Displaying publications 1 - 20 of 172 in total

Abstract:
Sort:
  1. Othman SH, Shapi'i RA, Ronzi NDA
    Carbohydr Polym, 2024 Apr 01;329:121735.
    PMID: 38286535 DOI: 10.1016/j.carbpol.2023.121735
    Starch biopolymer films incorporated with chitosan nanoparticles (CNP) or starch/CNP films are promising alternatives to non-degradable food packaging materials. The films can be utilized for active food packaging applications because CNP exhibits antimicrobial and antioxidant properties, which can improve food shelf-life. Nonetheless, knowledge of the effects of CNP inclusion on the properties of starch films is not fully elucidated. This paper reviews the influences of various concentrations of CNP, sizes of CNP, and other additives on the mechanical, thermal, barrier, antimicrobial, antioxidant, biodegradability, and cytotoxicity properties of starch/CNP films as well as the mechanisms involved in relation to food packaging applications. The usage of starch/CNP films for active food packaging can help to reduce environmental issues and contribute to food safety and security.
  2. Yu H, Zheng Y, Zhou C, Liu L, Wang L, Cao J, et al.
    Carbohydr Polym, 2024 Feb 01;325:121583.
    PMID: 38008470 DOI: 10.1016/j.carbpol.2023.121583
    The potential of ultrasonication-driven molecular self-assembly of whey protein isolate (WPI) with chitosan (CS)/chitooligosaccharide (COS) to stabilize Pickering emulsions was examined, based on CS/COS ligands-induced partial unfolding in remodeling the Pickering particles features. Multi-spectral analysis suggested obvious changes in conformational structures of WPI due to interaction with CS/COS, with significantly higher unfolding degrees of WPI induced by COS. Non-covalent interactions were identified as the major forces for WPI-CS/COS conjugates. Ultrasonication enhanced electrostatic interaction between CS's -NH3 groups and WPI's -COO- groups which improved emulsification activity and storability of WPI-COS stabilized Pickering emulsion. This was attributed to increased surface hydrophobicity and decreased particle size compared to WPI-CS associated with differential unfolding degrees induced by different saccharide ligands. CLSM and SEM consistently observed smaller emulsion droplets in WPI-COS complexes than WPI-CS/COS particles tightly adsorbed at the oil-water interface. The electrostatic self-assembly of WPI with CS/COS greatly enhanced the encapsulation efficiency of quercetin than those stabilized by WPI alone and ultrasound further improved encapsulation efficiency. This corresponded well with the quantitative affinity parameters between quercetin and WPI-CS/COS complexes. This investigation revealed the great potential of glycan ligands-induced conformational transitions of extrinsic physical disruption in tuning Pickering particle features.
  3. Anjani QK, Sabri AHB, Hamid KA, Moreno-Castellanos N, Li H, Donnelly RF
    Carbohydr Polym, 2023 Nov 15;320:121194.
    PMID: 37659788 DOI: 10.1016/j.carbpol.2023.121194
    Carvedilol, a β-blocker prescribed for chronic heart failure, suffers from poor bioavailability and rapid first pass metabolism when administered orally. Herein, we present the development of tip microarray patches (MAPs) composed of ternary cyclodextrin (CD) complexes of carvedilol for transdermal delivery. The ternary complex with hydroxypropyl γ-cyclodextrin (HPγCD) and poly(vinyl pyrrolidone) (PVP) reduced the crystallinity of carvedilol, as evidenced by DSC, XRD, NMR, and SEM analysis. MAPs were fabricated using a two-step process with the ternary complex as the needle layer. The resulting MAPs were capable of breaching ex vivo neonatal porcine skin to a depth ≈600 μm with minimal impact to needle height. Upon insertion, the needle dissolved within 2 h, leading to the transdermal delivery of carvedilol. The MAPs displayed minimal toxicity and acceptable biocompatibility in cell assays. In rats, MAPs achieved significantly higher AUC levels of carvedilol than oral administration, with a delayed Tmax and sustained plasma levels over several days. These findings suggest that the carvedilol-loaded dissolving MAPs have the potential to revolutionise the treatment of chronic heart failure.
  4. Hasnan NSN, Mohamed MA, Nordin NA, Wan Ishak WNR, Kassim MB
    Carbohydr Polym, 2023 Oct 01;317:121096.
    PMID: 37364961 DOI: 10.1016/j.carbpol.2023.121096
    Cellulose continues to play an important and emerging role in photocatalysis, and its favourable properties, such as electron-rich hydroxyl groups, could enhance the performance of photocatalytic reactions. For the first time, this study exploited the kapok fibre with microtubular structure (t-KF) as a solid electron donor to enhance the photocatalytic activity of C-doped g-C3N4 (CCN) via ligand-to-metal-charge-transfer (LMCT) to improve hydrogen peroxide (H2O2) production performance. As confirmed by various characterisation techniques, the hybrid complex consisting of CCN grafted on t-KF was successfully developed in the presence of succinic acid (SA) as a cross-linker via a simple hydrothermal approach. The complexation formation between CCN and t-KF results in the CCN-SA/t-KF sample displaying a higher photocatalytic activity than pristine g-C3N4 to produce H2O2 under visible light irradiation. The enhanced physicochemical and optoelectronic properties of CCN-SA/t-KF imply that the LMCT mechanism is crucial in improving photocatalytic activity. This study promotes utilising the unique t-KF material's properties to develop a low-cost and high-performance cellulose-based LMCT photocatalyst.
  5. Gundupalli MP, Cheenkachorn K, Chuetor S, Kirdponpattara S, Gundupalli SP, Show PL, et al.
    Carbohydr Polym, 2023 Apr 15;306:120599.
    PMID: 36746569 DOI: 10.1016/j.carbpol.2023.120599
    Pretreatment with pure, mixed, and diluted deep eutectic solvents (DESs) was evaluated for its effect on Napier grass through compositional and characterization studies. The morphological changes of biomass caused by pretreatment were analyzed by FTIR and XRD. The cellulose and hemicellulose content after pretreatment using mixed DES increased and decreased 1.29- and 4.25-fold, respectively, when compared to untreated Napier grass. The crystallinity index (CrI. %) of mixed DES sample increased due to the maximum removal of hemicellulose (76 %) and delignification of 62 %. The material costs of ChCl/FA and ChCl/LA for a single run are ≈2.16 USD and ≈1.65 USD, respectively. Pure DES showed that ChCl/LA pretreatment enhanced delignification efficiency and that ChCl/FA increased hemicellulose removal. It was estimated that a single run using ChCl/LA:ChCl/FA to achieve maximum hemicellulose and lignin removal would cost approximately ≈1.89 USD. Future work will evaluate the effect of DES mixture on enzyme digestibility and ethanol production from Napier grass. HYPOTHESES: Deep eutectic solvent (DES) pretreatment studies on the fractionation of lignocellulosic biomass have grown exponentially. The use of pure and diluted DES has been reported to improve saccharification efficiency, delignification, and cellulose retention (Gundupalli et al., 2022). These studies have reported maximum lignin removal but also a lower effect on hemicellulose removal from lignocellulosic biomass. It was hypothesized that mixing two pure DESs could result in maximum removal of hemicellulose and lignin after pretreatment. To our knowledge, no studies have been performed to investigate the efficiency of pretreatment using a DES mixture and compared the outcome with pure and diluted DESs. Furthermore, it was hypothesized that using two pure DESs in a mixed form could lower the material cost for each experimental run. Process efficiency was determined by compositional, XRD, and FTIR analysis. Avenues for future research include determining glucose and ethanol yields during the enzymatic saccharification and fermentation processes.
  6. Yang J, Xu S, Wang W, Ran X, Ching YC, Sui X, et al.
    Carbohydr Polym, 2023 Jan 15;300:120253.
    PMID: 36372510 DOI: 10.1016/j.carbpol.2022.120253
    In this work, a systematic coupling study of silane coupling agent between starch and epoxidized soybean oils (ESO) was carried out. Starch was modified by 3-aminopropyl trimethoxy silane (APMS) with various contents of NaOH. The APMS-modified starch was incorporated with ESO to synthesize the bioplastics by solution casting. As demonstrated by the FTIR spectra, the hydrogen bond interactions among starch molecules were inhibited by the modification. This outcome provided higher interaction and compatibility of starch with ESO, as confirmed by FESEM. TGA showed that the thermal stability of starch decreased considerably after the silylation. In contrast, the produced bioplastics with silylated starch exhibited higher thermal stability than the control sample. Regarding the bioplastics, an obvious increase of tensile strength from 5.78 MPa to 9.29 MPa was obtained. This work suggested a simple and effective modification technique by APMS to improve compatibility of starch/ESO-based bioplastics with superior mechanical and thermal properties.
  7. Tan RSL, Hassandarvish P, Chee CF, Chan LW, Wong TW
    Carbohydr Polym, 2022 Aug 15;290:119500.
    PMID: 35550778 DOI: 10.1016/j.carbpol.2022.119500
    The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
  8. Lai D, Zhou F, Zhou A, Hamzah SS, Zhang Y, Hu J, et al.
    Carbohydr Polym, 2022 Apr 15;282:119112.
    PMID: 35123747 DOI: 10.1016/j.carbpol.2022.119112
    In this study, a biodegradable photodynamic antibacterial film (Car-Cur) was prepared using casting method with κ-Carrageenan (κ-Car) as film-forming substrate and curcumin-β-cyclodextrin (Cur-β-CD) complex as photosensitizer. The comprehensive performance of this Car-Cur film was investigated. The obtained results showed that the concentration of Cur-β-CD was an important factor determining the properties of film including tensile strength (TS) elongation at break (EB), water vapor permeability (WVP), water content (WC) and thermal stability. When the concentration of Cur-β-CD is 1%, the film demonstrated the maximum TS and EB, increased thermal stability, with desirable WVP and WC. Furthermore, this film also showed good photodynamic antibacterial potential against Staphylococcus aureus and Escherichia coli upon irradiation of blue LED light. Moreover, the film can be degraded in the soil in one week. In conclusion, our results suggested Car-Cur photodynamic film could be developed as biodegradable antimicrobial packaging material for food preservation.
  9. Mat Zin MI, Jimat DN, Wan Nawawi WMF
    Carbohydr Polym, 2022 Apr 01;281:119038.
    PMID: 35074115 DOI: 10.1016/j.carbpol.2021.119038
    We evaluate the physiochemical properties of chitin nanopaper derived from three commonly cultivated mushrooms: shiitake (Lentinula edodes), oyster (Pleurotus ostreatus), and enoki (Flammulina velutipes). Mild alkaline extraction of fungal sample yields higher chitin recovery per dry weight (23-35%) compared to crustacean source (9.7%). Our extract readily defibrillates into 15-20 nm width fiber after 5 min blending in domestic kitchen blender, implying a simple and cost-effective nanofiber preparation. Enoki nanopaper was found to be more crystalline and possess slightly higher modulus and tensile strength (Eenoki = 2.83 GPa, σenoki = 51 MPa) compared to oyster and shiitake nanopaper (Eoyster = 2.28 GPa, σoyster = 45 MPa; Eshiitake = 2.59 GPa, σshitake = 43 MPa). However, oyster nanopaper exhibit higher toughness (1.92 MJ/m3) and larger strain at break (5.63%) because of their relatively smaller fibers promote a denser fibrous network that can sustain and absorb higher external loading.
  10. Oladzadabbasabadi N, Mohammadi Nafchi A, Ariffin F, Wijekoon MMJO, Al-Hassan AA, Dheyab MA, et al.
    Carbohydr Polym, 2022 Feb 01;277:118876.
    PMID: 34893279 DOI: 10.1016/j.carbpol.2021.118876
    Current environmental concerns fostered a strong interest in extracting polymers from renewable feedstocks. Chitosan, a second most abundant polysaccharide after cellulose, may prove to be a promising green material owing to its renewability, inherent biodegradablity, natural availability, non-toxicity, and ease of modification. This review is intended to comprehensively overview the recent developments on the isolation of chitosan from chitin, its modification and applications as a reinforcing candidate for food packaging materials, emphasizing the scientific underpinnings arising from its physicochemical properties, antimicrobial, antioxidant, and antifungal activities. We review various chitosan-reinforced composites reported in the literature and comprehensively present intriguing mechanical and other functional properties. We highlight the contribution of these mechanically robust and responsive materials to extend the shelf-life and maintain the qualities of a wide range of food commodities. Finally, we assess critical challenges and highlight future opportunities towards understanding the versatile applications of chitosan nanocomposites.
  11. Lee WK, Ho CL
    Carbohydr Polym, 2022 Feb 01;277:118764.
    PMID: 34893214 DOI: 10.1016/j.carbpol.2021.118764
    Sulphated polysaccharides (SPs) are carbohydrate macromolecules with sulphate esters that are found among marine algae, seagrasses, mangroves and some terrestrial plants. The sulphate concentration in the ocean (28 mM) since ancient time could have driven the production of SPs in marine algae. SPs have a gelatinous property that can protect marine algae against desiccation and salinity stress. Agar and carrageenan are red algal SPs that are widely used as gelling agents in the food and pharmaceutical industries. The information on the SPs from freshwater and land plants are limited. In this review, we reviewed the taxonomic distribution and composition of SPs in different photosynthetic lineages, and explored the association of SP production in these diversified photosynthetic organisms with evolution history and environmental stresses. We also reviewed the genes/proteins involved in SP biosynthesis. Insights into SP biosynthetic machinery may shed light on the evolution that accompanied adaptation to life on earth.
  12. Yusefi M, Lee-Kiun MS, Shameli K, Teow SY, Ali RR, Siew KK, et al.
    Carbohydr Polym, 2021 Dec 01;273:118523.
    PMID: 34560940 DOI: 10.1016/j.carbpol.2021.118523
    Magnetic polymer nanocomposites are inherently multifunctional and harbor assorted physiochemical actions for applications thereof as novel drug nanocarriers. Herein, Fe3O4-nanoparticles were supported on rice straw cellulose for 5-fluorouracil carrier abbreviated as MC/5-FU for potential colorectal cancer treatments. Several analyses indicated the multifunctional properties of MC/5-FU bionanocomposites. Transmission and scanning electron microscopy study demonstrated that Fe3O4 nanofillers covered the cellulose matrix. The drug release from MC/5-FU was evaluated under various pH and temperature conditions, showing the maximum release at pH 7.4 and 44.2 °C. In in vitro anticancer assay, MC/5-FU exhibited enhanced selectivity and anticancer actions against 2D monolayer and 3D tumour spheroid models colorectal cancer cells. The anticancer effects of MC/5-FU with magnetic targeting and heat induction were also examined. This easily synthesized MC/5-FU indicated the potential in application as a low-cost drug formulation for colorectal cancer treatments.
  13. Latifi M, Ahmad A, Hassan NH, Ben Youcef H, Kaddami H
    Carbohydr Polym, 2021 Dec 01;273:118542.
    PMID: 34560954 DOI: 10.1016/j.carbpol.2021.118542
    Carboxymethyl chitin (CMChit) has the potential to be used as a solid polymer electrolyte (SPE) based on its ionic conductivity value of the order of 10-6 S·cm-1 in self-standing membranes. In controlled humidity of 65RH%, carboxymethyl chitin based membrane blended with 1-Butyl-3-methylimidazolium acetate (BMIM[Ac]) ionic liquid (IL) (40 wt%) showed a threshold value of ionic conductivity in the order of 10-4 S·cm-1 and electrochemical stability was up to 2.93 V. The effects of the relative humidity and ionic liquid weight fraction on the ionic conductivity and structural changes were investigated in detail. Furthermore, the X-ray diffraction (XRD) diffractogram indicated a clear reduction of crystallinity of the CMChit. The Field-emission scanning electron microscopy (FESEM) observation of the cross-sections confirmed the homogeneity of the prepared blend. This electrolyte was tested in symmetric cells based on Zn//SPE//Zn and showed good reversibility and potential for application in proton-conducting batteries.
  14. Alfatama M, Lim LY, Wong TW
    Carbohydr Polym, 2021 Dec 01;273:118487.
    PMID: 34560934 DOI: 10.1016/j.carbpol.2021.118487
    This study designed chitosan species-coated calcium alginate beads through concurrent core-coat formation. Chitosan oleate was synthesized by carbodiimide chemistry and characterized by 1H NMR and FTIR techniques. Chitosan or chitosan oleate was coated onto the forming alginate or alginate/tripolyphosphate core using vibratory nozzle extrusion-microencapsulation approach, followed by calcium crosslinking. Chlorpheniramine maleate served as a model water-soluble drug. The molecular characteristics, size, shape, morphology, swelling, erosion, water uptake, drug content and drug release profiles of beads were evaluated. Discrete spherical coated beads were obtained through minimizing successive bead adhesion through an interplay of nozzle vibrational frequency and polymeric solution flow rate. The tripolyphosphate ions in the core possessed higher diffusional kinetics than alginate and were better able to attract chitosan species onto bead surfaces to facilitate alginate-chitosan coacervation. Amphiphilic chitosan oleate formed smaller aggregates than chitosan. It interacted with greater ease with core alginate and tripolyphosphate. The gain in alginate/tripolyphosphate interaction with chitosan oleate at the core-coat interface enhanced bead robustness against swelling and water uptake with drug release consequently dependent on the loss of alginate-drug interaction.
  15. Ikram M, Hayat S, Imran M, Haider A, Naz S, Ul-Hamid A, et al.
    Carbohydr Polym, 2021 Oct 01;269:118346.
    PMID: 34294353 DOI: 10.1016/j.carbpol.2021.118346
    In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.
  16. Huang L, Li S, Tan CP, Feng Y, Zhang B, Fu X, et al.
    Carbohydr Polym, 2021 Sep 01;267:118181.
    PMID: 34119149 DOI: 10.1016/j.carbpol.2021.118181
    Lauric acid was introduced into "Empty" V-type starch using a solid encapsulation method. The structural characteristics and emulsifying properties of the starch-fatty acid complex (SFAC) were explored as a function of the complexing temperature. X-ray diffraction and differential scanning calorimetry confirmed that SFAC was mainly composed of type-I amylose inclusion complexes. Contact angle measurements revealed that the hydrophobic properties of SFAC were closely related to the temperature-regulated complex index. The particle size range of SFAC gradually increased as the complexing temperature increased. The SFAC-stabilized Pickering emulsion at c of 5% and Φ of 40-60% possessed a small droplet size and long-term storage stability for up to 30 days, resulting from the formation of a gel-like network. This study provides new insight into the design of hydrophobic modified starch as a novel and multifunctional emulsifier and is of great help in the development of starch-based Pickering emulsion gels.
  17. Abd Rahman NH, Jaafar NR, Shamsul Annuar NA, A Rahman R, Abdul Murad AM, El-Enshasy HA, et al.
    Carbohydr Polym, 2021 Sep 01;267:118159.
    PMID: 34119133 DOI: 10.1016/j.carbpol.2021.118159
    Cross-linked enzyme aggregates (CLEAs) are influenced by mass diffusion limitations such as the degree of molecular cross-linking attained, which affects substrate accessibility. Thus, this study seeks to improve substrate accessibility using macromolecular cross-linkers in cross-linked levanase aggregates (CLLAs) formation for levan-type fructooligosaccharides (L-FOS) production. Dialdehyde starch-tapioca (DAST) was successfully developed and used to cross-link levanase to form CLLAs-D and with bovine serum albumin (BSA) to form CLLAs-DB which showed activity recoveries of 65.6% and 81.6%, respectively. After cross-linking, the pH (6-10) and thermal stability (30-40 °C) increased, and organic solvent tolerance resulted in the activation of CLLAs. Likewise, CLLAs-DB had higher substrate affinity and accessibility and a higher effectiveness factors than CLLAs-D. The total L-FOS yield of CLLAs-DB (78.9% (w/v)) was higher than that of CLLAs-D (62.4% (w/v)). Therefore, as a cross-linker, DAST may have application prospects as a promising and green biocatalyst for product formation.
  18. Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, et al.
    Carbohydr Polym, 2021 Sep 01;267:118136.
    PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136
    Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.
  19. Wong LC, Leh CP, Goh CF
    Carbohydr Polym, 2021 Jul 15;264:118036.
    PMID: 33910744 DOI: 10.1016/j.carbpol.2021.118036
    Hydrogels are an attractive system for a myriad of applications. While most hydrogels are usually formed from synthetic materials, lignocellulosic biomass appears as a sustainable alternative for hydrogel development. The valorization of biomass, especially the non-woody biomass to meet the growing demand of the substitution of synthetics and to leverage its benefits for cellulose hydrogel fabrication is attractive. This review aims to present an overview of advances in hydrogel development from non-woody biomass, especially using native cellulose. The review will cover the overall process from cellulose depolymerization, dissolution to crosslinking reaction and the related mechanisms where known. Hydrogel design is heavily affected by the cellulose solubility, crosslinking method and the related processing conditions apart from biomass type and cellulose purity. Hence, the important parameters for rational designs of hydrogels with desired properties, particularly porosity, transparency and swelling characteristics will be discussed. Current challenges and future perspectives will also be highlighted.
  20. Wu JY, Ooi CW, Song CP, Wang CY, Liu BL, Lin GY, et al.
    Carbohydr Polym, 2021 Jun 15;262:117910.
    PMID: 33838797 DOI: 10.1016/j.carbpol.2021.117910
    N-[(2-hydroxyl-3-trimethylammonium) propyl] chitosan chloride (HTCC), which is a type of chitosan derivative with quaternary ammonium groups, possesses a higher antibacterial activity as compared to the pristine chitosan. The nanofiber membranes made of HTCC are attractive for applications demanding for antibacterial function. However, the hydrophilic nature of HTCC makes it unsuitable for electrospinning of nanofibers. Hence, biodegradable polyvinyl alcohol (PVA) was proposed as an additive to improve the electrospinnability of HTCC. In this work, PVA/HTCC nanofiber membrane was crosslinked with the blocked diisocyanate (BI) to enhance the stability of nanofiber membrane in water. Microbiological assessments showed that the PVA/HTCC/BI nanofiber membranes possessed a good antibacterial efficacy (∼100 %) against E. coli. Moreover, the biocompatibility of PVA/HTCC/BI nanofiber membrane was proven by the cytotoxicity test on mouse fibroblasts. These promising results indicated that the PVA/HTCC/BI nanofiber membrane can be a promising material for food packaging and as a potential wound dressing for skin regeneration.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links