except acidophiles, no other microorganisms cannot survive in highly acidic conditions. Therefore, acidophiles can be a good choice for remediation of different types of contaminants present in acidic conditions. In this review article, various roles of acidophilic microorganisms responsible for removing heavy metals and radioactive pollutants from acidic environments were discussed. Bioremediation of various acidic organic pollutants by using acidophiles was also studied. Overall, this review could be helpful to extend our knowledge as well as to do further relevant novel studies in the field of acidic pollutants remediation by applying acidophilic microorganisms.
  15. Rashidi AR, Azelee NIW, Zaidel DNA, Chuah LF, Bokhari A, El Enshasy HA, et al.
    PMID: 37029808 DOI: 10.1007/s00449-023-02870-9
    Employing aerobic fermentation, Gram-negative bacteria belonging to the genus Xanthomonas produce the high molecular weight natural heteropolysaccharide known as xanthan. It has various amounts of O-acetyl and pyruvyl residues together with D-glucosyl, D-mannosyl, and D-glucuronyl acid residues in a molar ratio of 2:2:1. The unique structure of xanthan allowed its various applications in a wide range of industries such as the food industry, pharmacology, cosmetics and enhanced oil recovery primarily in petroleum. The cultivation medium used in the manufacture of this biopolymer is critical. Many attempts have been undertaken to generate xanthan gum from agro-based and food industry wastes since producing xanthan gum from synthetic media is expensive. Optimal composition and processing parameters must also be considered to achieve an economically viable manufacturing process. There have been several attempts to adjust the nutrient content and feeding method, temperature, pH, agitation and the use of antifoam in xanthan fermentations. Various modifications in technological approaches have been applied to enhance its physicochemical properties which showed significant improvement in the area studied. This review describes the biosynthesis production of xanthan with an emphasis on the importance of the upstream processes involving medium, processing parameters, and other factors that significantly contributed to the final application of this precious polysaccharide.
  16. Rahman NK, Kamaruddin AH, Uzir MH
    Bioprocess Biosyst Eng, 2011 Aug;34(6):687-99.
    PMID: 21327986 DOI: 10.1007/s00449-011-0518-y
    The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V (max) = 5.80 mmol l(-1) min(-1) g enzyme(-1), K (m,A) = 0.70 mmol l(-1) g enzyme(-1), K (m,B) = 115.48 mmol l(-1) g enzyme(-1), K (i) = 11.25 mmol l(-1) g enzyme(-1). The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07 ± 0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.
  17. Rahim MHA, Hasan H, Harith HH, Abbas A
    Bioprocess Biosyst Eng, 2017 Dec;40(12):1753-1761.
    PMID: 28879627 DOI: 10.1007/s00449-017-1830-y
    This study investigates the effects of viscosity, friction, and sonication on the morphology and the production of lovastatin, (+)-geodin, and sulochrin by Aspergillus terreus ATCC 20542. Sodium alginate and gelatine were used to protect the fungal pellet from mechanical force by increasing the media viscosity. Sodium alginate stimulated the production of lovastatin by up to 329.0% and sulochrin by 128.7%, with inhibitory effect on (+)-geodin production at all concentrations used. However, the use of gelatine to increase viscosity significantly suppressed lovastatin, (+)-geodin, and sulochrin's production (maximum reduction at day 9 of 42.7, 60.8, and 68.3%, respectively), which indicated that the types of chemical play a major role in metabolite production. Higher viscosity increased both pellet biomass and size in all conditions. Friction significantly increased (+)-geodin's titre by 1527.5%, lovastatin by 511.1%, and sulochrin by 784.4% while reducing pellet biomass and size. Conversely, sonication produced disperse filamentous morphology with significantly lower metabolites. Sodium alginate-induced lovastatin and sulochrin production suggest that these metabolites are not affected by viscosity; rather, their production is affected by the specific action of certain chemicals. In contrast, low viscosity adversely affected (+)-geodin's production, while pellet disintegration can cause a significant production of (+)-geodin.
  18. Priya A, Anusha G, Thanigaivel S, Karthick A, Mohanavel V, Velmurugan P, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):309-321.
    PMID: 35301580 DOI: 10.1007/s00449-022-02715-x
    Microplastics (MPs) in environmental studies have revealed that public sewage treatment plants are a common pathway for microplastics to reach local surroundings. Microplastics are becoming more of a worry, posing a danger to both marine wildlife and humans. These plastic items not only contribute to the macrocosmic proliferation of plastics but also the scattering of microplastics and the concentration of other micropollutant-containing objects, increasing the number of pollutants identified. Microplastics' behavior, movement, transformation, and persistence mechanisms, as well as their mode of action in various wastewater effluent treatment procedures, are still unknown. They are making microplastics made from wastewater a big deal. We know that microplastics enter wastewater treatment facilities (WWTPs), that wastewater is released into the atmosphere, and that this wastewater has been considered to represent a threat to habitats and ground character based on our literature assessment. The basic methods of wastewater and sewage sludge, as well as the treatment procedure and early characterization, are covered throughout the dissection of the problematic scientific conceptualization.
  19. Oslan SNH, Tan JS, Saad MZ, Halim M, Mohamed MS, Ariff AB
    Bioprocess Biosyst Eng, 2019 Mar;42(3):355-365.
    PMID: 30483888 DOI: 10.1007/s00449-018-2040-y
    Pasteurella multocida serotype B:2 is the causative agent of haemorrhagic septicaemia, a fatal disease in cattle and buffaloes. For use as a vaccine in the treatment of HS disease, an efficient cultivation of attenuated gdhA derivative P. multocida B:2 (mutant) for mass production of viable cells is required. In this study, the role of amino acids and vitamins on the growth of this particular bacterium was investigated. Initially, three basal media (Brain-heart infusion, Terrific broth, and defined medium YDB) were assessed in terms of growth performance of P. multocida B:2. YDB medium was selected and redesigned to take into account the effects of amino acids (glutamic acid, cysteine, glycine, methionine, lysine, tyrosine, and histidine) and vitamins (vitamin B1, nicotinic acid, riboflavin, pyridoxine, pantothenic acid, and biotin). High viable cell number was largely affected by the availability of micronutrient components and macronutrients. Histidine was essential for the growth whereby a traceable amount (20 mM) was found to greatly enhance the growth of gdhA derivative P. multocida B:2 mutant (6.6 × 109 cfu/mL) by about 19 times as compared to control culture (3.5 × 108 cfu/mL). In addition, amongst the vitamins added, riboflavin exhibited the highest impact on the viability of gdhA derivative P. multocida B:2 mutant (5.3 × 109 cfu/mL). Though the combined histidine and riboflavin in the culture eventually did not promote the stacking impact on cell growth and cell viability, nonetheless, they were still essential and important in either growth medium or production medium.
  20. Oon YS, Ong SA, Ho LN, Wong YS, Oon YL, Lehl HK, et al.
    Bioprocess Biosyst Eng, 2016 Jun;39(6):893-900.
    PMID: 26894384 DOI: 10.1007/s00449-016-1568-y
    The main aim of this study is to investigate the performance of organic oxidation and denitrification of the system under long-term operation. The MFC reactor was operated in continuous mode for 180 days. Nitrate was successfully demonstrated as terminal electron acceptor, where nitrate was reduced at the cathode using electron provided by acetate oxidation at the anode. The removal efficiencies of chemical oxygen demand (COD) and nitrate were higher in the closed circuit system than in open circuit system. Both COD and nitrate reduction improved with the increase of organic loading and subsequently contributed to higher power output. The maximum nitrate removal efficiency was 88 ± 4 % (influent of 141 ± 14 mg/L). The internal resistant was 50 Ω, which was found to be low for a double chambered MFC. The maximum power density was 669 mW/m(3) with current density of 3487 mA/m(3).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links