Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Abdullah MN, Ali Y, Abd Hamid S
    Chem Biol Drug Des, 2022 Dec;100(6):921-934.
    PMID: 34651438 DOI: 10.1111/cbdd.13974
    Tyrosine kinase overexpression could result in an unfavourable consequence of cancer progression in the body. A number of kinase inhibitor drugs targeting various cancer-related protein kinases have been developed and proven successful in clinical therapy. Benzimidazole is one of the most studied scaffolds in the search for effective anticancer drugs. The association of various functional groups and the structural design of the compounds may influence the binding towards the receptor. Despite numerous publications on the design, synthesis and biological assays of benzimidazole derivatives, their inhibitory activities against epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK), have not been specifically analysed. This review covers recent research reports on the anticancer activity of benzimidazole derivatives focusing on EGFR expression cell lines, based on their structure-activity relationship study. We believe it would aid researchers to envision the challenges and explore benzimidazole's potentials as tyrosine kinase inhibitors.
  2. Ahmad S, Usman Mirza M, Yean Kee L, Nazir M, Abdul Rahman N, Trant JF, et al.
    Chem Biol Drug Des, 2021 Oct;98(4):604-619.
    PMID: 34148292 DOI: 10.1111/cbdd.13914
    3CLpro is essential for SARS-CoV-2 replication and infection; its inhibition using small molecules is a potential therapeutic strategy. In this study, a comprehensive crystallography-guided fragment-based drug discovery approach was employed to design new inhibitors for SARS-CoV-2 3CLpro. All small molecules co-crystallized with SARS-CoV-2 3CLpro with structures deposited in the Protein Data Bank were used as inputs. Fragments sitting in the binding pocket (87) were grouped into eight geographical types. They were interactively coupled using various synthetically reasonable linkers to generate larger molecules with divalent binding modes taking advantage of two different fragments' interactions. In total, 1,251 compounds were proposed, and 7,158 stereoisomers were screened using Glide (standard precision and extra precision), AutoDock Vina, and Prime MMGBSA. The top 22 hits having conformations approaching the linear combination of their constituent fragments were selected for MD simulation on Desmond. MD simulation suggested 15 of these did adopt conformations very close to their constituent pieces with far higher binding affinity than either constituent domain alone. These structures could provide a starting point for the further design of SARS-CoV-2 3CLpro inhibitors with improved binding, and structures are provided.
  3. Ahmad W, Kumolosasi E, Jantan I, Bukhari SN, Jasamai M
    Chem Biol Drug Des, 2014 Jun;83(6):670-81.
    PMID: 24406103 DOI: 10.1111/cbdd.12280
    Arachidonic acid and its metabolites have generated a heightened interest due to their significant role in inflammation. Inhibiting the enzymes involved in arachidonic acid metabolism has been considered as the synergistic anti-inflammatory effect. A series of novel curcumin diarylpentanoid analogues were synthesized and evaluated for their inhibitory effects on activity of secretory phospholipase A2 , cyclooxygenases, soybean lipo-oxygenase as well as microsomal prostaglandin E synthase-1. Among the curcumin analogues, compounds 3, 6, 9, 12, and 17 exhibited strong inhibition of secretory phospholipase A2 activity, with IC50 values ranging from 5.89 to 11.02 μm. Seven curcumin analogues 1, 3, 6, 7, 9, 11, and 12 showed inhibition of cyclooxygenases-2 with IC50 values in the range of 46.11 to 94.86 μm, which were lower than that of curcumin. Compounds 3, 6, 7, 12, and 17 showed strong inhibition of lipo-oxygenase enzyme activity. Preliminary screening of diarylpentanoid curcumin analogues for microsomal prostaglandin E synthase-1 activity revealed that four diarylpentanoid curcumin analogues 5, 6, 7, and 13 demonstrated higher inhibition of microsomal prostaglandin E synthase-1 activity with IC50 ranging from 2.41 to 4.48 μm, which was less than that of curcumin. The present results suggest that some of these diarylpentanoid analogues were able to inhibit the activity of these enzymes. This raises the possibility that diarylpentanoid analogues of curcumin might serve as useful starting point for the design of improved anti-inflammatory agents.
  4. Akbar R, Jusoh SA, Amaro RE, Helms V
    Chem Biol Drug Des, 2017 May;89(5):762-771.
    PMID: 27995760 DOI: 10.1111/cbdd.12900
    Finding pharmaceutically relevant target conformations from an arbitrary set of protein conformations remains a challenge in structure-based virtual screening (SBVS). The growth in the number of available conformations, either experimentally determined or computationally derived, obscures the situation further. While the inflated conformation space potentially contains viable druggable targets, the increase of conformational complexity, as a consequence, poses a selection problem. To address this challenge, we took advantage of machine learning methods, namely an over-sampling and a binary classification procedure, and present a novel method to select druggable receptor conformations. Specifically, we trained a binary classifier on a set of nuclear receptor conformations, wherein each conformation was labeled with an enrichment measure for a corresponding SBVS. The classifier enabled us to formulate suggestions and identify enriching SBVS targets for six of seven nuclear receptors. Further, the classifier can be extended to other proteins of interest simply by feeding new training data sets to the classifier. Our work, thus, provides a methodology to identify pharmaceutically interesting receptor conformations for nuclear receptors and other drug targets.
  5. Ali-Seyed M, Jantan I, Vijayaraghavan K, Bukhari SN
    Chem Biol Drug Des, 2016 Apr;87(4):517-36.
    PMID: 26535952 DOI: 10.1111/cbdd.12682
    An important method of drug discovery is examination of diverse life forms, including medicinal plants and natural products or bioactive compounds isolated from these sources. In cancer research, lead structures of compounds from natural sources can be used to design novel chemotherapies with enhanced biological properties. Betulinic acid (3β-hydroxy-lup-20(29)-en-28-oic acid or BetA) is a naturally occurring pentacyclic triterpene with a wide variety of biological activities, including potent antitumor properties. Non-malignant cells and normal tissues are not affected by BetA. Because BetA exerts its effects directly on the mitochondrion and triggers death of cancerous cells, it is an important alternative when certain chemotherapy drugs fail. Mitochondrion-targeted agents such as BetA hold great promise to circumvent drug resistance in human cancers. BetA is being developed by a large network of clinical trial groups with the support of the U.S. National Cancer Institute. This article discusses recent advances in research into anticancer activity of BetA, relevant modes of delivery, and the agent's therapeutic efficacy, mechanism of action, and future perspective as a pipeline anticancer drug. BetA is a potentially important agent in cancer therapeutics.
  6. Baig AM, Khan NA, Katyara P, Lalani S, Baig R, Nadeem M, et al.
    Chem Biol Drug Des, 2021 01;97(1):18-27.
    PMID: 32602961 DOI: 10.1111/cbdd.13755
    Acanthamoeba spp. cause a corneal infection, Acanthamoeba keratitis (AK), and a cerebral infection, granulomatous amoebic encephalitis (GAE). Though aggressive chemotherapy has been able to kill the active trophozoite form of Acanthamoeba, the encysted form of this parasite has remained problematic to resist physiological concentrations of drugs. The emergence of encysted amoeba into active trophozoite form poses a challenge to eradicate this parasite. Acanthamoeba trophozoites have active metabolic machinery that furnishes energy in the form of ATPs by subjecting carbohydrates and lipids to undergo pathways including glycolysis and beta-oxidation of free fatty acids, respectively. However, very little is known about the metabolic preferences and dependencies of an encysted trophozoite on minerals or potential nutrients that it consumes to live in an encysted state. Here, we investigate the metabolic and nutrient preferences of the encysted trophozoite of Acanthamoeba castellanii and the possibility to target them by drugs that act on calcium ion dependencies of the encysted amoeba. The experimental assays, immunostaining coupled with bioinformatics tools show that the encysted Acanthamoeba uses diverse nutrient pathways to obtain energy in the quiescent encysted state. These findings highlight potential pathways that can be targeted in eradicating amoebae cysts successfully.
  7. Bukhari SN, Zhang X, Jantan I, Zhu HL, Amjad MW, Masand VH
    Chem Biol Drug Des, 2015 Jun;85(6):729-42.
    PMID: 25328063 DOI: 10.1111/cbdd.12457
    A novel series of 1,3-diphenyl-2-propen-1-one (chalcone) derivatives was synthesized by a simple, eco-friendly, and efficient Claisen-Schmidt condensation reaction and used as precursors for the synthesis of new pyrazoline derivatives. All the synthesized compounds were screened for anti-inflammatory related activities such as inhibition of phospholipase A(2) (PLA(2)), cyclooxygenases (COX-1 and COX-2), IL-6, and TNF-α. The results of the above studies show that the compounds synthesized are effective inhibitors of above pro-inflammatory enzymes and cytokines. Overall, the results of the studies reveal that the pyrazolines with chlorophenyl substitution (1b-6b) seem to be important for inhibition of enzymes and cytokines. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX-inhibitory activities of the investigated compounds.
  8. Bukhari SN, Tajuddin Y, Benedict VJ, Lam KW, Jantan I, Jalil J, et al.
    Chem Biol Drug Des, 2014 Feb;83(2):198-206.
    PMID: 24433224 DOI: 10.1111/cbdd.12226
    Inhibitory effects on neutrophils' chemotaxis, phagocytosis and production of reactive oxygen species (ROS) are among the important targets in developing anti-inflammatory agents and immunosuppressants. Eight series of chalcone derivatives including five newly synthesized series were assessed for their inhibitory effects on chemotaxis, phagocytosis and ROS production in human polymorphonuclear neutrophils (PMNs). Inhibition of PMNs' chemotaxis and phagocytosis abilities were investigated using the Boyden chamber technique and the Phagotest kit, respectively, while ROS production was evaluated using luminol- and lucigenin-based chemiluminescence assay. The new derivatives (4d and 8d), which contain 4-methylaminoethanol functional group were active in all the assays performed. It was also observed that some of the compounds were active in inhibiting chemotaxis while others suppressed phagocytosis and ROS production. The information obtained gave new insight into chalcone derivatives with the potential to be developed as immunomodulators.
  9. Gan CS, Lim SK, Chee CF, Yusof R, Heh CH
    Chem Biol Drug Des, 2018 02;91(2):448-455.
    PMID: 28834304 DOI: 10.1111/cbdd.13091
    Dengvaxia® (CTD-TDV), the only licensed tetravalent dengue vaccine by Sanofi Pasteur, was made available since 2015. However, administration of CTD-TDV, in general, has not received the prequalification recommendation from the World Health Organization. Having a universal antidengue agent for treatment will therefore beneficial. Accordingly, the development of nucleoside inhibitors specific to dengue viral polymerase that perturb dengue infection has been studied by many. Alternatively, we have used a marketed anti-HCV prodrug sofosbuvir to study its in silico and in vitro effects against dengue. As a result, the active metabolite of sofosbuvir (GS-461203) was predicted to bind to the catalytic motif (Gly-Asp-Asp) of dengue viral polymerase with binding affinity of -6.9 kcal/mol. Furthermore, sofosbuvir demonstrated excellent in vitro viral inhibition with an EC90 of 0.4 μm. In addition, this study demonstrated the requirement of specific liver enzymes to activate the prodrug into GS-461203 to exert its antidengue potential. All in all, sofosbuvir should be subjected to in-depth studies to provide information of its efficacy toward dengue and its lead potential as DENV polymerase inhibitor in human subjects. In conclusion, we have expended the potential of the clinically available drug sofosbuvir as treatment for dengue.
  10. Heh CH, Othman R, Buckle MJ, Sharifuddin Y, Yusof R, Rahman NA
    Chem Biol Drug Des, 2013 Jul;82(1):1-11.
    PMID: 23421589 DOI: 10.1111/cbdd.12122
    Various works have been carried out in developing therapeutics against dengue. However, to date, no effective vaccine or anti-dengue agent has yet been discovered. The development of protease inhibitors is considered as a promising option, but most previous works have involved competitive inhibition. In this study, we focused on rational discovery of potential anti-dengue agents based on non-competitive inhibition of DEN-2 NS2B/NS3 protease. A homology model of the DEN-2 NS2B/NS3 protease (using West Nile Virus NS2B/NS3 protease complex, 2FP7, as the template) was used as the target, and pinostrobin, a flavanone, was used as the standard ligand. Virtual screening was performed involving a total of 13 341 small compounds, with the backbone structures of chalcone, flavanone, and flavone, available in the ZINC database. Ranking of the resulting compounds yielded compounds with higher binding affinities compared with the standard ligand. Inhibition assay of the selected top-ranking compounds against DEN-2 NS2B/NS3 proteolytic activity resulted in significantly better inhibition compared with the standard and correlated well with in silico results. In conclusion, via this rational discovery technique, better inhibitors were identified. This method can be used in further work to discover lead compounds for anti-dengue agents.
  11. Heng HL, Chee CF, Thy CK, Tee JT, Chin SP, Herr DR, et al.
    Chem Biol Drug Des, 2019 02;93(2):132-138.
    PMID: 30216681 DOI: 10.1111/cbdd.13390
    Compounds with activity at serotonin (5-hydroxytryptamine) 5-HT2 and α1 adrenergic receptors have potential for the treatment of central nervous system disorders, drug addiction or overdose. Isolaureline, dicentrine and glaucine enantiomers were synthesized, and their in vitro functional activities at human 5-HT2 and adrenergic α1 receptor subtypes were evaluated. The enantiomers of isolaureline and dicentrine acted as antagonists at 5-HT2 and α1 receptors with (R)-isolaureline showing the greatest potency (pKb  = 8.14 at the 5-HT2C receptor). Both (R)- and (S)-glaucine also antagonized α1 receptors, but they behaved very differently to the other compounds at 5-HT2 receptors: (S)-glaucine acted as a partial agonist at all three 5-HT2 receptor subtypes, whereas (R)-glaucine appeared to act as a positive allosteric modulator at the 5-HT2A receptor.
  12. Huq AM, Wai LK, Rullah K, Mohd Aluwi MFF, Stanslas J, Jamal JA
    Chem Biol Drug Des, 2019 03;93(3):222-231.
    PMID: 30251480 DOI: 10.1111/cbdd.13404
    Hormone replacement therapy has been a conventional treatment for postmenopausal symptoms in women. However, it has potential risks of breast and endometrial cancers. The aim of this study was to evaluate the oestrogenicity of a plant-based compound, mimosine, in MCF-7 cells by in silico model. Cell viability and proliferation, ERα-SRC1 coactivator activity and expression of specific ERα-dependent marker TFF1 and PGR genes were evaluated. Binding modes of 17β-oestradiol and mimosine at the ERα ligand binding domain were compared using docking and molecular dynamics simulation experiments followed by binding interaction free energy calculation with molecular mechanics/Poisson-Boltzmann surface area. Mimosine showed increased cellular viability (64,450 cells/ml) at 0.1 μM with significant cell proliferation (120.5%) compared to 17β-oestradiol (135.2%). ER antagonist tamoxifen significantly reduced proliferative activity mediated by mimosine (49.9%). Mimosine at 1 μM showed the highest ERα binding activity through increased SRC1 recruitment at 186.9%. It expressed TFF1 (11.1-fold at 0.1 μM) and PGR (13.9-fold at 0.01 μM) genes. ERα-mimosine binding energy was -49.9 kJ/mol, and it interacted with Thr347, Gly521 and His524 of ERα-LBD. The results suggested that mimosine has oestrogenic activity.
  13. Imran S, Taha M, Ismail NH, Kashif SM, Rahim F, Jamil W, et al.
    Chem Biol Drug Des, 2016 Mar;87(3):361-73.
    PMID: 26362113 DOI: 10.1111/cbdd.12666
    We report herein the synthesis, α-glucosidase inhibition and docking studies for a series of 3-15 new flavones. A simple nucleophilic substitution reaction takes place between 3'hydroxyflavone (2) with halides to afford the new flavones. Chalcone (1), 3'hydroxyflavone (2) and the newly synthesized flavones (3-15) were being evaluated for their ability to inhibit activity of α-glucosidase. Compounds 2, 3, 5, 7-10 and 13 showed good inhibitory activity with IC50 values ranging between 1.26 and 36.44 μm as compared to acarbose (IC50 = 38.25 ± 0.12 μm). Compounds 5 (5.45 ± 0.08 μm), 7 (1.26 ± 0.01 μm) and 8 (8.66 ± 0.08 μm) showed excellent inhibitory activity, and this may be due to trifluoromethyl substitution that is common for these compounds. Compound 7, a 2,5-trifluoromethyl-substituted compound, recorded the highest inhibition activity, and it is thirty times better than the standard drug. Docking studies for compound 7 suggest that both trifluoromethyl substituents are well positioned in a binding pocket surrounded by Phe300, Phe177, Phe157, Ala278, Asp68, Tyr71 and Asp214. The ability of compound 7 to interact with Tyr71 and Phe177 is extremely significant as they are found to be important for substrates recognition by α-glucosidase.
  14. Kar SS, Bhat VG, Shenoy VP, Bairy I, Shenoy GG
    Chem Biol Drug Des, 2019 01;93(1):60-66.
    PMID: 30118192 DOI: 10.1111/cbdd.13379
    In our efforts to develop druggable diphenyl ethers as potential antitubercular agents, a series of novel diphenyl ether derivatives (5a-f, 6a-f) were designed and synthesized. The representative compounds showed promising in vitro activity against drug-susceptible, isoniazid-resistant, and multidrug-resistant strains of Mycobacterium tuberculosis with MIC values of 1.56 μg/ml (6b), 6.25 μg/ml (6a-d), and 3.125 μg/ml (6b-c), respectively. All the synthesized compounds exhibited satisfactory safety profile (CC50  > 300 μg/ml) against Vero and HepG2 cells. Reverse phase HPLC method was used to probe the physicochemical properties of the synthesized compounds. This series of compounds demonstrated comparatively low logP values. pKa values of representative compounds indicated that they were weak acids. Additionally, in vitro human liver microsomal stability assay confirmed that the synthesized compounds possessed acceptable stability under study conditions. The present study thus establishes compound 6b as the most promising antitubercular agent with acceptable drug-likeness.
  15. Leng J, Qin HL, Zhu K, Jantan I, Hussain MA, Sher M, et al.
    Chem Biol Drug Des, 2016 Jul 19.
    PMID: 27434226 DOI: 10.1111/cbdd.12822
    Neurodegeneration, a complex disease state, comprises several pathways that contribute to cell death. Conventional approach of targeting only one of these pathways has not been proven to be entirely successful and has demanded a hypothetical change as to how researchers design and develop new drugs. In this study, effects of a series of α, β-unsaturated carbonyl-based tetralone derivatives against Alzheimer's disease (AD) were investigated. Moreover, their activity toward amyloid β-induced cytotoxicity was also studied. Six compounds including 3f, 3o, 3u, 3ae, 3af, and 3ag were discovered to be most protective against Aβ-induced neuronal cell death in PC12 cells. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against MAO-B, AChE, and self-induced Aβ1-42 aggregation. The compound 3f exhibited best AChE (IC50  = 0.045 ± 0.02 μm) inhibitory potential in addition to potent inhibition of MAO-B (IC50  = 0.88 ± 0.12 μm). Furthermore, compound 3f disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 78.2 ± 4.8%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment.
  16. Lim SK, Othman R, Yusof R, Heh CH
    Chem Biol Drug Des, 2021 01;97(1):28-40.
    PMID: 32657543 DOI: 10.1111/cbdd.13756
    Structure-based virtual screening (SBVS) has served as a popular strategy for rational drug discovery. In this study, we aimed to discover novel benzopyran-based inhibitors that targeted the NS3 enzymes (NS3/4A protease and NS3 helicase) of HCV G3 using a combination of in silico and in vitro approaches. With the aid of SBVS, six novel compounds were discovered to inhibit HCV G3 NS3/4A protease and two phytochemicals (ellagic acid and myricetin) were identified as dual-target inhibitors that inhibited both NS3/4A protease and NS3 helicase in vitro (IC50  = 40.37 ± 5.47 nm and 6.58 ± 0.99 µm, respectively). Inhibitory activities against the replication of HCV G3 replicons were further assessed in a cell-based system with four compounds showed dose-dependent inhibition. Compound P8 was determined to be the most potent compound from the cell-based assay with an EC50 of 19.05 µm. The dual-target inhibitor, ellagic acid, was determined as the second most potent (EC50  = 32.37 µm) and the most selective in its inhibitory activity against the replication of HCV replicons, without severely affecting the viability of the host cells (selectivity index > 6.18).
  17. Loo JSE, Yong AYY, Yong YN
    Chem Biol Drug Des, 2020 11;96(5):1244-1254.
    PMID: 32462752 DOI: 10.1111/cbdd.13733
    Both the inactive- and active-state CB1 receptor crystal structures have now been solved, allowing their application in various structure-based drug design methods. One potential method utilizing these crystal structures is the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method of predicting relative binding free.
  18. Mphahlele MJ, Magwaza NM, Malindisa ST, Choong YS
    Chem Biol Drug Des, 2021 08;98(2):234-247.
    PMID: 34013660 DOI: 10.1111/cbdd.13893
    The 2-aryl-2,3-dihydrobenzodiazaborinin-4(1H)-ones (azaborininone) were synthesized as analogues of the 2-arylquinazoline-4-ones and screened through enzymatic assay in vitro for inhibitory effect against α-glucosidase and α-amylase activities. These azaborininones exhibited moderate to good inhibitory effect against these enzymes compared to acarbose used as a reference standard. The results are supported by the enzyme-ligand interactions through kinetics (in vitro) and molecular docking (in silico) studies. The test compounds also exhibited significant antioxidant activity through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. These azaborininone derivatives exhibited no effect on the viability of the human lung cancer (A549) cell line after 24 hr and were also not toxic towards the Vero cells.
  19. Muhamad A, Ho KL, Rahman MB, Uhrín D, Tan WS
    Chem Biol Drug Des, 2013 Jun;81(6):784-94.
    PMID: 23405984 DOI: 10.1111/cbdd.12120
    A specific ligand targeting the immunodominant region of hepatitis B virus is desired in neutralizing the infectivity of the virus. In a previous study, a disulfide constrained cyclic peptide cyclo S(1) ,S(9) Cys-Glu-Thr-Gly-Ala-Lys-Pro-His-Cys (S(1) , S(9) -cyclo-CETGAKPHC) was isolated from a phage displayed cyclic peptide library using an affinity selection method against hepatitis B surface antigen. The cyclic peptide binds tightly to hepatitis B surface antigen with a relative dissociation constant (KD (rel) ) of 2.9 nm. The binding site of the peptide was located at the immunodominant region on hepatitis B surface antigen. Consequently, this study was aimed to elucidate the structure of the cyclic peptide and its interaction with hepatitis B surface antigen in silico. The solution structure of this cyclic peptide was solved using (1) H, (13) C, and (15) N NMR spectroscopy and molecular dynamics simulations with NMR-derived distance and torsion angle restraints. The cyclic peptide adopted two distinct conformations due to the isomerization of the Pro residue with one structured region in the ETGA sequence. Docking studies of the peptide ensemble with a model structure of hepatitis B surface antigen revealed that the cyclic peptide can potentially be developed as a therapeutic drug that inhibits the virus-host interactions.
  20. Munusamy V, Yap BK, Buckle MJ, Doughty SW, Chung LY
    Chem Biol Drug Des, 2013 Feb;81(2):250-6.
    PMID: 23039820 DOI: 10.1111/cbdd.12069
    Selective blockade of the serotonin 5-HT(2A) receptor is a useful therapeutic approach for a number of disorders, including schizophrenia, insomnia and ischaemic heart disease. A series of aporphines were docked into a homology model of the rat 5-HT(2A) receptor using AutoDock. Selected compounds with high in silico binding affinities were screened in vitro using radioligand-binding assays against rat serotonin (5-HT(1A) and 5-HT(2A)) and dopamine (D1 and D2) receptors. (R)-Roemerine and (±)-nuciferine were found to have high affinity for the 5-HT(2A) receptor (K(i) = 62 and 139 nM, respectively), with (R)-roemerine showing 20- to 400-fold selectivity for the 5-HT(2A) receptor over the 5-HT(1A), D1 and D2 receptors. Investigation into the ligand-receptor interactions suggested that the selectivity of (R)-roemerine is due to it having stronger H-bonding and dipole-dipole interactions with several of the key residues in the 5-HT(2A) receptor-binding site.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links