Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Zhan SZ, Li JH, Zhang GH, Liu XW, Li M, Zheng J, et al.
    Chem Commun (Camb), 2019 Oct 03;55(80):11992-11995.
    PMID: 31498358 DOI: 10.1039/c9cc05236d
    A luminescent edge-interlocked heteroleptic metallocage based on Cu3(pyrazolate)3 was prepared through a ligand replacement reaction from a homoleptic metallocage and a new ligand. Its structure was confirmed by XRD and MALDI-TOF mass spectrometry. Theoretical calculations revealed the new ligand was evidently responsible for the bathochromic shift of the optimal excitation. This work provides a heteroleptic strategy to regulate the interlocking fashion and photophysical mechanism of metallocages based on Cu3(pyrazolate)3.
  2. Yu CY, Ang GY, Yean CY
    Chem Commun (Camb), 2013 Mar 11;49(20):2019-21.
    PMID: 23370051 DOI: 10.1039/c3cc39144b
    We developed a multiplex enzyme-based electrochemical genosensor for sequence-specific detection of multiplex linear-after-the-exponential-PCR amplicons that targeted toxigenic Vibrio cholerae O1 and O139 using novel screen-printed gold electrode bisensors.
  3. Yeo CI, Halim SN, Ng SW, Tan SL, Zukerman-Schpector J, Ferreira MA, et al.
    Chem Commun (Camb), 2014 Jun 7;50(45):5984-6.
    PMID: 24763907 DOI: 10.1039/c4cc02040e
    Evidence for C-H···π(CuCl···HNCS) interactions, i.e. C-H···π(quasi-chelate ring) where a six-membered quasi-chelate ring is closed by an N-H···Cl hydrogen bond, is presented based on crystal structure analyses of (Ph3P)2Cu[ROC(=S)N(H)Ph]Cl. Similar intramolecular interactions are identified in related literature structures. Calculations suggest that the energy of attraction provided by such interactions approximates 3.5 kcal mol(-1).
  4. Yeap CSY, Chaibun T, Lee SY, Zhao B, Jan Y, La-O-Vorakiat C, et al.
    Chem Commun (Camb), 2021 Nov 16;57(91):12155-12158.
    PMID: 34726213 DOI: 10.1039/d1cc05181d
    We report a highly sensitive and selective multiplex assay by empowering an electrochemical DNA sensor with isothermal rolling circle amplification. The assay could simultaneously detect and discriminate three common entero-pathogens in a single reaction, with femtomolar sensitivity. It is useful for field- or resource-limited settings.
  5. Uddin S, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M
    Chem Commun (Camb), 2020 Oct 19.
    PMID: 33073787 DOI: 10.1039/d0cc04491a
    We report a new series of lipid-based biocompatible ionic liquids (LBILs) consisting of the long-chain phosphonium compound 1,2-dimyristoyl-sn-glycero-3-ethyl-phosphatidylcholine as the cation and the long-chain fatty acids stearic acid, oleic acid, or linoleic acid as anions. These materials were found to be completely miscible with many polar and nonpolar organic solvents as well as dispersible in water. These LBILs also exhibited excellent biocompatibility with an artificial three-dimensional human epidermis model.
  6. Tiekink ER
    Chem Commun (Camb), 2014 Oct 4;50(76):11079-82.
    PMID: 25130670 DOI: 10.1039/c4cc04972a
    In this Viewpoint, the impact of the paper published by Gautam R. Desiraju and Angelo Gavezzotti (J. Chem. Soc., Chem. Commun., 1989, 621) upon the development of Crystal Engineering, now recognised a key discipline in contemporary chemical/pharmaceutical/materials science, is discussed.
  7. Tiekink ER, Zukerman-Schpector J
    Chem Commun (Camb), 2011 Jun 21;47(23):6623-5.
    PMID: 21455512 DOI: 10.1039/c1cc11173f
    Crystal structures of transition and main group element 1,1-dithiolates are shown to be partially sustained by C-H···π(chelate) interactions. For the planar binary bisdithiocarbamates, C-H···π(MS(2)C) interactions lead to aggregation patterns ranging from a 0-D four molecule aggregate to a 3-D architecture but with the majority of structures featuring 1-D or 2-D supramolecular assemblies.
  8. Tan LL, Ong WJ, Chai SP, Mohamed AR
    Chem Commun (Camb), 2014 Jul 4;50(52):6923-6.
    PMID: 24841282 DOI: 10.1039/c4cc01304b
    A facile and dopant-free strategy was employed to fabricate oxygen-rich TiO2 (O2-TiO2) with enhanced visible light photoactivity. Such properties were achieved by the in situ generation of oxygen through the thermal decomposition of the peroxo-titania complex. The O2-TiO2 photocatalyst exhibited high photoactivity towards CO2 reduction under visible light.
  9. Tan KC, Pei Q, Yu J, Wen H, Yu Y, Wang J, et al.
    Chem Commun (Camb), 2023 Apr 04;59(28):4177-4180.
    PMID: 36942825 DOI: 10.1039/d3cc00068k
    Sodium phenoxide is a potentially promising hydrogen storage material due to its high hydrogen capacity and enhanced thermodynamic properties. Nevertheless, efficient catalysts are still lacking due to the high kinetic barrier for the reversible hydrogen uptake and release of sodium phenoxide. In the current work, a comparative study on the catalytic hydrogenation of sodium phenoxide was conducted. To our delight, a simple yet effective ruthenium-based catalyst was identified to respond aggressively to hydrogen in the solid-state hydrogenation of sodium phenoxide even at room temperature. The activity was enhanced by 6 fold with the as-synthesized 5.0% Ru/TiO2 catalyst as compared to that with commercial 5.0% Ru/Al2O3, respectively, under the same conditions.
  10. Salleh MH, Glidle A, Sorel M, Reboud J, Cooper JM
    Chem Commun (Camb), 2013 Apr 18;49(30):3095-7.
    PMID: 23396529 DOI: 10.1039/c3cc38228a
    We demonstrate a polymer resonator microfluidic biosensor that overcomes the complex manufacturing procedures required to fabricate traditional devices. In this new format, we show that a gapless light coupling photonic configuration, fabricated in SU8 polymer, can achieve high sensitivity, label-free chemical sensing in solution and high sensitivity biological sensing, at visible wavelengths.
  11. Ong WJ, Tan LL, Chai SP, Yong ST
    Chem Commun (Camb), 2015 Jan 18;51(5):858-61.
    PMID: 25429376 DOI: 10.1039/c4cc08996k
    A facile one-pot impregnation-thermal reduction strategy was employed to fabricate sandwich-like graphene-g-C3N4 (GCN) nanocomposites using urea and graphene oxide as precursors. The GCN sample exhibited a slight red shift of the absorption band edge attributed to the formation of a C-O-C bond as a covalent cross linker between graphene and g-C3N4. The GCN sample demonstrated high visible-light photoactivity towards CO2 reduction under ambient conditions, exhibiting a 2.3-fold enhancement over pure g-C3N4. This was ascribed to the inhibition of electron-hole pair recombination by graphene, which increased the charge transfer.
  12. Nordin D, Yarkoni O, Donlon L, Savinykh N, Frankel D
    Chem Commun (Camb), 2012 Jan 18;48(5):672-4.
    PMID: 22129789 DOI: 10.1039/c1cc15902j
    Highly ordered ring-like structures are formed via the directed assembly of lipid domains in supported bilayers, using the extracellular matrix protein fibronectin. The ability of biological molecules to guide nanoscale assembly suggests potential biomimetic approaches to nanoscale structures.
  13. Ngo TA, Dinh H, Nguyen TM, Liew FF, Nakata E, Morii T
    Chem Commun (Camb), 2019 Oct 15;55(83):12428-12446.
    PMID: 31576822 DOI: 10.1039/c9cc04661e
    DNA is an attractive molecular building block to construct nanoscale structures for a variety of applications. In addition to their structure and function, modification the DNA nanostructures by other molecules opens almost unlimited possibilities for producing functional DNA-based architectures. Among the molecules to functionalize DNA nanostructures, proteins are one of the most attractive candidates due to their vast functional variations. DNA nanostructures loaded with various types of proteins hold promise for applications in the life and material sciences. When loading proteins of interest on DNA nanostructures, the nanostructures by themselves act as scaffolds to specifically control the location and number of protein molecules. The methods to arrange proteins of interest on DNA scaffolds at high yields while retaining their activity are still the most demanding task in constructing usable protein-modified DNA nanostructures. Here, we provide an overview of the existing methods applied for assembling proteins of interest on DNA scaffolds. The assembling methods were categorized into two main classes, noncovalent and covalent conjugation, with both showing pros and cons. The recent advance of DNA-binding adaptor mediated assembly of proteins on the DNA scaffolds is highlighted and discussed in connection with the future perspectives of protein assembled DNA nanoarchitectures.
  14. Nagai K, Kuwabara T, Ahmad MF, Nakano M, Karakawa M, Taima T, et al.
    Chem Commun (Camb), 2019 Oct 15;55(83):12491-12494.
    PMID: 31573004 DOI: 10.1039/c9cc04759j
    Photoelectrochemical oxidation of thiols was enhanced with a threshold potential of -0.35 V vs. Ag/AgCl by the use of a ZnPc/PCBM:P3HT/ZnO electode, which was prepared by removing the PEDOT:PSS/Au electrode of an inverted OPV device and coating it with ZnPc. A co-photocatalysis property of ZnPc was observed in the photoelectrochemistry and scanning Kelvin probe microscopy.
  15. Nabila FH, Islam R, Shimul IM, Moniruzzaman M, Wakabayashi R, Kamiya N, et al.
    Chem Commun (Camb), 2024 Apr 09;60(30):4036-4039.
    PMID: 38466016 DOI: 10.1039/d3cc06130b
    Herein, we report ethosome (ET) formulations composed of a safe amount of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)-based ionic liquid with various concentrations of ethanol as a carrier for the transdermal delivery of a high molecular weight drug, insulin. The Insulin-loaded ET vesicles exhibited long-term stability compared to conventional DMPC ETs, showing significantly higher drug encapsulation efficiency and increased skin permeation ability.
  16. Lythell E, Suardíaz R, Hinchliffe P, Hanpaibool C, Visitsatthawong S, Oliveira ASF, et al.
    Chem Commun (Camb), 2020 Jun 23;56(50):6874-6877.
    PMID: 32432618 DOI: 10.1039/d0cc02520h
    MCR (mobile colistin resistance) enzymes catalyse phosphoethanolamine (PEA) addition to bacterial lipid A, threatening the "last-resort" antibiotic colistin. Molecular dynamics and density functional theory simulations indicate that monozinc MCR supports PEA transfer to the Thr285 acceptor, positioning MCR as a mono- rather than multinuclear member of the alkaline phosphatase superfamily.
  17. Ling I, Kumari H, Mirzamani M, Sobolev AN, Garvey CJ, Atwood JL, et al.
    Chem Commun (Camb), 2018 Sep 25;54(77):10824-10827.
    PMID: 30140821 DOI: 10.1039/c8cc05650a
    We report on the assembly of three-fold axially compressed icosahedral arrays of the bowl shaped p-sulfonatocalix[4]arene molecules in the solid-state, intricately bound to dipicolinate and yttrium(iii) ions, with the compression reflected in Hirshfeld surface analyses. Solution studies show dissolution of the icosahedra intact, but with a geometrical rearrangement to regular icosahedra.
  18. Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, et al.
    Chem Commun (Camb), 2024 Apr 16.
    PMID: 38625567 DOI: 10.1039/d3cc06015b
    Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
  19. Kumar A, Hegde G, Manaf SA, Ngaini Z, Sharma KV
    Chem Commun (Camb), 2014 Oct 28;50(84):12702-5.
    PMID: 25100105 DOI: 10.1039/c4cc04378b
    Porous Carbon Nanoparticles (PCNs) with well-developed microporosity were obtained from bio-waste oil palm leaves (OPL) using single step pyrolysis in nitrogen atmosphere at 500-600 °C in tube-furnace without any catalysis support. The key approach was using silica (SiO2) bodies of OPL as a template in the synthesis of microporous carbon nanoparticles with very small particle sizes of 35-85 nm and pore sizes between 1.9-2 nm.
  20. Kong XY, Choo YY, Chai SP, Soh AK, Mohamed AR
    Chem Commun (Camb), 2016 Dec 06;52(99):14242-14245.
    PMID: 27872917
    Photocatalytic CO2 reduction over the UV-Vis-NIR broad spectrum was realized for the first time. The presence of surface oxygen vacancy defects on Bi2WO6 resulted in significant photocatalytic enhancement over the pristine counterpart under UV and visible light irradiation. Meanwhile, the photocatalytic responsiveness of Bi2WO6-OV was successfully extended to the NIR region.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links