Displaying all 10 publications

Abstract:
Sort:
  1. Tan JA, George E, Tan KL, Chow T, Tan PC, Hassan J, et al.
    Clin Exp Med, 2004 Dec;4(3):142-7.
    PMID: 15599663 DOI: 10.1007/s10238-004-0048-x
    Beta-thalassemia is the most-common genetic disorder of hemoglobin synthesis in Malaysia, and about 4.5% of the population are heterozygous carriers of the disorder. Prenatal diagnosis was performed for 96 couples using the Amplification Refractory Mutation System and Gap-Polymerase Chain Reaction. We identified 17 beta-globin defects-initiation codon for translation (T-G), -29 (A-G), -28 (A-G), CAP +1 (A-C), CD 8/9 (+G), CD 15 (G-A), CD 17 (A-T), CD 19 (A-G), Hb E (G-A), IVS1-1 (G-T), IVS1-5 (G-C), CD 41/42 (-CTTT), CD 71-72 (+A), IVS2-654 (CT), poly A(A-G), 100-kb Ggamma(Agammadeltabeta) degrees and 45-kb Filipino deletions. The 192 beta-alleles studied comprised Chinese (151 patients), Malay (21), Orang Asli from East Malaysia (15), Filipino (1), Indian (1), Indonesian Chinese (2), and Thai (1). In the Chinese, 2 beta-globin defects at CD 41/42 and IVS2-654 were responsible for 74% of beta-thalassemia. beta-mutations at CD 19, IVS1-1 (G-T), IVS1-5, poly A, and hemoglobin E caused 76% of the hemoglobin disorders in the Malays. The Filipino 45-kb deletion caused 73.3% of bthalassemia in the Orang Asli. Using genomic sequencing, the rare Chinese beta-mutation at CD 43 (G-T) was confirmed in 2 Chinese, and the Mediterranean mutation IVS1-1 (G-A) was observed in a Malay beta-thalassemia carrier. The beta-globin mutations confirmed in this prenatal diagnosis study were heterogenous and 65 (68%) couples showed a different globin defect from each other. The use of specific molecular protocols has allowed rapid and successful prenatal diagnosis of beta-thalassemia in Malaysia.
  2. Batumalaie K, Qvist R, Yusof KM, Ismail IS, Sekaran SD
    Clin Exp Med, 2014 May;14(2):185-95.
    PMID: 23584372 DOI: 10.1007/s10238-013-0236-7
    Type 2 diabetes consists of progressive hyperglycemia, insulin resistance, and pancreatic β-cell failure which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study, we investigate the effect of pretreatment with Gelam honey (Melaleuca spp.) and the individual flavonoid components chrysin, luteolin, and quercetin, on the production of reactive oxygen species (ROS), cell viability, lipid peroxidation, and insulin content in hamster pancreatic cells (HIT-T15 cells), cultured under normal and hyperglycemic conditions. Phenolic extracts from a local Malaysian species of Gelam honey (Melaleuca spp.) were prepared using the standard extraction methods. HIT-T15 cells were cultured in 5 % CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 μg/ml) as well as some of its flavonoid components chrysin, luteolin, and quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM of glucose. The antioxidative effects were measured in these cultured cells at different concentrations and time point by DCFH-DA assay. Pretreatment of cells with Gelam honey extract or the flavonoid components prior to culturing in 20 or 50 mM glucose showed a significant decrease in the production of ROS, glucose-induced lipid peroxidation, and a significant increase in insulin content and the viability of cells cultured under hyperglycemic condition. Our results show the in vitro antioxidative property of the Gelam honey and the flavonoids on the β-cells from hamsters and its cytoprotective effect against hyperglycemia.
  3. Wong RS, Cheong SK
    Clin Exp Med, 2014 Aug;14(3):235-48.
    PMID: 23794030 DOI: 10.1007/s10238-013-0247-4
    Mesenchymal stem cells (MSCs) have captured the attention of researchers today due to their multipotent differentiation capacity. Also, they have been successfully applied clinically, in the treatment of various diseases of the heart and musculoskeletal systems, with encouraging results. Their supportive role in haematopoiesis and their anti-inflammatory and immunomodulatory properties have enhanced their contribution towards the improvement of engraftment and the treatment of graft-versus-host disease in patients receiving haematopoietic stem cell transplantation. However, there is a growing body of research that supports the involvement of MSCs in leukaemogenesis with several genetic and functional abnormalities having been detected in the MSCs of leukaemia patients. MSCs also exert leukaemia-enhancing effects and induce chemotherapy resistance in leukaemia cells. This paper addresses the key issues in the therapeutic value as well as the harmful effects of the MSCs in leukaemia with a sharp focus on the recent updates in the published literature.
  4. Abu Bakar MH, Hairunisa N, Zaman Huri H
    Clin Exp Med, 2018 Aug;18(3):373-382.
    PMID: 29550985 DOI: 10.1007/s10238-018-0495-4
    Altered mitochondrial DNA (mtDNA) is the most common denominator to numerous metabolic diseases. The present study sought to investigate the correlation between mtDNA content in lymphocytes and associated clinical risk factors for impaired fasting glucose (IFG). We included 23 healthy control and 42 IFG participants in this cross-sectional study. The measurements of mtDNA content in lymphocytes and pro-inflammatory markers derived from both normal and diseased individuals were quantified. Spearman partial correlation and multivariate statistical analyses were employed to evaluate the association between mtDNA content and other metabolic covariates in IFG. Reduced mtDNA content was observed in the IFG group with microvascular complications than those without complications. The IFG patients with lowest median of mtDNA content had considerably elevated hyperglycemia, insulin resistance and inflammation. The adjusted partial correlation analysis showed that mtDNA content was positively correlated with HDL-cholesterol and IL-10 (P 
  5. Rosli AA, Azlan A, Rajasegaran Y, Mot YY, Heidenreich O, Yusoff NM, et al.
    Clin Exp Med, 2023 Aug;23(4):1137-1159.
    PMID: 36229751 DOI: 10.1007/s10238-022-00913-1
    Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.
  6. Tse E, Kwong YL, Goh YT, Bee PC, Ng SC, Tan D, et al.
    Clin Exp Med, 2023 Oct;23(6):2895-2907.
    PMID: 36795237 DOI: 10.1007/s10238-023-01007-2
    In recent years, considerable progress has been made in the standard treatment for chronic lymphocytic leukaemia (CLL) due to the availability of new potent drugs. However, the majority of data on CLL were derived from Western populations, with limited studies and guidelines on the management of CLL from an Asian population perspective. This consensus guideline aims to understand treatment challenges and suggest appropriate management approaches for CLL in the Asian population and other countries with a similar socio-economic profile. The following recommendations are based on a consensus by experts and an extensive literature review and contribute towards uniform patient care in Asia.
  7. Lebedeva A, Timokhin G, Ignatova E, Kavun A, Veselovsky E, Sharova M, et al.
    Clin Exp Med, 2023 Oct;23(6):2663-2674.
    PMID: 36752890 DOI: 10.1007/s10238-023-01011-6
    With the growing use of comprehensive tumor molecular profiling (CTMP), the therapeutic landscape of cancer is rapidly evolving. NGS produces large amounts of genomic data requiring complex analysis and subsequent interpretation. We sought to determine the utility of publicly available knowledge bases (KB) for the interpretation of the cancer mutational profile in clinical practice. Analysis was performed across patients who previously underwent CTMP. Independent interpretation of the CTMP was performed manually, and then, the recommendations were compared to ones present in KBs (OncoKB, CIViC, CGI, CGA, VICC, MolecularMatch). A total of 222 CTMP reports from 222 patients with 932 genomic alterations (GA) were identified. For 368 targetable GA identified in 171 (77%) of the patients, 1381 therapy recommendations were compiled. Except for CGA, therapy ESCAT LOE I, II, IIIA and IIIB therapy options were equally represented in the majority of KB. Personalized treatment options with ESCAT LOE I-II were provided for 35 patients (16%); MolecularMatch/CIViC allowed to collect ESCAT I-II treatment options for 34 of them (97%), OncoKB/CGI-for 33 of them (94%). Employing VICC and CGA 6 (17%) and 20 (57%) of patients were left without ESCAT I or II treatment options. For 88 patients with ESCAT level III-B therapy recommendations: only 2 (2%), 3 (3%), 4 (5%) and 6 (7%) of patients were left without options with CIViC, MolecularMatch, CGI and OncoKB, and with VICC-12 (14%). Highest overlap ratio was observed for IIIA (0.81) biomarkers, with the comparable results for LOE I-II. Meanwhile, overlap ratio for ESCAT LOE IV was 0.22. Public KBs provide substantial information on ESCAT-I/R1 biomarkers, but the information on ESCAT II-IV and resistance biomarkers is underrepresented. Manual curation should be considered the gold standard for the CTMP interpretation.
  8. Gill H, Leung GMK, Ooi MGM, Teo WZY, Wong CL, Choi CW, et al.
    Clin Exp Med, 2023 Dec;23(8):4199-4217.
    PMID: 37747591 DOI: 10.1007/s10238-023-01189-9
    Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal hematopoietic stem cell disorders characterized clinically by the proliferation of one or more hematopoietic lineage(s). The classical Philadelphia-chromosome (Ph)-negative MPNs include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The Asian Myeloid Working Group (AMWG) comprises representatives from fifteen Asian centers experienced in the management of MPN. This consensus from the AMWG aims to review the current evidence in the risk stratification and treatment of Ph-negative MPN, to identify management gaps for future improvement, and to offer pragmatic approaches for treatment commensurate with different levels of resources, drug availabilities and reimbursement policies in its constituent regions. The management of MPN should be patient-specific and based on accurate diagnostic and prognostic tools. In patients with PV, ET and early/prefibrotic PMF, symptoms and risk stratification will guide the need for early cytoreduction. In younger patients requiring cytoreduction and in those experiencing resistance or intolerance to hydroxyurea, recombinant interferon-α preparations (pegylated interferon-α 2A or ropeginterferon-α 2b) should be considered. In myelofibrosis, continuous risk assessment and symptom burden assessment are essential in guiding treatment selection. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) in MF should always be based on accurate risk stratification for disease-risk and post-HSCT outcome. Management of classical Ph-negative MPN entails accurate diagnosis, cytogenetic and molecular evaluation, risk stratification, and treatment strategies that are outcome-oriented (curative, disease modification, improvement of quality-of-life).
  9. Jatta N, Stanslas J, Yong ACH, Ho WC, Wan Ahmad Kammal WSL, Chua EW, et al.
    Clin Exp Med, 2023 Dec;23(8):4141-4152.
    PMID: 37480404 DOI: 10.1007/s10238-023-01142-w
    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a wide range of clinical manifestations and multifactorial etiologies ranging from environmental to genetic. SLE is associated with dysregulated immunological reactions, with increased immune complex formation leading to end-organ damages such as lupus nephritis, cutaneous lupus, and musculoskeletal disorders. Lupus treatment aims to reduce disease activity, prevent organ damage, and improve long-term patient survival and quality of life. Antimalarial, hydroxychloroquine (HCQ) is used as a first-line systemic treatment for lupus. It has shown profound efficacy in lupus and its associated conditions. However, wide variation in terms of clinical response to this drug has been observed among this group of patients. This variability has limited the potential of HCQ to achieve absolute clinical benefits. Several factors, including genetic polymorphisms of cytochrome P450 enzymes, have been stipulated as key entities leading to this inter-individual variation. Thus, there is a need for more studies to understand the role of genetic polymorphisms in CYP450 enzymes in the clinical response to HCQ. Focusing on the role of genetic polymorphism on whole blood HCQ in lupus disorder, this review aims to highlight up-to-date pathophysiology of SLE, the mechanism of action of HCQ, and finally the role of genetic polymorphism of CYP450 enzymes on whole blood HCQ level as well as clinical response in lupus.
  10. Li CMY, Briggs MT, Lee YR, Tin T, Young C, Pierides J, et al.
    Clin Exp Med, 2024 Mar 16;24(1):53.
    PMID: 38492056 DOI: 10.1007/s10238-024-01311-5
    Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. CRC liver metastases (CRLM) are often resistant to conventional treatments, with high rates of recurrence. Therefore, it is crucial to identify biomarkers for CRLM patients that predict cancer progression. This study utilised matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to spatially map the CRLM tumour proteome. CRLM tissue microarrays (TMAs) of 84 patients were analysed using tryptic peptide MALDI-MSI to spatially monitor peptide abundances across CRLM tissues. Abundance of peptides was compared between tumour vs stroma, male vs female and across three groups of patients based on overall survival (0-3 years, 4-6 years, and 7+ years). Peptides were then characterised and matched using LC-MS/MS. A total of 471 potential peptides were identified by MALDI-MSI. Our results show that two unidentified m/z values (1589.876 and 1092.727) had significantly higher intensities in tumours compared to stroma. Ten m/z values were identified to have correlation with biological sex. Survival analysis identified three peptides (Histone H4, Haemoglobin subunit alpha, and Inosine-5'-monophosphate dehydrogenase 2) and two unidentified m/z values (1305.840 and 1661.060) that were significantly higher in patients with shorter survival (0-3 years relative to 4-6 years and 7+ years). This is the first study using MALDI-MSI, combined with LC-MS/MS, on a large cohort of CRLM patients to identify the spatial proteome in this malignancy. Further, we identify several protein candidates that may be suitable for drug targeting or for future prognostic biomarker development.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links