Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Venkatraman G, Mohan PS, Abdul-Rahman PS, Sonsudin F, Muttiah B, Hirad AH, et al.
    PMID: 38509421 DOI: 10.1007/s00449-024-02995-5
    This study used Morinda citrifolia leaf (MCL) extract to synthesise Zinc oxide nanoparticles (ZnO NPs) and ZnO decorated silver nanocomposites (ZnO/Ag NCs). The synthesized nanomaterials structural morphology and crystallinity were characterized using a Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) analysis. The antimicrobial activity of ZnO NPs and ZnO/Ag NCs was evaluated using human nosocomial bacterial pathogens. The highest antimicrobial activity was recorded for ZnO/Ag NCs at the minimum inhibitory concentration (MIC) at 80 and 100 μg/mL for Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, Staphylococcus aureus than ZnO NPs at the MIC of 120 and 140 μg/mL for Bacillus subtilis and Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. Furthermore, ROS detection, viability assay and bacterial membrane integrity analysis of ZnO/Ag NCs treated P. aeruginosa and S. aureus revealed the fundamental bactericidal mechanism involving cell wall, cell membrane interaction and release of cytoplasmic contents. In addition, ZnO/Ag NCs and ZnO NPs showed higher toxicity towards A549 lung cancer cells than the non-cancerous RAW264 macrophage cells, with IC50 of 242 and 398 µg/mL respectively, compared to IC50 of 402 and 494 µg/mL for the macrophage cells. These results suggest that the ZnO/Ag NCs can be effectively used to develop antimicrobial and anticancer materials.
  2. Venkatraman G, Mohan PS, Mashghan MM, Wong KC, Abdul-Rahman PS, Vellasamy KM, et al.
    PMID: 38491194 DOI: 10.1007/s00449-024-02984-8
    Alternanthera sessilis (AS) leaf extract was used to synthesize zinc oxide nanoparticles (ZnO NPs). Bioanalytical characterization techniques such as X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) confirmed the formation of crystalline ZnO NPs with average sizes of 40 nm. The AS-ZnO NPs antimicrobial activity was analyzed under dark (D) and white light (WL) conditions. The improved antimicrobial activity was observed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at the minimal inhibitory concentration (MIC) of 125 and 62.5 µg/mL under WL than the D at 125 and 250 µg/mL for E. coli, B. subtilis, and Pseudomonas aeruginosa, respectively. In contrast, the growth of P. aeruginosa and S. aureus was not completely inhibited until 1 mg/mL AS-ZnO NPs under WL and D. Similarly, AS-ZnO NPs displayed a weaker inhibitory effect against carbapenem-sensitive P. aeruginosa (CSPA) and carbapenem-resistant P. aeruginosa (CRPA) strains of PAC023, PAC041 and PAC032, PAC045 under D. Interestingly, the distinct inhibitory effect was recorded against CSPA PAC041 and CRPA PAC032 in which the bacteria growth was inhibited 99.9% at 250, 500 µg/mL under WL. The cytotoxicity results suggested AS-ZnO NPs demonstrated higher toxicity to MCF-7 breast cancer cells than the RAW264.7 macrophage cells. Further, AS-ZnO NPs exhibited higher catalytic potential against tetracycline hydrochloride (TC-H) degradation at 65.6% and 60.8% under WL than the dark at 59.35% and 48.6% within 120 min. Therefore, AS-ZnO NPs can be used to design a photo-improved antimicrobial formulation and environmental catalyst for removing TC-H from wastewater.
  3. Suriyakala G, Sathiyaraj S, Balasundaram M, Murugan K, Babujanarthanam R, Gandhi AD
    Bioprocess Biosyst Eng, 2023 Oct;46(10):1483-1498.
    PMID: 37552312 DOI: 10.1007/s00449-023-02915-z
    In the current scenario, many synthetic chemicals have used long-term to control pests and mosquitoes, leading to the resistance of strains and toxicity effect on human beings. To overcome the adverse problem in recent advances, the scientific community is looking into nanofabricated pesticides and mosquitoes. This study aims to synthesize the recyclable chitosan-coated cadmium nanoparticles (Ch-CdNps) using Plumeria alba flower extract, which was further applied for insecticidal and mosquitocidal activities. The synthesized Ch-CdNps were confirmed by UV spectroscopy and FTIR analysis. The XRD, TEM, and DLS results confirmed the crystallinity with a spherical shape at 80-100 nm. The insecticidal activity proves that Ch-CdNps inhibited Helicoverpa armigera and Spodoptera litura at 100 ppm. In mosquitocidal, LC50 values of larvicidal of 1st instar were 4.116, 4.33, and 4.564 µg/mL, and the remaining three stages of instars, pupicidal, adulticidal, longevity, fecundity, and ovicidal assays inhibit the Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus. Further, the first-order kinetics of photocatalytic degradation of methylene blue and methyl orange was confirmed. Based on the obtained results, Ch-CdNps can inhibit the pest, mosquitoes, and photocatalytic degradation.
  4. Hui GT, Meng TK, Kassim MA
    Bioprocess Biosyst Eng, 2023 Oct;46(10):1499-1512.
    PMID: 37580470 DOI: 10.1007/s00449-023-02917-x
    Conventionally, microalgal lipid extraction uses volatile organic compounds as an extraction solvent. However, these solvents are harmful to human and environmental health. Therefore, this study evaluated the feasibility of alternative green solvents, namely, ethanol, dimethyl carbonate (DMC), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) in lipid extraction from Chlorella sp. via ultrasound-assisted extraction (UAE). This study indicated that extraction parameters, such as ethanol-to-2-MeTHF ratio, solvent-to-biomass ratio, temperature, and time, significantly affected the crude lipid yield (P 
  5. Chai A, Wong YS, Ong SA, Lutpi NA, Sam ST, Wirach T, et al.
    Bioprocess Biosyst Eng, 2023 Jul;46(7):995-1009.
    PMID: 37160769 DOI: 10.1007/s00449-023-02879-0
    Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (μmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.
  6. Rashidi AR, Azelee NIW, Zaidel DNA, Chuah LF, Bokhari A, El Enshasy HA, et al.
    PMID: 37029808 DOI: 10.1007/s00449-023-02870-9
    Employing aerobic fermentation, Gram-negative bacteria belonging to the genus Xanthomonas produce the high molecular weight natural heteropolysaccharide known as xanthan. It has various amounts of O-acetyl and pyruvyl residues together with D-glucosyl, D-mannosyl, and D-glucuronyl acid residues in a molar ratio of 2:2:1. The unique structure of xanthan allowed its various applications in a wide range of industries such as the food industry, pharmacology, cosmetics and enhanced oil recovery primarily in petroleum. The cultivation medium used in the manufacture of this biopolymer is critical. Many attempts have been undertaken to generate xanthan gum from agro-based and food industry wastes since producing xanthan gum from synthetic media is expensive. Optimal composition and processing parameters must also be considered to achieve an economically viable manufacturing process. There have been several attempts to adjust the nutrient content and feeding method, temperature, pH, agitation and the use of antifoam in xanthan fermentations. Various modifications in technological approaches have been applied to enhance its physicochemical properties which showed significant improvement in the area studied. This review describes the biosynthesis production of xanthan with an emphasis on the importance of the upstream processes involving medium, processing parameters, and other factors that significantly contributed to the final application of this precious polysaccharide.
  7. Santhoshkumar M, Perumal D, Narenkumar J, Ramachandran V, Muthusamy K, Alfarhan A, et al.
    PMID: 36977929 DOI: 10.1007/s00449-023-02858-5
    This study showed that bio-functional silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) were synthesized in aqueous extracts of Gymnema sylvestre leaves and tested for toxicity assessment against triple-negative breast cancer cells (TNBC). Biofunctional nanoparticle (NPs) samples were characterized using UV-Vis spectroscopy, FT-IR, XRD, SEM, and TEM. The results showed that the phytofabrication of AgNPs resulted in a dark brown, UV-vis maximum absorbance peak at 413 nm. The AgNPs were crystalline and spherical, with sizes ranging from 20 to 60 nm, as confirmed by the XRD pattern and TEM images. Another phytofabrication of ZnONPs exhibited a white precipitate corresponding to a UV-Vis maximum absorption peak at 377 nm and a fine micro flower morphology with a particle-sized tribution between 100 and 200 nm. In addition, FT-IR spectra showed that bioorganic compounds are associated with NPs that respond to reduced Ag+ ions and AgNPs tabilizers. Invitro cytotoxicity studies revealed the potent anti-cancer effects of phytofabricated AgNPs and ZnONPs on TNBC cells. Furthermore, the AO/EB double staining assay results proved that apoptotic cells are distinguished by greenish-yellow fluorescence of the cell nuclei with IC50 concentrations of 44 ± 0.8 µg/mL for AgNPs and 26.2 ± 0.5 µg/mL for ZnONPs, respectively. Based on our results, we expect that the anticancer function of the biofunctional NPs is due to the apoptotic activation of TNBC cells by increased ROS. Therefore, the presented study demonstrated that biofunctional AgNPs and ZnONPs have excellent prospects for the anti-cancer activity that can be used in pharmaceutical and medical fields.
  8. Razia S, Hadibarata T, Lau SY
    Bioprocess Biosyst Eng, 2023 Mar;46(3):341-358.
    PMID: 36602611 DOI: 10.1007/s00449-022-02844-3
    Acidophiles are a group of microorganisms that thrive in acidic environments where pH level is far below the neutral value 7.0. They belong to a larger family called extremophiles, which is a group that thrives in various extreme environmental conditions which are normally inhospitable to other organisms. Several human activities such as mining, construction and other industrial processes release highly acidic effluents and wastes into the environment. Those acidic wastes and wastewaters contain different types of pollutants such as heavy metals, radioactive, and organic, whose have adverse effects on human being as well as on other living organisms. To protect the whole ecosystem, those pollutants containing effluents or wastes must be clean properly before releasing into environment. Physicochemical cleanup processes under extremely acidic conditions are not always successful due to high cost and release of toxic byproducts. While in case of biological methods, except acidophiles, no other microorganisms cannot survive in highly acidic conditions. Therefore, acidophiles can be a good choice for remediation of different types of contaminants present in acidic conditions. In this review article, various roles of acidophilic microorganisms responsible for removing heavy metals and radioactive pollutants from acidic environments were discussed. Bioremediation of various acidic organic pollutants by using acidophiles was also studied. Overall, this review could be helpful to extend our knowledge as well as to do further relevant novel studies in the field of acidic pollutants remediation by applying acidophilic microorganisms.
  9. Ismanto A, Hadibarata T, Widada S, Indrayanti E, Ismunarti DH, Safinatunnajah N, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):467-482.
    PMID: 36520279 DOI: 10.1007/s00449-022-02826-5
    Groundwater is defined as water that exists underground in voids or gaps in sediments and is extracted for human consumption from aquifers. It is critical to our daily lives because it contributes to the sustainability of our natural ecosystem while also providing economic benefits. Heavy metals are metallic compounds with a relatively high atomic weight and density compared to water. In Malaysia, heavy metal contamination of groundwater has become a concern due to rapid population growth, economic development, and a lack of environmental awareness. Environmental factors or their behaviors, such as density, viscosity, or volume, affect the distribution and transportation of heavy metals. The article discusses the difficulties created by the presence of heavy metals in groundwater supplies and the resulting health problems. Additionally, remediation methods are discussed for managing contaminated water to preserve the ecological environment for current and future generations, as well as their advantages and disadvantages.
  10. Nor FHM, Abdullah S, Ibrahim Z, Nor MHM, Osman MI, Al Farraj DA, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):381-391.
    PMID: 35779113 DOI: 10.1007/s00449-022-02749-1
    An effective biosurfactant producer and extremophiles bacteria, Bacillus cereus KH1, was isolated from textile effluent and the biosurfactant was produced using molasses as the sole carbon source. Growth parameters such as pH, temperature, salinity and concentration of molasses were optimised for decolourising the textile effluent with 24-h incubation. The biosurfactant property of B. cereus KH1 was evaluated based on haemolytic activity, oil displacement technique, drop-collapsing test and emulsification index. The results of the produced biosurfactant showed a positive reaction in haemolytic activity, oil displacement technique, drop-collapsing test and exhibiting a 67% emulsification index. The cell-free broth was stable in 40 °C pH 7, 7% salinity and 7% molasses. Thin-Layer Chromatography and Fourier Transform Infrared Spectroscopy analysis revealed that the biosurfactant was a lipopeptide with a yield 2.98 g L-1. These findings proved the synergistic action of B. cereus KH1 with lipopeptide biosurfactant may accelerated the decolourisation efficiency to 87%.
  11. Lau YY, Wong YS, Ong SA, Lutpi NA, Sam ST, Teng TT, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):359-371.
    PMID: 35796867 DOI: 10.1007/s00449-022-02743-7
    The under-treated wastewater, especially remaining carcinogenic aromatic compounds in wastewater discharge has been expansively reported, wherein the efficiency of conventional wastewater treatment is identified as the primary contributor source. Herein, the advancement of wastewater treatments has drawn much attention in recent years. In the current study, combined sequential and hybridized treatment of thermolysis and coagulation-flocculation provides a novel advancement for environmental emerging pollutant (EP) prescription. This research is mainly demonstrating the mitigation efficiency and degradation pathway of pararosaniline (PRA) hybridized and combined sequential wastewater treatment. Notably, PRA degradation dominantly via a linkage of reaction: thermal cleavage, deamination, silication and diazene reduction. Thermolysis acts as an initiator for the PRA decomposition through thermally induced bond dissociation energy (BDE) for molecular fragmentation whilst coagulation-flocculation facilitates the formation of organo-bridged silsesquioxane as the final degradation product. Different from conventional treatment, the hybridized treatment showed excellent synergistic degradability by removing 99% PRA and its EPs, followed by combined sequential treatment method with 86% reduction. Comprehensive degradation pathway breakdown of carcinogenic and hardly degradable aromatic compounds provides a new insight for wastewater treatment whereby aniline and benzene are entirely undetectable in effluent. The degradation intermediates, reaction derivatives and end products were affirmed by gas chromatography-mass spectrometry, Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometry (GC-MS, FTIR and UV-Vis). This finding provides valuable guidance in establishing efficient integrated multiple-step wastewater treatments.
  12. Priya A, Anusha G, Thanigaivel S, Karthick A, Mohanavel V, Velmurugan P, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):309-321.
    PMID: 35301580 DOI: 10.1007/s00449-022-02715-x
    Microplastics (MPs) in environmental studies have revealed that public sewage treatment plants are a common pathway for microplastics to reach local surroundings. Microplastics are becoming more of a worry, posing a danger to both marine wildlife and humans. These plastic items not only contribute to the macrocosmic proliferation of plastics but also the scattering of microplastics and the concentration of other micropollutant-containing objects, increasing the number of pollutants identified. Microplastics' behavior, movement, transformation, and persistence mechanisms, as well as their mode of action in various wastewater effluent treatment procedures, are still unknown. They are making microplastics made from wastewater a big deal. We know that microplastics enter wastewater treatment facilities (WWTPs), that wastewater is released into the atmosphere, and that this wastewater has been considered to represent a threat to habitats and ground character based on our literature assessment. The basic methods of wastewater and sewage sludge, as well as the treatment procedure and early characterization, are covered throughout the dissection of the problematic scientific conceptualization.
  13. Kristanti RA, Mardarveran P, Almaary KS, Elshikh MS, AbdelGawwad MR, Tang DKH
    Bioprocess Biosyst Eng, 2023 Mar;46(3):373-379.
    PMID: 35773493 DOI: 10.1007/s00449-022-02745-5
    Bauxite wastewater creates soil contamination and produces toxic effects on human health such as respiratory and skin rash problems. In this study, we investigated the phytoremediation ability of Jatropha curcas to remove bauxite wastewater from soil. Pot experiments were conducted to investigate the bauxite wastewater on the phytoremediation potential of J. curcas grown in contaminated soils. J. curcas exhibited a significant increase in plant growth leaf, root activity, plant height, and plant shoot when grown in bauxite contaminated soils compared with J. curcas grown in uncontaminated soils after 30 d treatment. Under bauxite exposure, a higher aluminium removal (88.5%) was observed in soils planted with J. curcas than unplanted soils (39.6%). The bioconcentration factor was also found to be 5.62, indicating that J. curcas have great tolerance and hyperaccumulator of aluminium under high aluminium concentrations and are capable of phytoextraction of soil contaminated with bauxite wastewater.
  14. Kristanti RA, Hadibarata T, Wulandari NF, Sibero MT, Darmayati Y, Hatmanti A
    Bioprocess Biosyst Eng, 2023 Mar;46(3):429-441.
    PMID: 36149484 DOI: 10.1007/s00449-022-02784-y
    The introduction of plastic sectors has resulted in the presence of microplastics (MPs) in water systems, which has become a global issue that has attracted scientific and community awareness. MPs can be detected in a variety of sources such as beauty products, manufacturing effluent, or fishing activities. This study examined the repercussions posed by MPs' prevalence on land and marine environments and human health issues. Henceforth, remediation technologies must be introduced to shift out MPs from the water supplies in order to sustain the environmental quality for future generations, the benefits and drawbacks of the technology applied. This study also portrays difficulties encountered in MP research as the hurdles must be mastered in order to properly comprehend the MPs. The cooperation between nations is the most critical aspect in fully tackling MP issues as it can be easily carried by wind or water and its damage can be larger than predicted.
  15. Wafti NSA, Yunus R, Lau HLN, Yaw TCS, Aziz SA
    Bioprocess Biosyst Eng, 2021 Nov;44(11):2429-2444.
    PMID: 34269888 DOI: 10.1007/s00449-021-02615-6
    The present study reports the effects of three commercial immobilized lipases namely Novozyme 435 from Candida antarctica lipase B (CALB), Lipozyme TL IM from Thermomyces lanuginosus and Lipozyme RM IM from Rhizomucor miehei on the production of trimethylolpropane (TMP) ester from high oleic palm methyl ester (HO-PME) and TMP. The TMP ester is a promising base oil for biolubricants that are easily biodegradable and non-toxic to humans and the environment. Enzymatic catalysts are insensitive to free fatty acid (FFA) content, hence able to mitigate the side reactions and consequently reduce product separation cost. The potential of these enzymes to produce TMP ester in a solvent-free medium was screened at various reaction time (8, 23, 30 and 48 h), operating pressure (0.1, 0.3 and 1.0 mbar) and enzyme dosage (1, 3, 5 and 10% w/w). The reaction was conducted at a constant temperature of 70 °C and a molar ratio of 3.9:1 (HO-PME: TMP). Novozyme 435 produced the highest yield of TMP ester of 95.68 ± 3.60% under the following conditions: 23 h reaction time, 0.1 mbar operating pressure and 5% w/w of enzyme dosage. The key lubrication properties of the produced TMP ester are viscosity index (208 ± 2), pour point (- 30 ± - 2 °C), cloud point (- 15 ± - 2 °C), onset thermal degradation temperature (427.8 °C), and oxidation stability, RPVOT (42 ± 4 min). The properties of the TMP ester produced from the enzymatic transesterification are comparable to other vegetable oil-based biolubricants produced by chemical transesterification.
  16. Ng YJ, Tham PE, Khoo KS, Cheng CK, Chew KW, Show PL
    Bioprocess Biosyst Eng, 2021 Sep;44(9):1807-1818.
    PMID: 34009462 DOI: 10.1007/s00449-021-02577-9
    Virgin coconut oil is a useful substance in our daily life. It contains a high percentage of lauric acid which has many health benefits. The current industry has developed several methods to extract the oil out from the coconut fruit. This review paper aims to highlight several common extraction processes used in modern industries that includes cold extraction, hot extraction, low-pressure extraction, chilling, freezing and thawing method, fermentation, centrifugation, enzymatic extraction and supercritical fluid carbon dioxide. Different extraction methods will produce coconut oil with different yields and purities of lauric acid, thus having different uses and applications. Challenges that are faced by the industries in extracting the coconut oil using different methods of extraction are important to be explored so that advancement in the oil extraction technology can be done for efficient downstream processing. This study is vital as it provides insights that could enhance the production of coconut oil.
  17. Fan S, Ji B, Abu Hasan H, Fan J, Guo S, Wang J, et al.
    Bioprocess Biosyst Eng, 2021 Aug;44(8):1733-1739.
    PMID: 33772637 DOI: 10.1007/s00449-021-02556-0
    Microalgal-bacterial granular sludge (MBGS) process has become a focal point in treating municipal wastewater. However, it remains elusive whether the emerging process can be applied for the treatment of aquaculture wastewater, which contains considerable concentrations of nitrate and nitrite. This study evaluated the feasibility of MBGS process for aquaculture wastewater treatment. Result showed that the MBGS process was competent to remove respective 64.8%, 84.9%, 70.8%, 50.0% and 84.2% of chemical oxygen demand, ammonia-nitrogen, nitrate-nitrogen, nitrite-nitrogen and phosphate-phosphorus under non-aerated conditions within 8 h. The dominant microalgae and bacteria were identified to be Coelastrella and Rhodobacteraceae, respectively. Further metagenomics analysis implied that microbial assimilation was the main contributor in organics, nitrogen and phosphorus removal. Specifically, considerable nitrate and nitrite removals were also obtained with the synergy between microalgae and bacteria. Consequently, this work demonstrated that the MBGS process showed a prospect of becoming an environmentally friendly and efficient alternative in aquaculture wastewater treatment.
  18. Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2021 Jul;44(7):1577-1592.
    PMID: 33687550 DOI: 10.1007/s00449-021-02543-5
    The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.
  19. Al Farraj DA, Hadibarata T, Yuniarto A, Alkufeidy RM, Alshammari MK, Syafiuddin A
    Bioprocess Biosyst Eng, 2020 Dec;43(12):2305-2314.
    PMID: 32812060 DOI: 10.1007/s00449-020-02415-4
    The present study aimed to determine the degradation and transformation of three-ring PAHs phenanthrene and anthracene by Cryptococcus sp. MR22 and Halomonas sp. BR04 under halophilic conditions. The growth progress of Cryptococcus sp. MR22 and Halomonas sp. BR04 on anthracene and phenanthrene was monitored by colony-forming unit (CFU) technique. The growth of the bacteria was maintained at a maximum concentration of 200 mg/L of all tested hydrocarbon, indicating that Cryptococcus sp. MR22 and Halomonas sp. BR04 significantly perform in the removal of the PAH-contaminated medium at low concentrations. The fit model to represent the biodegradation kinetics of both PAHs was first-order rate equation The extract prepared from cells supplemented with three different substrates exhibited some enzymes such as hydroxylase, dioxygenase, laccase and peroxidase. The results suggest that both strains had an impressive ability in the degradation of aromatic and aliphatic hydrocarbon but also could tolerate in the extreme salinity condition.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links