Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Wu TY, Mohammad AW, Jahim JM, Anuar N
    Biotechnol Adv, 2009 Jan-Feb;27(1):40-52.
    PMID: 18804158 DOI: 10.1016/j.biotechadv.2008.08.005
    During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products.
  2. Suparmaniam U, Lam MK, Lim JW, Tan IS, Chin BLF, Shuit SH, et al.
    Biotechnol Adv, 2024;70:108280.
    PMID: 37944570 DOI: 10.1016/j.biotechadv.2023.108280
    Microalgae showcase an extraordinary capacity for synthesizing high-value phytochemicals (HVPCs), offering substantial potential for diverse applications across various industries. Emerging research suggests that subjecting microalgae to abiotic stress during cultivation and the harvesting stages can further enhance the accumulation of valuable metabolites within their cells, including carotenoids, antioxidants, and vitamins. This study delves into the pivotal impacts of manipulating abiotic stress on microalgae yields, with a particular focus on biomass and selected HVPCs that have received limited attention in the existing literature. Moreover, approaches to utilising abiotic stress to increase HVPCs production while minimising adverse effects on biomass productivity were discussed. The present study also encompasses a techno-economic assessment (TEA) aimed at pinpointing significant bottlenecks in the conversion of microalgae biomass into high-value products and evaluating the desirability of various conversion pathways. The TEA methodology serves as a valuable tool for both researchers and practitioners in the quest to identify sustainable strategies for transforming microalgae biomass into high-value products and goods. Overall, this comprehensive review sheds light on the pivotal role of abiotic stress in microalgae cultivation, promising insights that could lead to more efficient and sustainable approaches for HVPCs production.
  3. Ch'ng ACW, Lam P, Alassiri M, Lim TS
    Biotechnol Adv, 2021 Nov 18;54:107870.
    PMID: 34801662 DOI: 10.1016/j.biotechadv.2021.107870
    The immune system is tasked to keep our body unharmed and healthy. In the immune system, B- and T-lymphocytes are the two main components working together to stop and eliminate invading threats like virus particles, bacteria, fungi and parasite from attacking our healthy cells. The function of antibodies is relatively more direct in target recognition as compared to T-cell receptors (TCR) which recognizes antigenic peptides being presented on the major histocompatibility complex (MHC). Although phage display has been widely applied for antibody presentation, this is the opposite in the case of TCR. The cell surface TCR is a relatively large and complex molecule, making presentation on phage surfaces challenging. Even so, recombinant versions and modifications have been introduced to allow the growing development of TCR in phage display. In addition, the increasing application of TCR for immunotherapy has made it an important binding motif to be developed by phage display. This review will emphasize on the application of phage display for TCR discovery as well as the engineering aspect of TCR for improved characteristics.
  4. Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY
    Biotechnol Adv, 2017 Mar-Apr;35(2):105-134.
    PMID: 27923764 DOI: 10.1016/j.biotechadv.2016.11.006
    Deep eutectic solvents (DESs) have been touted recently as potential alternatives to ionic liquids (ILs). Although they possess core characteristics that are similar to those of ILs (e.g., low volatility, non-flammability, low melting points, low vapor pressure, dipolar nature, chemical and thermal stability, high solubility, and tuneability), DESs are superior in terms of the availability of raw materials, the ease of storage and synthesis, and the low cost of their starting materials. As such, they have become the subject of intensive research in various sectors, notably the chemical, electrochemical, and biological sectors. To date, the applications of DESs have shown great promise, especially in the medical and biotechnological fields. In spite of these various achievements, the safety concern for these mixtures must be sufficiently addressed. Indeed, in order to exploit the vast array of opportunities that DESs offer to the biological industry, first, they must be established as safe mixtures. Hence, the biotechnological applications of DESs only can be implemented if they are proven to have negligible or low toxicity profiles. This review is the first of its kind, and it discusses two current aspects of DES-based research. First, it describes the properties of these mixtures with ample focus on their toxicity profiles. Second, it provides an overview of the breakthroughs that have occurred and the foreseeable prospects of the use of DESs in various biotechnological and biological applications.
  5. Gopinath SC, Lakshmipriya T, Chen Y, Phang WM, Hashim U
    Biotechnol Adv, 2016 May-Jun;34(3):198-208.
    PMID: 26876017 DOI: 10.1016/j.biotechadv.2016.02.003
    Aptamers are single-stranded oligonucleotides that can be artificially generated by a method called Systematic evolution of ligands by exponential enrichment (SELEX). The generated aptamers have been assessed for high-performance sensing applications due to their appealing characteristics. With either aptamers alone or complementing with antibodies, several high sensitive and portable sensors have been demonstrated for use in 'point-of-care testing'. Due to their high suitability and flexibility, aptamers are conjugated with nanostructures and utilized in field applications. Moreover, aptamers are more amenable to chemical modifications, making them capable of utilization with most developed sensors. In this overview, we discuss novel, portable, and aptamer-based sensing strategies that are suitable for 'point-of-care testing'.
  6. Kazemi Shariat Panahi H, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, et al.
    Biotechnol Adv, 2023 Sep;66:108172.
    PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172
    Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Despite some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically scrutinizes the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
  7. Abuduxike G, Aljunid SM
    Biotechnol Adv, 2012 Nov-Dec;30(6):1589-601.
    PMID: 22617902 DOI: 10.1016/j.biotechadv.2012.05.002
    Health biotechnology has rapidly become vital in helping healthcare systems meet the needs of the poor in developing countries. This key industry also generates revenue and creates employment opportunities in these countries. To successfully develop biotechnology industries in developing nations, it is critical to understand and improve the system of health innovation, as well as the role of each innovative sector and the linkages between the sectors. Countries' science and technology capacities can be strengthened only if there are non-linear linkages and strong interrelations among players throughout the innovation process; these relationships generate and transfer knowledge related to commercialization of the innovative health products. The private sector is one of the main actors in healthcare innovation, contributing significantly to the development of health biotechnology via knowledge, expertise, resources and relationships to translate basic research and development into new commercial products and innovative processes. The role of the private sector has been increasingly recognized and emphasized by governments, agencies and international organizations. Many partnerships between the public and private sector have been established to leverage the potential of the private sector to produce more affordable healthcare products. Several developing countries that have been actively involved in health biotechnology are becoming the main players in this industry. The aim of this paper is to discuss the role of the private sector in health biotechnology development and to study its impact on health and economic growth through case studies in South Korea, India and Brazil. The paper also discussed the approaches by which the private sector can improve the health and economic status of the poor.
  8. Ortiz R, Swennen R
    Biotechnol Adv, 2014 Jan-Feb;32(1):158-69.
    PMID: 24091289 DOI: 10.1016/j.biotechadv.2013.09.010
    The annual harvest of banana and plantain (Musa spp.) is approximately 145 million tons worldwide. About 85% of this global production comes from small plots and kitchen or backyard gardens from the developing world, and only 15% goes to the export trade. Musa acuminata and Musa balbisiana are the ancestors of several hundreds of parthenocarpic Musa diploid and polyploid cultivars, which show multiple origins through inter- and intra-specific hybridizations from these two wild diploid species. Generating hybrids combining host plant resistance to pathogens and pests, short growth cycles and height, high fruit yield, parthenocarpy, and desired quality from the cultivars remains a challenge for Musa crossbreeding, which started about one century ago in Trinidad. The success of Musa crossbreeding depends on the production of true hybrid seeds in a crop known for its high levels of female sterility, particularly among polyploid cultivars. All banana export cultivars grown today are, however, selections from somatic mutants of the group Cavendish and have a very narrow genetic base, while smallholders in sub-Saharan Africa, tropical Asia and Latin America use some bred-hybrids (mostly cooking types). Musa improvement goals need to shift to address emerging threats because of the changing climate. Innovative cell and molecular biology tools have the potential to enhance the pace and efficiency of genetic improvement in Musa. Micro-propagation has been successful for high throughput of clean planting materials while in vitro seed germination assists in obtaining seedlings after inter-specific and across ploidy hybridization. Flow cytometry protocols are used for checking ploidy among genebank accessions and breeding materials. DNA markers, the genetic maps based on them, and the recent sequencing of the banana genome offer means for gaining more insights in the genetics of the crops and to identifying genes that could lead to accelerating Musa betterment. Likewise, DNA fingerprinting has been useful to characterize Musa diversity. Genetic engineering provides a complementary tool to Musa breeders who can introduce today transgenes that may confer resistance to bacteria, fungi and nematodes, or enhance pro-vitamin A fruit content. In spite of recent advances, the genetic improvement of Musa depends on a few crossbreeding programs (based in Brazil, Cameroon, Côte d'Ivoire, Guadeloupe, Honduras, India, Nigeria, Tanzania and Uganda) or a handful of genetic engineering endeavors (Australia, Belgium, India, Kenya, Malaysia and Uganda). Development investors (namely international aid and philanthropy) should therefore increase their funding to genetically enhance this crop that ranks among the 10-top staple foods of the developing world.
  9. Zaiki Y, Iskandar A, Wong TW
    Biotechnol Adv, 2023 Oct;67:108200.
    PMID: 37331671 DOI: 10.1016/j.biotechadv.2023.108200
    Chitosan is a biotechnological derivative of chitin receiving a widespread pharmaceutical and biomedical applications. It can be used to encapsulate and deliver cancer therapeutics with inherent pH-dependent solubility to confer drug targeting at tumour microenvironment and anti-cancer activity synergizing cancer cytotoxic drug actions. To further reduce the off-target and by-stander adverse effects of drugs, a high targeted drug delivery efficiency at the lowest possible drug doses is clinically required. The chitosan has been functionalized with covalent conjugates or complexes and processed into nanoparticles to encapsulate and control drug release, to avoid premature drug clearance, to deliver drugs passively and actively to cancer site at tissue, cell or subcellular levels, and to promote cancer cell uptake of nanoparticles through membrane permeabilization at higher specificity and scale. Nanomedicine developed using functionalized chitosan translates to significant preclinical improvements. Future challenges related to nanotoxicity, manufacturability, selection precision of conjugates and complexes as a function of cancer omics and their biological responses from administration site to cancer target need critical assessments.
  10. Fayyaz M, Chew KW, Show PL, Ling TC, Ng IS, Chang JS
    Biotechnol Adv, 2020 11 01;43:107554.
    PMID: 32437732 DOI: 10.1016/j.biotechadv.2020.107554
    Microalgae-based bioproducts are in limelight because of their promising future, novel characteristics, the current situation of population needs, and rising prices of rapidly depleting energy resources. Algae-based products are considered as clean sustainable energy and food resources. At present, they are not commercialized due to their high production cost and low yield. In recent years, novel genome editing tools like RNAi, ZNFs, TALENs, and CRISPR/Cas9 are used to enhance the quality and quantity of the desired products. Genetic and metabolic engineering are frequently applied because of their rapid and precise results than random mutagenesis. Omic approaches help enhance biorefinery capabilities and are now in the developing stage for algae. The future is very bright for transgenic algae with increased biomass yield, carbon dioxide uptake rate, accumulating high-value compounds, reduction in cultivation, and production costs, thus reaching the goal in the global algal market and capital flow. However, microalgae are primary producers and any harmful exposure to the wild strains can affect the entire ecosystem. Therefore, strict regulation and monitoring are required to assess the potential risks before introducing genetically modified microalgae into the natural ecosystem.
  11. Lam MK, Lee KT, Mohamed AR
    Biotechnol Adv, 2010 Jul-Aug;28(4):500-18.
    PMID: 20362044 DOI: 10.1016/j.biotechadv.2010.03.002
    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.
  12. Wang K, Khoo KS, Leong HY, Nagarajan D, Chew KW, Ting HY, et al.
    Biotechnol Adv, 2021 Aug 25.
    PMID: 34454007 DOI: 10.1016/j.biotechadv.2021.107819
    Microalgae biorefinery is a platform for the conversion of microalgal biomass into a variety of value-added products, such as biofuels, bio-based chemicals, biomaterials, and bioactive substances. Commercialization and industrialization of microalgae biorefinery heavily rely on the capability and efficiency of large-scale cultivation of microalgae. Thus, there is an urgent need for novel technologies that can be used to monitor, automatically control, and precisely predict microalgae production. In light of this, innovative applications of the Internet of things (IoT) technologies in microalgae biorefinery have attracted tremendous research efforts. IoT has potential applications in a microalgae biorefinery for the automatic control of microalgae cultivation, monitoring and manipulation of microalgal cultivation parameters, optimization of microalgae productivity, identification of toxic algae species, screening of target microalgae species, classification of microalgae species, and viability detection of microalgal cells. In this critical review, cutting-edge IoT technologies that could be adopted to microalgae biorefinery in the upstream and downstream processing are described comprehensively. The current advances of the integration of IoT with microalgae biorefinery are presented. What this review discussed includes automation, sensors, lab-on-chip, and machine learning, which are the main constituent elements and advanced technologies of IoT. Specifically, future research directions are discussed with special emphasis on the development of sensors, the application of microfluidic technology, robotized microalgae, high-throughput platforms, deep learning, and other innovative techniques. This review could contribute greatly to the novelty and relevance in the field of IoT-based microalgae biorefinery to develop smarter, safer, cleaner, greener, and economically efficient techniques for exhaustive energy recovery during the biorefinery process.
  13. Idris A, Bukhari A
    Biotechnol Adv, 2012 May-Jun;30(3):550-63.
    PMID: 22041165 DOI: 10.1016/j.biotechadv.2011.10.002
    This work reviews the stripping off, role of water molecules in activity, and flexibility of immobilized Candida antarctica lipase B (CALB). Employment of CALB in ring opening polyester synthesis emphasizing on a polylactide is discussed in detail. Execution of enzymes in place of inorganic catalysts is the most green alternative for sustainable and environment friendly synthesis of products on an industrial scale. Robust immobilization and consequently performance of enzyme is the essential objective of enzyme application in industry. Water bound to the surface of an enzyme (contact class of water molecules) is inevitable for enzyme performance; it controls enzyme dynamics via flexibility changes and has intensive influence on enzyme activity. The value of pH during immobilization of CALB plays a critical role in fixing the active conformation of an enzyme. Comprehensive selection of support and protocol can develop a robust immobilized enzyme thus enhancing its performance. Organic solvents with a log P value higher than four are more suitable for enzymatic catalysis as these solvents tend to strip away very little of the enzyme surface bound water molecules. Alternatively ionic liquid can work as a more promising reaction media. Covalent immobilization is an exclusively reliable technique to circumvent the leaching of enzymes and to enhance stability. Activated polystyrene nanoparticles can prove to be a practical and economical support for chemical immobilization of CALB. In order to reduce the E-factor for the synthesis of biodegradable polymers; enzymatic ring opening polyester synthesis (eROPS) of cyclic monomers is a more sensible route for polyester synthesis. Synergies obtained from ionic liquids and immobilized enzyme can be much effective eROPS.
  14. Shuit SH, Ong YT, Lee KT, Subhash B, Tan SH
    Biotechnol Adv, 2012 Nov-Dec;30(6):1364-80.
    PMID: 22366515 DOI: 10.1016/j.biotechadv.2012.02.009
    In recent years, environmental problems caused by the use of fossil fuels and the depletion of petroleum reserves have driven the world to adopt biodiesel as an alternative energy source to replace conventional petroleum-derived fuels because of biodiesel's clean and renewable nature. Biodiesel is conventionally produced in homogeneous, heterogeneous, and enzymatic catalysed processes, as well as by supercritical technology. All of these processes have their own limitations, such as wastewater generation and high energy consumption. In this context, the membrane reactor appears to be the perfect candidate to produce biodiesel because of its ability to overcome the limitations encountered by conventional production methods. Thus, the aim of this paper is to review the production of biodiesel with a membrane reactor by examining the fundamental concepts of the membrane reactor, its operating principles and the combination of membrane and catalyst in the catalytic membrane. In addition, the potential of functionalised carbon nanotubes to serve as catalysts while being incorporated into the membrane for transesterification is discussed. Furthermore, this paper will also discuss the effects of process parameters for transesterification in a membrane reactor and the advantages offered by membrane reactors for biodiesel production. This discussion is followed by some limitations faced in membrane technology. Nevertheless, based on the findings presented in this review, it is clear that the membrane reactor has the potential to be a breakthrough technology for the biodiesel industry.
  15. Lam MK, Lee KT
    Biotechnol Adv, 2012 May-Jun;30(3):673-90.
    PMID: 22166620 DOI: 10.1016/j.biotechadv.2011.11.008
    Culturing of microalgae as an alternative feedstock for biofuel production has received a lot of attention in recent years due to their fast growth rate and ability to accumulate high quantity of lipid and carbohydrate inside their cells for biodiesel and bioethanol production, respectively. In addition, this superior feedstock offers several environmental benefits, such as effective land utilization, CO(2) sequestration, self-purification if coupled with wastewater treatment and does not trigger food versus fuel feud. Despite having all these 'theoretical' advantages, review on problems and issues related to energy balance in microalgae biofuel are not clearly addressed until now. Base on the maturity of current technology, the true potential of microalgae biofuel towards energy security and its feasibility for commercialization are still questionable. Thus, this review is aimed to depict the practical problems that are facing the microalgae biofuel industry, covering upstream to downstream activities by accessing the latest research reports and critical data analysis. Apart from that, several interlink solutions to the problems will be suggested with the purpose to bring current microalgae biofuel research into a new dimension and consequently, to revolutionize the entire microalgae biofuel industry towards long-term sustainability.
  16. Teng SY, Yew GY, Sukačová K, Show PL, Máša V, Chang JS
    Biotechnol Adv, 2020 11 15;44:107631.
    PMID: 32931875 DOI: 10.1016/j.biotechadv.2020.107631
    With recent advances in novel gene-editing tools such as RNAi, ZFNs, TALENs, and CRISPR-Cas9, the possibility of altering microalgae toward designed properties for various application is becoming a reality. Alteration of microalgae genomes can modify metabolic pathways to give elevated yields in lipids, biomass, and other components. The potential of such genetically optimized microalgae can give a "domino effect" in further providing optimization leverages down the supply chain, in aspects such as cultivation, processing, system design, process integration, and revolutionary products. However, the current level of understanding the functional information of various microalgae gene sequences is still primitive and insufficient as microalgae genome sequences are long and complex. From this perspective, this work proposes to link up this knowledge gap between microalgae genetic information and optimized bioproducts using Artificial Intelligence (AI). With the recent acceleration of AI research, large and complex data from microalgae research can be properly analyzed by combining the cutting-edge of both fields. In this work, the most suitable class of AI algorithms (such as active learning, semi-supervised learning, and meta-learning) are discussed for different cases of microalgae applications. This work concisely reviews the current state of the research milestones and highlight some of the state-of-art that has been carried out, providing insightful future pathways. The utilization of AI algorithms in microalgae cultivation, system optimization, and other aspects of the supply chain is also discussed. This work opens the pathway to a digitalized future for microalgae research and applications.
  17. Tan CH, Show PL, Chang JS, Ling TC, Lan JC
    Biotechnol Adv, 2015 Nov 1;33(6 Pt 2):1219-27.
    PMID: 25728066 DOI: 10.1016/j.biotechadv.2015.02.013
    Microalgae have caught the world's attention for its potential to solve one of the world's most pressing issues-sustainable green energy. Compared to biofuels supplied by oil palm, rapeseed, soybean and sugar cane, microalgae alone can be manipulated to generate larger amounts of biodiesel, bioethanol, biohydrogen and biomass in a shorter time. Apart from higher productivity, microalgae can also grow using brackish water on non-arable land, greatly reducing the competition with food and cash crops. Hence, numerous efforts have been put into the commercialisation of microalgae-derived biofuel by both the government and private bodies. This paper serves to review conventional and novel methods for microalgae culture and biomass harvest, as well as recent developments in techniques for microalgal biofuel production.
  18. Yong JJJY, Chew KW, Khoo KS, Show PL, Chang JS
    Biotechnol Adv, 2020 12 30;47:107684.
    PMID: 33387639 DOI: 10.1016/j.biotechadv.2020.107684
    The coexistence of algae and bacteria in nature dates back to the very early stages when life came into existence. The interaction between algae and bacteria plays an important role in the planet ecology, cycling nutrients, and feeding higher trophic levels, and have been evolving ever since. The emerging concept of algal-bacterial consortia is gaining attention, much towards environmental management and protection. Studies have shown that algal-bacterial synergy does not only promote carbon capture in wastewater bioremediation but also consequently produces biofuels from algal-bacterial biomass. This review has evaluated the optimistic prospects of algal-bacterial consortia in environmental remediation, biorefinery, carbon sequestration as well as its contribution to the production of high-value compounds. In addition, algal-bacterial consortia offer great potential in bloom control, dye removal, agricultural biofertilizers, and bioplastics production. This work also emphasizes the advancement of algal-bacterial biotechnology in environmental management through the incorporation of Industry Revolution 4.0 technologies. The challenges include its pathway to greener industry, competition with other food additive sources, societal acceptance, cost feasibility, environmental trade-off, safety and compatibility. Thus, there is a need for further in-depth research to ensure the environmental sustainability and feasibility of algal-bacterial consortia to meet numerous current and future needs of society in the long run.
  19. Ng YJ, Chan SS, Khoo KS, Munawaroh HSH, Lim HR, Chew KW, et al.
    Biotechnol Adv, 2023 Nov;68:108198.
    PMID: 37330152 DOI: 10.1016/j.biotechadv.2023.108198
    Surfactants have always been a prominent chemical that is useful in various sectors (e.g., cleaning agent production industry, textile industry and painting industry). This is due to the special ability of surfactants to reduce surface tension between two fluid surfaces (e.g., water and oil). However, the current society has long omitted the harmful effects of petroleum-based surfactants (e.g., health issues towards humans and reducing cleaning ability of water bodies) due to their usefulness in reducing surface tension. These harmful effects will significantly damage the environment and negatively affect human health. As such, there is an urgency to secure environmentally friendly alternatives such as glycolipids to reduce the effects of these synthetic surfactants. Glycolipids is a biomolecule that shares similar properties with surfactants that are naturally synthesized in the cell of living organisms, glycolipids are amphiphilic in nature and can form micelles when glycolipid molecules clump together, reducing surface tension between two surfaces as how a surfactant molecule is able to achieve. This review paper aims to provide a comprehensive study on the recent advances in bacteria cultivation for glycolipids production and current lab scale applications of glycolipids (e.g., medical and waste bioremediation). Studies have proven that glycolipids are effective anti-microbial agents, subsequently leading to an excellent anti-biofilm forming agent. Heavy metal and hydrocarbon contaminated soil can also be bioremediated via the use of glycolipids. The major hurdle in the commercialization of glycolipid production is that the cultivation stage and downstream extraction stage of the glycolipid production process induces a very high operating cost. This review provides several solutions to overcome this issue for glycolipid production for the commercialization of glycolipids (e.g., developing new cultivating and extraction techniques, using waste as cultivation medium for microbes and identifying new strains for glycolipid production). The contribution of this review aims to serve as a future guideline for researchers that are dealing with glycolipid biosurfactants by providing an in-depth review on the recent advances of glycolipid biosurfactants. By summarizing the points discussed as above, it is recommended that glycolipids can substitute synthetic surfactants as an environmentally friendly alternative.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links