Displaying publications 1 - 20 of 76 in total

Abstract:
Sort:
  1. Abdo AIK, Ngoh YY, Lew MH, Dass SA, Rahumatullah A, Noordin R, et al.
    Biotechnol Appl Biochem, 2022 Feb;69(1):70-76.
    PMID: 33258152 DOI: 10.1002/bab.2082
    Lymphatic filariasis is a neglected parasitic disease that affects millions in tropical and subtropical countries and is caused by Wuchereria and Brugia species. Specific and sensitive detection methods are essential in mapping infected areas where rapid tests are needed to cover underdeveloped and remote regions, which facilitates eliminating the disease as a public health problem. A few commercialized rapid tests based on antigen or antibody detection are available, but the former only detects infection by Wuchereria species and cross-reacts with nonlymphatic filaria, whereas antibody detection might provide positive results of previous infection. Here, we report the production of three different recombinant immunoglobulin gamma (IgG)1 antibodies based on scFvs previously generated via human antibody phage display technology, that is, anti-BmR1 clone 4, anti-BmXSP clone 5B, and anti-BmXSP clone 2H2. The scFv sequences were cloned into a pCMV-IgG1 vector, then transfected into a HEK293F cell line. The generated antibodies were found to be able to bind to their respective targets even at relatively low concentration. Conjugation of Fc to scFv induces binder stability and provides multiple labeling sites for probes and signaling molecules that can be used in rapid tests.
  2. Abdul Manaf SA, Mohamad Fuzi SFZ, Abdul Manas NH, Md Illias R, Low KO, Hegde G, et al.
    Biotechnol Appl Biochem, 2021 Dec;68(6):1128-1138.
    PMID: 32969042 DOI: 10.1002/bab.2034
    The traditional approach of fermentation by a free cell system has limitations of low productivity and product separation that need to be addressed for production enhancement and cost effectiveness. One of potential methods to solve the problems is cell immobilization. Microbial cell immobilization allows more efficient up-scaling by reducing the nonproductive growth phase, improving product yield and simplifying product separation. Furthermore, the emergence of nanomaterials such as carbon nanotubes, graphene, and metal-based nanomaterials with excellent functional properties provides novel supports for cell immobilization. Nanomaterials have catalytic properties that can provide specific binding site with targeted cells. However, the toxicity of nanomaterials towards cells has hampered its application as it affects the biological system of the cells, which cannot be neglected in any way. This gray area in immobilization is an important concern that needs to be addressed and understood by researchers. This review paper discusses an overview of nanomaterials used for cell immobilization with special focus on its toxicological challenges and how by understanding physicochemical properties of nanomaterials could influence the toxicity and biocompatibility of the cells.
  3. Abulaiti A, Salai A, Sun X, Yibulayin W, Gao Y, Gopinath SCB, et al.
    PMID: 33576539 DOI: 10.1002/bab.2122
    Non-small cell lung cancer (NSCLC) incited by epidermal growth factor receptor (EGFR) mutation makes up ∼85% of lung cancer diagnosed and death cases worldwide. The presented study introduced an alternative approach in detecting EGFR mutation using nano-silica integrated with polydimethylsiloxane (PDMS) polymer on interdigitated electrode (IDE) sensor. A 400 μm gap-sized aluminum IDE was modified with nano-polymer layer, which was made up of silica nanoparticles and PDMS polymer. IDE and PDMS-coated IDE (PDMS/IDE) were imaged using electron microscopes that reveals its smooth and ideal sensor morphology. The nano-silica-integrated PDMS/IDE surface was immobilized with EGFR probe and target to specify the lung cancer detection. The sensor specificity was justified through the insignificant current readouts with one-base mismatch and noncomplementary targets. The sensitivity of nano-silica-integrated PDMS/IDE was examined with mutant target spiked in human serum, where the resulting current affirms the detection of EGFR mutation. Based on the slope of the calibration curve, the sensitivity of nano-silica-integrated PDMS/IDE was 2.24E-9 A M-1 . The sensor recognizes EGFR mutation lowest at 1 aM complementary mutant target; however, the detection limit obtained based on 3σ calculation is 10 aM with regression value of 0.97.
  4. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
  5. Ali I, Wei DQ, Khan A, Feng Y, Waseem M, Hussain Z, et al.
    PMID: 38287712 DOI: 10.1002/bab.2548
    Malonyl-CoA serves as the main building block for the biosynthesis of many important polyketides, as well as fatty acid-derived compounds, such as biofuel. Escherichia coli, Corynebacterium gultamicum, and Saccharomyces cerevisiae have recently been engineered for the biosynthesis of such compounds. However, the developed processes and strains often have insufficient productivity. In the current study, we used enzyme-engineering approach to improve the binding of acetyl-CoA with ACC. We generated different mutations, and the impact was calculated, which reported that three mutations, that is, S343A, T347W, and S350W, significantly improve the substrate binding. Molecular docking investigation revealed an altered binding network compared to the wild type. In mutants, additional interactions stabilize the binding of the inner tail of acetyl-CoA. Using molecular simulation, the stability, compactness, hydrogen bonding, and protein motions were estimated, revealing different dynamic properties owned by the mutants only but not by the wild type. The findings were further validated by using the binding-free energy (BFE) method, which revealed these mutations as favorable substitutions. The total BFE was reported to be -52.66 ± 0.11 kcal/mol for the wild type, -55.87 ± 0.16 kcal/mol for the S343A mutant, -60.52 ± 0.25 kcal/mol for T347W mutant, and -59.64 ± 0.25 kcal/mol for the S350W mutant. This shows that the binding of the substrate is increased due to the induced mutations and strongly corroborates with the docking results. In sum, this study provides information regarding the essential hotspot residues for the substrate binding and can be used for application in industrial processes.
  6. Anasdass JR, Kannaiyan P, Gopinath SCB
    Biotechnol Appl Biochem, 2022 Dec;69(6):2780-2793.
    PMID: 35293654 DOI: 10.1002/bab.2323
    We demonstrate a green chemistry approach to synthesize narrow-sized zerovalent iron (nZVI) nanoparticles using Artocarpus heterophyllus Lam. leaf extract as reducing and capping agent. The produced nZVI was characterized by various instrumental methods including ultraviolet-visible spectra, transmission electron microscopy, vibrating sample magnetometer (VSM), X-ray diffraction, and Fourier transform infrared spectroscopy. Based on the electron microscopy observations, the particle size was estimated to be ∼30 nm. In VSM, the saturation point of magnetization was observed to be 0.6 emu g-1 under a magnetic field of 0 ± 30 kOe. The synthesized nZVI was amorphous in nature as per the XRD results. The catalytic activity of the nZVI was employed for the catalytic reduction of 4-nitrophenol (4-NP) and decoloration of textile dyes such as methylene blue, methyl orange, and malachite green, respectively. The proposed nZVI synthesis method exhibited better catalytic performance toward reduction of 4-NP and degradation of dyes within 4 min for 0.1 mg of catalyst. Moreover, the synthesized catalyst nZVI can be recoverable and reutilized in many cycles without loss of its significant catalytic activity. The synthesized nZVI could be a promising material to treat industrial wastewater via profitable, sustainable, and ecofriendly approaches.
  7. Ang KC, Ibrahim P, Gam LH
    Biotechnol Appl Biochem, 2014 Mar-Apr;61(2):153-64.
    PMID: 23826872 DOI: 10.1002/bab.1137
    Mycobacterium tuberculosis is a causative agent of tuberculosis (TB). The ability of M. tuberculosis to be quiescent in the cell has caused the emergence of latent infection. A comprehensive proteomic analysis of M. tuberculosis H37Rv over three growth phases, namely mid-log (14-day culture), early stationary (28-day culture), and late stationary (50-day culture), was performed in order to study the change in proteome from the mid-log phase to late-stationary phase. Combination methods of two-dimensional electrophoresis (2-DE) and tandem mass spectrometry were used to generate proteome maps of M. tuberculosis at different growth phases. Ten proteins were detected differentially expressed in the late-stationary phase compared with the other two phases. These proteins were SucD, TrpD, and Rv2161c, which belong to metabolic pathway proteins; FadE5, AccD5, DesA1, and Rv1139c are proteins involved in cell wall or lipid biosynthesis, whereas TB21.7 and Rv3224 are conserved hypothetical proteins with unknown function. A surface antigen protein, DesA1, was not detectable in the late-stationary phase, although present in both log and early-stationary phases. The changes in the expression levels of these proteins were in line with the growth environment changes of the bacteria from mid-log phase to late-stationary phase. The information gathered may be valuable in the intervention against latent TB infection.
  8. Anis SNS, Mohd Annuar MS, Simarani K
    Biotechnol Appl Biochem, 2018 Nov;65(6):784-796.
    PMID: 29806235 DOI: 10.1002/bab.1666
    Biosynthesis and in vivo depolymerization of intracellular medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 grown on lauric acid were studied. Highest mcl-PHA fraction (>50 % of total biomass) and cell concentration (8 g L-1 ) were obtained at carbon-to-nitrogen (C/N) ratio 20, starting cell concentration 1 g L-1 , and 48 H fermentation. The mcl-PHA comprised of 3-hydroxyhexanoate (C6 ), 3-hydroxyoctanote (C8 ), 3-hydroxydecanoate (C10 ), and 3-hydroxydodecanoate (C12 ) monomers. In vivo action was studied in a mineral liquid medium without carbon source, and in different buffer solutions with varied pH, molarity, ionic strength, and temperature. The monomer liberation rate reflected the mol percentage distribution of the initial polymer subunit composition. Rate and percentage of in vivo depolymerization were highest in 0.2 M Tris-HCl buffer (pH 9, strength = 0.2 M, 30 °C) at 0.21 g L-1  H-1 and 98.6 ± 1.3 wt%, respectively. There is a congruity vis-à-vis to specific buffer type, molarity, pH, ionic strength, and temperature values for superior in vivo depolymerization activities. Direct products from in vivo depolymerization matched the individual monomeric composition of native mcl-PHA. It points to exo-type reaction for the in vivo process, and potential biological route to chiral molecules.
  9. Azaman SN, Ramakrishnan NR, Tan JS, Rahim RA, Abdullah MP, Ariff AB
    Biotechnol Appl Biochem, 2010 Aug;56(4):141-50.
    PMID: 20604747 DOI: 10.1042/BA20100104
    Induction strategies for the periplasmic production of recombinant human IFN-alpha2b (interferon-alpha2b) by recombinant Escherichia coli Rosetta-gami 2(DE3) were optimized in shake-flask cultures using response surface methodology based on the central composite design. The factors included in the present study were induction point, which related to the attenuance of the cell culture, IPTG (isopropyl beta-D-thiogalactoside) concentration and induction temperature. Second-order polynomial models were used to correlate the abovementioned factors to soluble periplasmic IFN-alpha2b formation and percentage of soluble IFN-alpha2b translocated to the periplasmic space of E. coli. The models were found to be significant and subsequently validated. The proposed induction strategies consisted of induction at an attenuance of 4 (measured as D600), IPTG concentration of 0.05 mM and temperature of 25 degrees C. The optimized induction strategy reduced inclusion-body formation as evidenced by electron microscopy and yielded 323.8 ng/ml of IFN-alpha2b in the periplasmic space with translocation of 74% of the total soluble product. In comparison with the non-optimized condition, soluble periplasmic production and the percentage of soluble IFN-alpha2b translocated to the periplasmic space obtained in optimized induction strategies were increased by approx. 20-fold and 1.4-fold respectively.
  10. Azrin NAM, Ali MSM, Rahman RNZRA, Oslan SN, Noor NDM
    Biotechnol Appl Biochem, 2022 Dec;69(6):2599-2616.
    PMID: 35019178 DOI: 10.1002/bab.2309
    Due to its thermostability and high pH compatibility, subtilisin is most known for its role as an additive for detergents in which it is categorized as a serine protease according to MEROPS database. Subtilisin is typically isolated from various bacterial species of the Bacillus genus such as Bacillus subtilis, B. amyloliquefaciens, B. licheniformis, and various other organisms. It is composed of 268-275 amino acid residues and is initially secreted in the precursor form, preprosubtilisin, which is composed of 29-residues signal peptide, 77-residues propeptide, and 275-residues active subtilisin. Subtilisin is known for the presence of high and low affinity calcium binding sites in its structure. Native subtilisin has general properties of thermostability, tolerance to neutral to high pH, broad specificity, and calcium-dependent stability, which contribute to the versatility of subtilisin applicability. Through protein engineering and immobilization technologies, many variants of subtilisin have been generated, which increase the applicability of subtilisin in various industries including detergent, food processing and packaging, synthesis of inhibitory peptides, therapeutic, and waste management applications.
  11. Bi H, Bian P, Gopinath SCB, Marimuthu K, Lv G, Yin X
    PMID: 34622990 DOI: 10.1002/bab.2267
    Osteoporosis, a bone disease is caused by the deterioration of bone and shows an enhanced risk of bone fracture and decreasing bone mineral density. Unfortunately, the available radiological techniques are expensive, and have disadvantages such as radiation intake, need a specialist to handle the instrument, and so forth. This research is focused to develop a point-of-care system to identify osteocalcin on current-volt sensor, which helps to diagnose the bone metabolism and prognostics. Antiosteocalcin antibody was attached on the electrode through the silane-modified iron material. The antibody-immobilized sensing surface was utilized to identify the level of osteocalcin and the detection limit of 100 pg/ml reached on linear concentrations of 0.01-3000 ng/ml. Calculations were made by triplicates (n = 3; 3δ) on the determination coefficient of y = 0.2637x-0.6012; R2 = 0.9319. Further, control proteins failed to bind with immobilized antibody, confirmed by the specific osteocalcin detection. This research is to identify the osteoporosis biomarker and to help determine the conditions with osteoporosis.
  12. Cheah YT, Ng BW, Tan TL, Chia ZS, Chan DJC
    Biotechnol Appl Biochem, 2023 Apr;70(2):568-580.
    PMID: 35767864 DOI: 10.1002/bab.2379
    Eicosapentaenoic acid (EPA) could be extracted from diatoms such as Amphora sp. present abundantly in the ecosystems. In view of the key environmental and nutritional factors governing the diatoms growth rate, culture conditions were optimized for the biomass yield, total lipid content, EPA yield, and fatty acid composition under two main cultivation regimes: photoautotrophic and heterotrophic. The fastest growth rate about 0.20 ± 0.02 g/L and the highest EPA yield about 9.19 ± 3.56 mg EPA/g biomass were obtained by adding 10 g/L glucose and sucrose, respectively. Under photoautotrophic culture conditions, Amphora sp. rendered higher EPA yield at 100 rpm and 16:8 light/dark cycle. Total fatty acids produced predominantly comprised of an approximate 40-70% of saturated fatty acids, followed by 10-27% of monounsaturated fatty acids and then 8-25% of polyunsaturated fatty acids. These findings were able to pave a way for huge-scale microalgal biomass production in commercial EPA production.
  13. Chen L, Xie W, Luo Y, Ding X, Fu B, Gopinath SCB, et al.
    PMID: 33786878 DOI: 10.1002/bab.2155
    A highly sensitive silica-alumina (Si-Al)-modified capacitive non-Faradaic glucose biosensor was introduced to monitor gestational diabetes. Glucose oxidase (GOx) was attached to the Si-Al electrode surface as the probe through amine-modification followed by glutaraldehyde premixed GOx as aldehyde-amine chemistry. This Si-Al (∼50 nm) modified electrode surface has increased the current flow upon binding of GOx with glucose. Capacitance values were increased by increasing the glucose concentrations. A mean capacitance value was plotted and the detection limit was found as 0.03 mg/mL with the regression coefficient value, R² = 0.9782 [y = 0.8391x + 1.338] on the linear range between 0.03 and 1 mg/mL. Further, a biofouling experiment with fructose and galactose did not increase the capacitance, indicating the specific glucose detection. This Si-Al-modified capacitance sensor detects a lower level of glucose presence and helps in monitoring gestational diabetes.
  14. Chen N, Yang H, Li Q, Song L, Gopinath SCB, Wu D
    Biotechnol Appl Biochem, 2021 Dec;68(6):1479-1485.
    PMID: 33244818 DOI: 10.1002/bab.2068
    Rheumatoid arthritis (RA) is an autoimmune disorder causing chronic inflammation in the small joints of the articular bone and destruction of articular cartilage. RA causes stiffness, pain, joint destruction, substantial comorbidity, and functional disability. Early-stage diagnosis of RA can help in the treatment of the disease and expand the patient life span. Interleukins are a group of inflammatory cytokines; in particular, an abundance of interleukin-6 (IL-6) was found in the synovial fluid and serum. In RA patients, the levels of IL-6 have been found to be correlated with the disease, and this work focused on detecting IL-6 by its aptamer with the help of a biotin-streptavidin strategy on an interdigitated electrode. A sensitivity of 1 fM (0.021 pg/mL) and a limit of detection of 10 fM (0.21 pg/mL) were found by a linear regression [y = 0.6413x - 0.6249; R² = 0.952] of the linear range from 1 fM to 100 pM. This method enhanced the immobilization of higher aptamer molecules for recognizing RA in serum-containing samples and is applicable to other diseases.
  15. Dhahi TS, Dafhalla AKY, Saad SA, Zayan DMI, Ahmed AET, Elobaid ME, et al.
    PMID: 38238920 DOI: 10.1002/bab.2550
    Infectious diseases, caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, are crucial for efficient disease management, reducing morbidity and mortality rates and controlling disease spread. Traditional laboratory-based diagnostic methods face challenges such as high costs, time consumption, and a lack of trained personnel in resource-poor settings. Diagnostic biosensors have gained momentum as a potential solution, offering advantages such as low cost, high sensitivity, ease of use, and portability. Nanobiosensors are a promising tool for detecting and diagnosing infectious diseases such as coronavirus disease, human immunodeficiency virus, and hepatitis. These sensors use nanostructured carbon nanotubes, graphene, and nanoparticles to detect specific biomarkers or pathogens. They operate through mechanisms like the lateral flow test platform, where a sample containing the biomarker or pathogen is applied to a test strip. If present, the sample binds to specific recognition probes on the strip, indicating a positive result. This binding event is visualized through a colored line. This review discusses the importance, benefits, and potential of nanobiosensors in detecting infectious diseases.
  16. Gan X, Gong T, Zheng Y, Gopinath SCB, Zhao K
    Biotechnol Appl Biochem, 2021 Apr;68(2):272-278.
    PMID: 32275089 DOI: 10.1002/bab.1921
    C-reactive protein (CRP) is an acute phase reactant to be a marker of inflammation and has been correlated with the cardiac injury. An immunoassay was performed using anti-human CRP antibody on an InterDigitated electrode (IDE) sensor to determine and specify CRP concentration for diagnosing the condition of myocardial inflammation. To promote the detection, gold nanoparticle (GNP) was seeded on the aminated-IDE surface. Anti-CRP was hitched on the GNP-seeded surface and identified the abundance of CRP. The limit of quantification was found as 100 fM, and the higher current response was noticed by increasing CRP concentrations with the sensitivity at 1 pM. Furthermore, CRP-spiked human serum did not interfere the determination of CRP and increased the current response, indicating suitability for a real-life sample. Similarly, the control experiments with nonimmune antibody Troponin I are not showing the definite current responses, proving the selective identification of CRP. This method of diagnosing is needful to determine the cardiovascular injury at the right time.
  17. Gao M, Sun Y, Wang Q, Ma S, Guo X, Zhou L, et al.
    PMID: 34523748 DOI: 10.1002/bab.2254
    Nanomaterial on the sensing area elevates the biomolecular immobilization by its right orientation with a proper alignment, and zeolite is one of the suitable materials. In this research, the zeolite nanoparticles were synthesized using rice hush ash as the basic source and the prepared zeolite by the addition of sodium silicate was utilized to attach antibody as a probe on a gap-fingered dielectrode surface to identify the colon cancer biomarker, "colon cancer-secreted protein-2" (CCSP-2). Field Emission Scanning Electron Microscopy and Field Emission Transmission Electron Microscopy images confirmed the size of the nanoparticle to be ∼15 nm and the occurrence of silica and alumina. Zeolite was modified on the electrode surface through the amine linker, and then anti-CCSP-2 was attached by an aldehyde linker. On this surface, CCSP-2 was detected and attained the detection limit to be 3 nM on the linear regression curve with 3-5 nM of CCSP-2. Estimated by the determination coefficient of y = 2.3952x - 4.4869 and R2 = 9041 with 3δ (n = 3). In addition, control proteins did not produce the notable current response representing the specific sensing of CCSP-2. This research is suitable to identify CCSP-2 at a lower level in the bloodstream under the physiological condition of a colon cancer patient.
  18. Gopinath SCB, Ismail ZH, Shapiai MI, Sobran NMM
    PMID: 33835514 DOI: 10.1002/bab.2164
    Artificial intelligence of things (AIoT) has become a potential tool for use in a wide range of fields, and its use is expanding in interdisciplinary sciences. On the other hand, in a clinical scenario, human blood-clotting disease (Royal disease) detection has been considered an urgent issue that has to be solved. This study uses AIoT with deep long short-term memory networks for biosensing application and analyzes the potent clinical target, human blood clotting factor IX, by its aptamer/antibody as the probe on the microscaled fingers and gaps of the interdigitated electrode. The earlier results by the current-volt measurements have shown the changes in the surface modification. The limit of detection (LOD) was noticed as 1 pM with the antibody as the probe, whereas the aptamer behaved better with the LOD at 100 fM. The time-series predictions from the AIoT application supported the obtained results with the laboratory analyses using both probes. This application clearly supports the results obtained from the interdigitated electrode sensor as aptamer to be the better option for analyzing the blood clotting defects. The current study supports a great implementation of AIoT in sensing application and can be followed for other clinical biomarkers.
  19. Gopinath SCB, Xuan S
    Biotechnol Appl Biochem, 2021 Jun;68(3):554-559.
    PMID: 32460382 DOI: 10.1002/bab.1961
    One of the current issues with thyroid tumor is early diagnosis as it makes the higher possibility of curing. This research was focused to detect and quantify the level of specific target sequence complementation of miR-222 with capture DNA sequence on interdigitated electrode (IDE) sensor. The aluminum electrode with the gap and finger sizes of 10 µm was fabricated on silicon wafer, further the surface was amine-functionalized for accommodating carboxylated-DNA probe. With DNA-target RNA complementation, the detection limit was attained to be 1 fM as estimated by a linear regression analysis [y = 1.5325x - 2.1171 R² = 0.9065] and the sensitivity was at the similar level. Current responses were higher by increasing the target RNA sequence concentrations. Control experiments with mismatched/noncomplementary sequences were failed to complement the capture DNA sequence immobilized on IDE, indicating the specific target validation. This research helps diagnosing and identifying the progression with thyroid tumor and miRNA being a potential "marker" in atypia diagnosis.
  20. Gopinath SCB, Ismail ZH, Shapiai MI, Yasin MNM
    PMID: 34009645 DOI: 10.1002/bab.2196
    Current developments in sensors and actuators are heralding a new era to facilitate things to happen effortlessly and efficiently with proper communication. On the other hand, Internet of Things (IoT) has been boomed up with er potential and occupies a wide range of disciplines. This study has choreographed to design of an algorithm and a smart data-processing scheme to implement the obtained data from the sensing system to transmit to the receivers. Technically, it is called "telediagnosis" and "remote digital monitoring," a revolution in the field of medicine and artificial intelligence. For the proof of concept, an algorithmic approach has been implemented for telediagnosis with one of the degenerative diseases, that is, Parkinson's disease. Using the data acquired from an improved interdigitated electrode, sensing surface was evaluated with the attained sensitivity of 100 fM (n = 3), and the limit of detection was calculated with the linear regression value coefficient. By the designed algorithm and data processing with the assistance of IoT, further validation was performed and attested the coordination. This proven concept can be ideally used with all sensing strategies for immediate telemedicine by end-to-end communications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links