Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Woon CK, Ahmad FB, Zamakshshari NH
    Chem Biodivers, 2023 Sep;20(9):e202300166.
    PMID: 37515318 DOI: 10.1002/cbdv.202300166
    Cancer has become the primary cause of death worldwide, and anticancer drugs are used to combat this disease. Synthesis of anticancer drugs has limited success due to adverse side effects has made compounds from natural products with minimal toxicity gain much popularity. Piper species are known to have a biological effect on human health. The biological activity is due to Piper species rich with active secondary metabolites that can combat most diseases, including cancer. This review will discuss the phytochemistry of Piper species and their anticancer activity. The identification and characterization of ten active metabolites isolated from Piper species were discussed in detail and their anticancer mechanism. These metabolites were mainly found could inhibit anticancer through caspase and P38/JNK pathways. The findings discussed in this review support the therapeutic potential of Piper species against cancer due to their rich source of active metabolites with demonstrated anticancer activity.
  2. Choe J, Har Yong P, Xiang Ng Z
    Chem Biodivers, 2022 Nov;19(11):e202200655.
    PMID: 36125969 DOI: 10.1002/cbdv.202200655
    Selected traditional medicinal plants exhibit therapeutic effects in coronavirus disease (Covid-19) patients. This review aims to identify the phytochemicals from five traditional medicinal plants (Glycyrrhiza glabra, Nigella sativa, Curcuma longa, Tinospora cordifolia and Withania somnifera) with high potential in modulating the main protease (Mpro) activity and cytokine storm in Covid-19 infection. The Mpro binding affinity of 13 plant phytochemicals were in the following order: Withanoside II>withanoside IV>withaferin A>α-hederin>withanoside V>sitoindoside IX>glabridin>liquiritigenin, nigellidine>curcumin>glycyrrhizin>tinocordiside>berberine. Among these phytochemicals, glycyrrhizin, withaferin A, curcumin, nigellidine and cordifolioside A suppressed SARS-CoV-2 replication and showed stronger anti-inflammatory activities than standard Covid-19 drugs. Both preclinical and clinical evidences supported the development of plant bioactive compounds as Mpro inhibitors.
  3. Amil MA, Rahman SNSA, Yap LF, Razak FA, Bakri MM, Salem LSO, et al.
    Chem Biodivers, 2024 Mar;21(3):e202301836.
    PMID: 38253795 DOI: 10.1002/cbdv.202301836
    Essential oils have been recognised for their potential benefits in oral care. The aim of this study was to evaluate the antibacterial and antiproliferative activity of essential oils derived from four Zingiberaceae species. A combination of GC/MS and GC-FID was employed to analyse these essential oils. The results showed that β-myrcene (79.77 %) followed by ethyl-cinnamate (40.14 %), β-curcumene (34.90 %), and alloaromadendrene (25.15 %) as the primary constituents of Curcuma mangga, Curcuma xanthorrhiza, Kaempferia galanga and Curcuma aeruginosa, respectively. The Zingiberaceae oils were tested for their antibacterial activity against oral bacteria using the disc diffusion test. Curcuma xanthorrhiza oil showed the largest inhibition zones against Streptococcus mitis (19.50±2.22 mm) and Streptococcus sanguinis (15.04±3.05 mm). Similarly, Curcuma mangga oil exhibited significant antibacterial activity against Streptococcus mutans (12.55±0.45 mm) and mixed oral bacteria (15.03±3.82 mm). Furthermore, the MTT viability assay revealed moderate inhibitory activity of these essential oils against H103 and ORL-204 oral cancer cells. The study findings demonstrate that Curcuma xanthorrhiza and Curcuma mangga essential oils have potent antibacterial properties, suggesting their potential use as natural alternatives to synthetic antibacterial agents in oral care products. However, further investigations are necessary to fully explore their therapeutic applications.
  4. Khan KM, Nadeem MF, Mannan A, Chohan TA, Islam M, Ansari SA, et al.
    Chem Biodivers, 2024 Jan;21(1):e202301375.
    PMID: 38031244 DOI: 10.1002/cbdv.202301375
    Trillium govanianum is a high-value medicinal herb, having multifunctional traditional and culinary uses. The present investigation was carried out to evaluate the phytochemical, biological and toxicological parameters of the T. govanianum Wall. ex D. Don (Family: Trilliaceae) roots collected from Azad Kashmir, Pakistan. Phytochemical profiling was achieved by determining total bioactive contents (total phenolic and flavonoid contents) and UHPLC-MS analysis. For biological evaluation, antioxidant activities (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation assays) and enzyme inhibition activities (against AChE, BChE, glucosidase, amylase, and tyrosinase) were performed. Moreover, cytotoxicity was assessed against three human carcinoma cell lines (MDA-MB-231, CaSki, and DU-145). The tested extract was found to contain higher total phenolics (7.56 mg GAE/g dry extract) as compared to flavonoid contents (0.45 mg RE/g dry extract). Likewise, for the antioxidant activity, higher CUPRAC activity was noted with 39.84 mg TE/g dry extract values. In the case of enzyme assays, higher activity was pointed out against the cholinesterase, glucosidase and tyrosinase enzymes. The plant extract displayed significant cytotoxicity against the cell lines examined. Moreover, the in-silico studies highlighted the interaction between the important phytochemicals and tested enzymes. To conclude, the assessed biological activity and the existence of bioactive phytochemicals in the studied plant extract may pave the way for the development of novel pharmaceuticals.
  5. Ullah S, Anwar F, Fayyaz Ur Rehman M, Qadir R, Safwan Akram M
    Chem Biodivers, 2023 Jul;20(7):e202300107.
    PMID: 37172296 DOI: 10.1002/cbdv.202300107
    This article presents an optimized ultrasound-assisted ethanolic extraction (UAEE) and characterization of selected high-value components from Gemlik olive fruit (GOF) harvested from Potohar region of Pakistan. Response surface methodology (RSM), involving central composite design (CCD), was applied to optimize the extraction variables i. e., temperature (25-65 °C), extraction time (15-45 min) and aqueous ethanol concentration (60-90 %) for optimal recovery of bioactives extract, total phenolic contents (TPC) and DPPH free radical scavengers. Under the optimized set of conditions such as 43 °C temperature, 32 min extraction time and 80 % aqueous ethanol, the best extract yield (218.82 mg/g), TPC (19.87 mg GAE/g) and DPPH scavenging activity (63.04 %) were recorded. A quadratic polynomial model was found to be reasonably fitted to the observed results for extract yield (p<0.0001 and R2 =0.9941), TPC (p<0.0001 and R2 =0.9891), and DPPH radical scavenging activity (p<0.0001 and R2 =0.9692). Potent phenolic compounds were identified by GC/MS in GOF extract and considerable amount of essential fatty acids were also detected. The current findings support the use of UAEE as an effective green route for optimized recovery of high-value components from GOF and hence its applications can be extended to functional food and nutra-pharmaceutical developments.
  6. Chutrakul C, Alcocer M, Bailey K, Peberdy JF
    Chem Biodivers, 2008 Sep;5(9):1694-706.
    PMID: 18816522 DOI: 10.1002/cbdv.200890158
    Trichoderma spp. are regularly found as a constituent of the mycoflora of many soils and are noted for their antagonistic activity against bacteria and other fungi. This latter property is the basis for the widespread interest in their use in the biological control of soil-borne fungal plant pathogens. This antagonism is partly based on their ability to produce an impressive inventory of secondary metabolites. An important group of bioactive metabolites produced by Trichoderma spp. are the non-ribosomal peptides (NRPs), especially the peptaibols. A virulent antagonistic strain, T. asperellum, which had been used in biological control strategies in Malaysia and previously examined for mycolytic enzyme production, has been studied for its potential for peptaibol production. The present research demonstrated the ability of T. asperellum to produce at least two metabolites which were identified as acid trichotoxin 1704E (Ac-Aib-Gly-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Ala-Aib-Pro-Leu-Aib-Iva-Glu-Vol) and neutral trichotoxin 1717A (Ac-Aib-Gly-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Aib-Aib-Pro-Leu-Aib-Iva-Gln-Vol). Addition of free Aib to the culture medium enhanced the production of trichotoxins. Biological activity of these substances was investigated against Bacillus stearothermophilus. The general characteristics of peptaibols, also found in the trichotoxins, include the presence of high proportions of the uncommon amino acid Aib, the protection of the N- and C-termini by an acetyl group and reduction of the C-terminus to 2-amino alcohols, respectively, amphipathy and microheterogeneity.
  7. Hisam Zamakshshari N, Adewale Ahmed I, Nazil Afiq Nasharuddin M, Syahira Zaharudin N, Mohd Hashim N, Othman R
    Chem Biodivers, 2023 Jun;20(6):e202300111.
    PMID: 37236908 DOI: 10.1002/cbdv.202300111
    The relevance of the lignocellulosic substrate in the cultivation of mushrooms has lent support to the exploration of several lignocellulosic agro wastes. This study was, thus, aimed at the evaluation of durian peel as an alternative substrate for more sustainable mushroom cultivation and climate change mitigation. The secondary metabolites and biological activities of both aqueous and organic mushroom (Pleurotus pulmonarius (Fr.) Quel.) extract cultured on durian peel and rubberwood sawdust substrate were compared using GCMS, LCMS as well as various biological assays (cytotoxicity, antimicrobial and antioxidant activities). Mushroom extracts from durian peel substrates possess remarkable biological activities. The results showed that the aqueous extracts had poor antimicrobial activities. The organic extracts were more active against cancer cells than the aqueous extracts, while the aqueous extracts were more potent as antioxidants than the organic extracts. Overall, the mushroom extract from the durian substrate was the most effective except against A549 and SW948, while the aqueous extract from the durian substrate was the most effective against the A549 cancer cell lines with 29.53±2.39 % inhibition. On the other hand, the organic mushroom extract from the sawdust substrate was the most effective against SW948 with 60.24±2.45 % inhibition. Further studies, however, are needed to elucidate the molecular mechanism of action of P. pulmonarius extracts against cancer cell proliferation and the effect of the substrates on the nutritional composition, secondary metabolites, and other biological activities of P. pulmonarius extracts.
  8. Izwan Mohd Lazim M, Safinar Ismail I, Shaari K, Abd Latip J, Ali Al-Mekhlafi N, Morita H
    Chem Biodivers, 2013 Sep;10(9):1589-96.
    PMID: 24078592 DOI: 10.1002/cbdv.201200391
    A chemical investigation of the alkaloidal fraction of Dysoxylum acutangulum leaves led to the isolation and characterization of two new chromone alkaloid analogs named chrotacumines E and F (1 and 2, resp.). Structure elucidation of 1 and 2 was achieved by spectroscopic analyses, including 2D-NMR. Both of these alkaloids exhibited modest activities as tyrosinase inhibitors with 29.2 and 25.8% inhibition at 100 μg/ml, respectively.
  9. Jong WW, Tan PJ, Kamarulzaman FA, Mejin M, Lim D, Ang I, et al.
    Chem Biodivers, 2013 Aug;10(8):1475-86.
    PMID: 23939795 DOI: 10.1002/cbdv.201200303
    Photodynamic therapy (PDT) is a medical treatment that involves the irradiation of an administered photosensitizing drug with light of a particular wavelength to activate the photosensitizer to kill abnormal cells. To date, only a small number of photosensitizers have been clinically approved for PDT, and researchers continue to look for new molecules that have more desirable properties for clinical applications. Natural products have long been important sources of pharmaceuticals, and there is a great potential for discovery of novel chemotypes from under-explored biodiversities in the world. The objective of this study is to mine the terrestrial plants in Sarawak, Borneo Island, for new photosensitizers for PDT. In a screening program from 2004 to 2008, we prepared and studied 2,400 extracts from 888 plants for their photosensitizing activities. This report details the bioprospecting process, preparation and testing of extracts, analysis of the active samples, fractionation of four samples, and isolation and characterization of photosensitizers.
  10. Kamarulzaman FA, Shaari K, Ho AS, Lajis NH, Teo SH, Lee HB
    Chem Biodivers, 2011 Mar;8(3):494-502.
    PMID: 21404433 DOI: 10.1002/cbdv.201000341
    In our screening program for new photosensitizers from Malaysian biodiversity for photodynamic therapy (PDT) of cancer, MeOH extracts of ten terrestrial plants from Cameron Highlands in Pahang, Peninsular Malaysia, were tested. In a short-term 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 20 μg/ml each of these extracts were incubated in a pro-myelocytic leukemia cell-line, HL60, with or without irradiation with 9.6 J/cm(2) of a broad spectrum light. Three samples, Labisia longistyla, Dichroa febrifuga, and Piper penangense, were photocytotoxic by having at least twofold lower cell viability when irradiated compared to the unirradiated assay. The extract of the leaves of Piper penangense, a shrub belonging to the family Piperaceae and widely distributed in the tropical and subtropical regions in the world, was subsequently subjected to bioassay-guided fractionation using standard chromatography methods. Eight derivatives of pheophorbide-a and -b were identified from the fractions that exhibited strong photocytotoxicity. By spectroscopic analysis, these compounds were identified as pheophorbide-a methyl ester (1), (R,S)-13(2) -hydroxypheophorbide-a methyl ester (2 and 3), pheophorbide-b methyl ester (4), 13(2) -hydroxypheophorbide-b methyl ester (5), 15(2) -hydroxylactone pheophorbide-a methyl ester (6), 15(2) -methoxylactone pheophorbide-a methyl ester (7), 15(2) -methoxylactone pheophorbide-b methyl ester (8).
  11. Hwong CS, Leong KH, Aziz AA, Kong KW
    Chem Biodivers, 2023 Jul;20(7):e202300215.
    PMID: 37278124 DOI: 10.1002/cbdv.202300215
    This study aimed to fractionate Alternanthera sessilis Red (ASR) crude extracts and determine their antioxidant activities as well as the related active components in the whole plant. ASR was extracted with water and ethanol, and further separated using a Sephadex LH-20 column. Following the assessments of the polyphenolic contents and antioxidant activities of crude extracts (H2 OASR and EtOHASR ) and fractions, a HPLC-QToF analysis was performed on the crude extracts and selected fractions (H2 OASR FII and EtOHASR FII). Three water fractions (H2 OASR FI, FII and FIII) and four ethanolic fractions (EtOHASR FI, FII, FIII and FIV) were derived from their crude extracts, respectively. EtOHASR FII exhibited the greatest total phenolic content (120.41 mg GAE/g fraction), total flavonoid content (223.07 mg RE/g fraction), and antioxidant activities (DPPH IC50 =159.43 μg/mL; FRAP=1.93 mmol Fe2+ /g fraction; TEAC=0.90 mmol TE/g fraction). Correlation analysis showed significant (p<0.01) positive correlations between both TPC (r=0.748-0.970) and TFC (r=0.686-0.949) with antioxidant activities in the crude extracts and fractions. Flavonoids were the major compounds in the four selected samples tentatively identified using HPLC-QToF-MS/MS, with the highest number of 30 polyphenol compounds detected in the most active fraction, EtOHASR FII.
  12. Kam TS, Pang HS, Choo YM, Komiyama K
    Chem Biodivers, 2004 Apr;1(4):646-56.
    PMID: 17191876
    Six new indole alkaloids, viz., (3S)-3-cyanocoronaridine (2), (3S)-3-cyanoisovoacangine (3), conolobine A (5), conolobine B (6), conolidine (7), and (3R/3S)-3-ethoxyvoacangine (8), in addition to 36 known ones, were obtained from the stem-bark extract of the Malayan Tabernaemontana divaricata. The structures were determined by NMR and MS analysis. The CN-substituted alkaloids showed appreciable cytotoxicity towards the KB human oral epidermoid carcinoma cell-line.
  13. Zeb A, Abbasi MA, Siddiqui SZ, Hassan M, Javed Q, Rafiq M, et al.
    Chem Biodivers, 2024 Feb 16.
    PMID: 38363553 DOI: 10.1002/cbdv.202400133
    In the aimed research study, a new series of N-(aryl)-3-[(4-phenyl-1-piperazinyl)methyl]benzamides was synthesized, which was envisaged as tyrosinase inhibitor. The structures of these newly designed molecules were verified by IR, 1H-NMR, 13C-NMR, EI-MS and CHN analysis data. These molecules were screened against tyrosinase and their inhibitory activity explored that these 3-substituted-benzamides exhibit good to excellent potential, comparative to the standard. The Kinetics mechanism was investigated through Lineweaver-Burk plots which depicted that molecules inhibited this enzyme in a competitive mode. Moreover, molecular docking was also performed to determine the binding interaction of all synthesized molecules (ligands) with the active site of tyrosinase enzyme and the results showed that most of the ligands exhibited efficient binding energy values. Therefore, it is anticipated that these molecules might serve as auspicious therapeutic scaffolds for treatment of the tyrosinase associated skin disorders.
  14. Abbasi MA, Raza H, Aziz-Ur-Rehman, Siddiqui SZ, Muhammad S, Khan FM, et al.
    Chem Biodivers, 2023 Sep;20(9):e202300257.
    PMID: 37578300 DOI: 10.1002/cbdv.202300257
    In the presented work, a new series of three different 4-((3,5-dichloro-2-[(2/4-halobenzyl)oxy]phenyl)sulfonyl)morpholines was synthesized and the structure of these compounds were corroborated by 1 H-NMR & 13 C-NMR studies. The in vitro results established all the three compounds as potent tyrosinase inhibitors relative to the standard. The Kinetics mechanism plots established that compound 8 inhibited the enzyme non-competitively. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0025 μM. Additionally, computational techniques were used to explore electronic structures of synthesized compounds. Fully optimized geometries were further docked with tyrosinase enzyme for inhibition studies. Reasonably good binding/interaction energies and intermolecular interactions were obtained. Finally, drug likeness was also predicted using the rule of five (RO5) and Chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics. It is anticipated that current experimental and computational investigations will evoke the scientific interest of the research community for the above-entitled compounds.
  15. Zailan AAD, Karunakaran T, Santhanam R, Suriaty Yaakop A, Mohan S, Abu Bakar MH, et al.
    Chem Biodivers, 2024 Mar;21(3):e202301936.
    PMID: 38268343 DOI: 10.1002/cbdv.202301936
    The genus Calophyllum from the family Calophyllaceae has been extensively investigated in the past due to its rich source of bioactive phenolics such as coumarins, chromanones, and xanthones. In this study, phytochemical investigation on the stem bark of Calophyllum havilandii has afforded a new 4-propyldihydrocoumarin derivative, havilarin (1) together with calolongic acid (2), caloteysmannic acid (3), isocalolongic acid (4), euxanthone (5), and β-sitosterol (6). The chemical structure of compound 1 was elucidated and established based on detailed spectroscopic techniques, including MS, IR, UV, 1D and 2D NMR. The results of anti-bacillus study indicated that the chloroform extract showed promising activities with MIC value ranging between 0.5 to 1 μg/mL on selected bacillus strains. Besides, the plant extracts and compounds 1-4 were assessed for their cytotoxicity potential on HL-7702 cell line. All the tested plant extracts and respective chemical constituents displayed non-cytotoxic activity on HL-7702 cell line.
  16. Raza H, Rehman Sadiq Butt A, Athar Abbasi M, Aziz-Ur-Rehman, Zahra Siddiqui S, Hassan M, et al.
    Chem Biodivers, 2023 Feb;20(2):e202201019.
    PMID: 36597268 DOI: 10.1002/cbdv.202201019
    A multi-step synthesis of novel bi-heterocyclic N-arylated butanamides was consummated through a convergent strategy and the structures of these medicinal scaffolds, 7a-h, were corroborated using spectral techniques. The in vitro analysis of these hybrid molecules revealed their potent tyrosinase inhibition as compared to the standard used. The kinetics mechanism was investigated through Lineweaver-Burk plots which exposed that, 7f, inhibited tyrosinase enzyme non-competitively by forming the enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.025 μM. Their binding conformations were ascertained by in silico computational studies whereby these molecules disclosed good binding energy values (kcal/mol). So, it was anticipated from the current research that these bi-heterocyclic butanamides might be probed as imperative therapeutic agents for melanogenesis.
  17. Chee CF, Lee HB, Ong HC, Ho AS
    Chem Biodivers, 2005 Dec;2(12):1648-55.
    PMID: 17191961
    In our screening program for new photosensitizers from the Malaysian biodiversity, we found five pheophorbide-related compounds from the leaves and stems of Aglaonema simplex. Detailed spectroscopic analyses showed that compounds 1-3 and 5 are pheophorbide and hydroxy pheophorbide derivatives of chlorophyll a and b. Compound 4, identified as 15(1)-hydroxypurpurin-7-lactone ethyl methyl diester, was isolated for the first time from the Araceae family. An MTT-based short-term survival assay showed that all five compounds exhibit moderate-to-strong photocytotoxic activities towards human leukemia (HL60) and two oral squamous carcinoma cell lines (HSC-2 and HSC-3). Compounds 4 and 5 showed the strongest photocytotoxicities, with IC(50) values of 0.30-0.41 muM (Table 2). Compounds 1-3 with Et chains at C(17(3)) were less photocytotoxic than the parent pheophorbide a (5).
  18. Adewale Ahmed I, Hossain MS, Pei Cee L, Hisam Zamakshsharia N
    Chem Biodivers, 2023 Dec;20(12):e202300952.
    PMID: 37994297 DOI: 10.1002/cbdv.202300952
    The genus Melicope, which consists of 230 species, stands out as the largest genus within the Rutaceae family. Melicope species are characterized by their evergreen nature and can range from shrubs to predominantly dioecious trees. The Melicope species have been utilized in traditional medicine to address a wide range of ailments, including fever, colds, cramps, and inflammation. These plants have gained significant attention due to their noteworthy ethnopharmacological and ethnomedicinal significance. Researchers have isolated numerous biologically active secondary metabolites from different Melicope species, which include polymethoxylated flavonoids, furanocoumarins, acetophenones, benzenoids, and quinolone alkaloids. These compounds exhibit diverse biological activities, such as antibacterial, antidiabetic, antifungal, and antiproliferative properties against human cancer cell lines. This review provides an update on the chemical constituents of the selected species of Melicope. The study also highlights the anticancer and cytotoxicity properties of the plant extracts and phytochemical constituents from Melicope species. Furthermore, the molecular mechanisms underlying the anticancer effects are elucidated. Overall, this review contributes to understanding the significant pharmacological potential of Melicope species and unlocking their chemical composition, emphasizing their relevance in the development of therapeutic agents, particularly in the field of cancer research.
  19. Yusoff MM, Ibrahim H, Hamid NA
    Chem Biodivers, 2011 May;8(5):916-23.
    PMID: 21560240 DOI: 10.1002/cbdv.201000270
    Two poorly studied, morphologically allied Alpinia species endemic to Borneo, viz., A. ligulata and A. nieuwenhuizii, were investigated here for their rhizome essential oil. The oil compositions and antimicrobial activities were compared with those of A. galanga, a better known plant. A fair number of compounds were identified in the oils by GC-FID and GC/MS analyses, with large differences in the oil composition between the three species. The rhizome oil of A. galanga was rich in 1,8-cineole (29.8%), while those of A. ligulata and A. nieuwenhuizii were both found to be extremely rich in (E)-methyl cinnamate (36.4 and 67.8%, resp.). The three oils were screened for their antimicrobial activity against three Gram-positive and three Gram-negative bacteria and two fungal species. The efficiency of growth inhibition of Staphylococcus aureus var. aureus was found to decline in the order of A. nieuwenhuizii>A. ligulata ∼ A. galanga, while that of Escherichia coli decreased in the order of A. galanga>A. nieuwenhuzii ∼ A. ligulata. Only the A. galanga oil inhibited the other bacteria and the fungi tested.
  20. Mehrzadeh M, Ziayeezadeh F, Pasdaran A, Kozuharova E, Goyal R, Hamedi A
    Chem Biodivers, 2024 Mar;21(3):e202301932.
    PMID: 38294082 DOI: 10.1002/cbdv.202301932
    A comprehensive literature search was conducted in PubMed, Cochrane Library, Web of Science, Scopus, the National Library of Medicine (NLM) catalog, and Google Scholar from January 1980 up until October 2023 on plants in the Gundelia genus. Gundelia L. (Asteraceae) has been treated as a monospecific genus with Gundelia tournefortii L. (1753: 814) in most recent floras with wide variation in corolla color, but nowadays, the genus consists of 17 species. The unripe inflorescences of these species, especially G. tournefortii L., are consumed in many ways. 'Akkoub' or 'akko' in Arabic, "Kangar" in Persian, and "Silifa" in Greek are the common names of G. tournefortii L., also known as tumble thistle in English. They have been used in traditional medicine to treat bronchitis, kidney stones, diarrhea, stomach pain, inflammation, liver and blood diseases, bacterial and fungal infections, and mumps. Based on recent studies, their extracts have exhibited hepatoprotective, hypolipidemic, antioxidant, anti-inflammatory, and antimicrobial effects. Moreover, a variety of phytochemicals, including terpenoids, sterols, and fatty acids, as well as vitamins and minerals, have been identified in this genus. This study reviewed the ethnobotany, phytochemicals, and biological activities of the plants in the Gundelia genus as functional foods and herbal remedies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links