Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Wan Ngah WS, Hanafiah MA, Yong SS
    Colloids Surf B Biointerfaces, 2008 Aug 1;65(1):18-24.
    PMID: 18359205 DOI: 10.1016/j.colsurfb.2008.02.007
    The adsorption of humic acid on crosslinked chitosan-epichlorohydrin (chitosan-ECH) beads was investigated. Chitosan-ECH beads were characterized by Fourier transform infrared spectroscopy (FTIR), surface area and pore size analyses, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out and optimum humic acid adsorption on chitosan-ECH beads occurred at pH 6.0, agitation rate of 300 rpm and contact time of 50 min. Adsorption equilibrium isotherms were analyzed by Langmuir and Freundlich models. Freundlich model was found to show the best fit for experimental data while the maximum adsorption capacity determined from Langmuir model was 44.84 mg g(-1). The adsorption of humic acid on chitosan-ECH beads was best described with pseudo-first-order kinetic model. For desorption study, more than 60% of humic acid could be desorbed from the adsorbent using 1.0M HCl for 180 min.
  2. Perwez M, Lau SY, Hussain D, Anboo S, Arshad M, Thakur P
    Colloids Surf B Biointerfaces, 2023 May;225:113241.
    PMID: 36893662 DOI: 10.1016/j.colsurfb.2023.113241
    Natural enzymes possess several drawbacks which limits their application in industries, wastewater remediation and biomedical field. Therefore, in recent years researchers have developed enzyme mimicking nanomaterials and enzymatic hybrid nanoflower which are alternatives of enzyme. Nanozymes and organic inorganic hybrid nanoflower have been developed which mimics natural enzymes functionalities such as diverse enzyme mimicking activities, enhanced catalytic activities, low cost, ease of preparation, stability and biocompatibility. Nanozymes include metal and metal oxide nanoparticles mimicking oxidases, peroxidases, superoxide dismutase and catalases while enzymatic and non-enzymatic biomolecules were used for preparing hybrid nanoflower. In this review nanozymes and hybrid nanoflower have been compared in terms of physiochemical properties, common synthetic routes, mechanism of action, modification, green synthesis and application in the field of disease diagnosis, imaging, environmental remediation and disease treatment. We also address the current challenges facing nanozyme and hybrid nanoflower research and the possible way to fulfil their potential in future.
  3. Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, et al.
    Colloids Surf B Biointerfaces, 2016 Sep 01;145:167-75.
    PMID: 27182651 DOI: 10.1016/j.colsurfb.2016.04.040
    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.
  4. Tan EW, Simon SE, Numan A, Khalid M, Tan KO
    Colloids Surf B Biointerfaces, 2024 Mar;235:113793.
    PMID: 38364521 DOI: 10.1016/j.colsurfb.2024.113793
    Breast cancer is a global health concern that requires personalized therapies to prevent relapses, as conventional treatments may develop resistance over time. Photothermal therapy using spectral radiation or intense light emission is a broad-spectrum treatment that induces hyperthermia-mediated cancer cell death. MXene, a two-dimensional material, has been reported to have potential biological applications in photothermal therapy for cancer treatment. In this study, we investigated the apoptotic activity of MXene and UV-irradiated MXene in MCF-7 breast cancer cells by treating them with varying concentrations of MXene. The cytotoxicity of MXene and UV was evaluated by analyzing cellular morphology, nuclei condensation, caspase activation, and apoptotic cell death. We also assessed the effect of the combined treatment on the expression and cellular distribution of Tubulin, a key component of microtubules required for cell division. At low concentrations of MXene (up to 100 µg/ml), the level of cytotoxicity in MCF-7 cells was low. However, the combined treatment of MXene and UV resulted in a synergistic increase in cytotoxicity, causing rounded cellular morphology, condensed nuclei, caspase activation, and apoptotic cell death. Furthermore, the treatment reduced Tubulin protein expression and cellular distribution, indicating a potent inducer of cell death with potential application for cancer treatment. The study demonstrates that the combined treatment of MXene and UVB irradiation is a promising strategy for inducing apoptotic cell death in breast cancer cells, suggesting its potential as a therapeutic intervention for breast cancer.
  5. Ahmad N, Ramsch R, Llinàs M, Solans C, Hashim R, Tajuddin HA
    Colloids Surf B Biointerfaces, 2014 Mar 1;115:267-74.
    PMID: 24384142 DOI: 10.1016/j.colsurfb.2013.12.013
    The effect of incorporating new nonionic glycolipid surfactants on the properties of a model water/nonionic surfactant/oil nano-emulsion system was investigated using branched-chain alkyl glycosides: 2-hexyldecyl-β(/α)-D-glucoside (2-HDG) and 2-hexyldecyl-β(/α)-D-maltoside (2-HDM), whose structures are closely related to glycero-glycolipids. Both 2-HDG and 2-HDM have an identical hydrophobic chain (C16), but the former consists a monosaccharide glucose head group, in contrast to the latter which has a disaccharide maltose unit. Consequently, their hydrophilic-lipophilic balance (HLB) is different. The results obtained have shown that these branched-chain alkyl glycosides affect differently the stability of the nano-emulsions. Compared to the model nano-emulsion, the presence of 2-HDG reduces the oil droplet size, whereas 2-HDM modify the properties of the model nano-emulsion system in terms of its droplet size and storage time stability at high temperature. These nano-emulsions have been proven capable of encapsulating ketoprofen, showing a fast release of almost 100% in 24h. Thus, both synthetically prepared branched-chain alkyl glycosides with mono- and disaccharide sugar head groups are suitable as nano-emulsion stabilizing agents and as drug delivery systems in the future.
  6. Musa SH, Basri M, Masoumi HR, Karjiban RA, Malek EA, Basri H, et al.
    Colloids Surf B Biointerfaces, 2013 Dec 1;112:113-9.
    PMID: 23974000 DOI: 10.1016/j.colsurfb.2013.07.043
    Palm kernel oil esters nanoemulsion-loaded with chloramphenicol was optimized using response surface methodology (RSM), a multivariate statistical technique. Effect of independent variables (oil amount, lecithin amount and glycerol amount) toward response variables (particle size, polydispersity index, zeta potential and osmolality) were studied using central composite design (CCD). RSM analysis showed that the experimental data could be fitted into a second-order polynomial model. Chloramphenicol-loaded nanoemulsion was formulated by using high pressure homogenizer. The optimized chloramphenicol-loaded nanoemulsion response values for particle size, PDI, zeta potential and osmolality were 95.33nm, 0.238, -36.91mV, and 200mOsm/kg, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM. The results showed that the optimized compositions have the potential to be used as a parenteral emulsion to cross blood-brain barrier (BBB) for meningitis treatment.
  7. Jamil M, Mustafa IS, Sahul Hamid SB, Ahmed NM, Khazaalah TH, Godwin E, et al.
    Colloids Surf B Biointerfaces, 2023 Aug;228:113423.
    PMID: 37390675 DOI: 10.1016/j.colsurfb.2023.113423
    The novelty of this work is the conjugation of poly(ethylene) oxide (PEO) with the erbium oxide (Er2O3) nanoparticles using the electrospinning technique. In this work, synthesised PEO-coated Er2O3 nanofibres were characterised and evaluated for their cytotoxicity to assess their potential use as diagnostic nanofibres for magnetic resonance imaging (MRI). PEO has significantly impacted nanoparticle conductivity due to its lower ionic conductivity at room temperature. The findings showed that the surface roughness was improved over the nanofiller loading, implying an improvement in cell attachment. The release profile performed for drug-controlling purposes has demonstrated a stable release after 30 min. Cellular response in MCF-7 cells showed high biocompatibility of the synthesised nanofibres. The cytotoxicity assay results showed that the diagnostic nanofibres had excellent biocompatibility, indicating the feasibility for diagnosis purposes. With excellent contrast performance, the PEO-coated Er2O3 nanofibres developed novel T2 and T1-T2 dual-mode MRI diagnostic nanofibres leading to better cancer diagnosis. In conclusion, this work has demonstrated that the conjugation of PEO-coated Er2O3 nanofibres improved the surface modification of the Er2O3 nanoparticles as a potential diagnostic agent. Using PEO in this study as a carrier or polymer matrix significantly influenced the biocompatibility and internalisation efficiency of the Er2O3 nanoparticles without triggering any morphological changes after treatment. This work has suggested permissible concentrations of PEO-coated Er2O3 nanofibres for diagnostic uses.
  8. Mohd Daud N, Saeful Bahri IF, Nik Malek NA, Hermawan H, Saidin S
    Colloids Surf B Biointerfaces, 2016 Sep 01;145:130-9.
    PMID: 27153117 DOI: 10.1016/j.colsurfb.2016.04.046
    Chlorhexidine (CHX) is known for its high antibacterial substantivity and is suitable for use to bio-inert medical devices due to its long-term antibacterial efficacy. However, CHX molecules require a crosslinking film to be stably immobilized on bio-inert metal surfaces. Therefore, polydopamine (PDA) was utilized in this study to immobilize CHX on the surface of 316L type stainless steel (SS316L). The SS316L disks were pre-treated, modified with PDA film and immobilized with different concentrations of CHX (10mM-50mM). The disks were then subjected to various surface characterization analyses (ATR-FTIR, XPS, ToF-SIMS, SEM and contact angle measurement) and tested for their cytocompatibility with human skin fibroblast (HSF) cells and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results demonstrated the formation of a thin PDA film on the SS316L surface, which acted as a crosslinking medium between the metal and CHX. CHX was immobilized via a reduction process that covalently linked the CHX molecules with the functional group of PDA. The immobilization of CHX increased the hydrophobicity of the disk surfaces. Despite this property, a low concentration of CHX optimized the viability of HSF cells without disrupting the morphology of adherent cells. The immobilized disks also demonstrated high antibacterial efficacy against both bacteria, even at a low concentration of CHX. This study demonstrates a strong beneficial effect of the crosslinked PDA film in immobilizing CHX on bio-inert metal, and these materials are applicable in medical devices. Specifically, the coating will restrain bacterial proliferation without suffocating nearby tissues.
  9. Gopal R, Md Shakhih MF, Sahalan M, Lee TC, Hermawan H, Sivalingam S, et al.
    Colloids Surf B Biointerfaces, 2023 Aug;228:113390.
    PMID: 37315506 DOI: 10.1016/j.colsurfb.2023.113390
    Postoperative bleeding following cardiac surgeries is still an issue that deranges the medical resources and cost. The oral and injection administrations of blood coagulation protein, Factor VII (FVII), is effective to stop the bleeding. However, its short half-life has limited the effectiveness of this treatment and frequent FVII intake may distress the patients. Instead, incorporating FVII into synthetic biodegradable polymers such as polycaprolactone (PCL) that is commonly used in drug delivery applications should provide a solution. Therefore, this study aimed to immobilize FVII on PCL membranes through a cross-linkage polydopamine (PDA) grafting as an intermediate layer. These membranes are intended to provide a solution for cardiac bleeding in coagulating blood and sealing the sutured region. The membranes were evaluated in terms of its physio-chemical properties, thermal behavior, FVII release profile and biocompatibility properties. The ATR-FTIR was used to analyze the chemical functionalities of the membranes. Further validation was done with XPS where the appearances of 0.45 ± 0.06% sulfur composition and C-S peak have confirmed the immobilization of FVII on the PCL membranes. The cross-linked FVIIs were viewed in spherical immobilization on the PCL membranes with a size range between 30 and 210 nm. The surface roughness and hydrophilicity of the membranes were enhanced with a slight shift of melting temperature. The PCL-PDA-FVII0.03 and PCL-PDA-FVII0.05 membranes, with wide area of FVII immobilization released approximately only 22% of FVII into the solution within 60 days period and, it is found that the PCL-PDA-FVIIx membranes projected the Higuchi release model with non-Fickian anomalous transport. While the cytotoxic and hemocompatibility analyses showed advance cell viability, identical coagulation time and low hemolysis ratio on the PCL-PDA-FVIIx membranes. The erythrocytes were viewed in polyhedrocyte coagulated structure under SEM visualization. These results validate the biocompatibility of the membranes and its ability to prolong blood coagulation, thus highlighting its potential application as cardiac bleeding sealant.
  10. Chuah LH, Roberts CJ, Billa N, Abdullah S, Rosli R
    Colloids Surf B Biointerfaces, 2014 Apr 1;116:228-36.
    PMID: 24486834 DOI: 10.1016/j.colsurfb.2014.01.007
    Curcumin, which is derived from turmeric has gained much attention in recent years for its anticancer activities against various cancers. However, due to its poor absorption, rapid metabolism and elimination, curcumin has a very low oral bioavailability. Therefore, we have formulated mucoadhesive nanoparticles to deliver curcumin to the colon, such that prolonged contact between the nanoparticles and the colon leads to a sustained level of curcumin in the colon, improving the anticancer effect of curcumin on colorectal cancer. The current work entails the ex vivo mucoadhesion study of the formulated nanoparticles and the in vitro effect of mucoadhesive interaction between the nanoparticles and colorectal cancer cells. The ex vivo study showed that curcumin-containing chitosan nanoparticles (CUR-CS-NP) have improved mucoadhesion compared to unloaded chitosan nanoparticles (CS-NP), suggesting that curcumin partly contributes to the mucoadhesion process. This may lead to an enhanced anticancer effect of curcumin when formulated in CUR-CS-NP. Our results show that CUR-CS-NP are taken up to a greater extent by colorectal cancer cells, compared to free curcumin. The prolonged contact offered by the mucoadhesion of CUR-CS-NP onto the cells resulted in a greater reduction in percentage cell viability as well as a lower IC50, indicating a potential improved treatment outcome. The formulation and free curcumin appeared to induce cell apoptosis in colorectal cancer cells, by arresting the cell cycle at G2/M phase. The superior anticancer effects exerted by CUR-CS-NP indicated that this could be a potential treatment for colorectal cancer.
  11. How CW, Rasedee A, Manickam S, Rosli R
    Colloids Surf B Biointerfaces, 2013 Dec 1;112:393-9.
    PMID: 24036474 DOI: 10.1016/j.colsurfb.2013.08.009
    Cancer nanotherapeutics is beginning to overwhelm the global research and viewed to be the revolutionary treatment regime in the medical field. This investigation describes the development of a stable nanostructured lipid carrier (NLC) system as carrier for Tamoxifen (TAM). The TAM-loaded NLC (TAM-NLC) developed with 200mg of TAM showed a spherical particle with the size of 46.6nm, polydispersity index of 0.267, entrapment efficiency of 99.74% and with the zeta potential of -23.78mV. Besides, the equivalent cytotoxicity of TAM and TAM-NLC to human (MCF-7) and mice (4T1) mammary breast cancer cell lines were observed. Incubating the formulation at the physiological pH resulted into reduced Ostwald ripening rate but without any significant change in the absorptivity. When coupled with the measurements of zeta potential and Ostwald ripening rate, the absorbance assay may be used to predict the long-term stability of drug-loaded nanoparticle formulations. The results of the study also suggest that TAM-NLC is a promising drug delivery system for breast cancer therapy. This is the first encouraging report on the in vitro effect of TAM-NLC against human and mouse mammary adenocarcinoma cell lines.
  12. Tan HL, Kai D, Pasbakhsh P, Teow SY, Lim YY, Pushpamalar J
    Colloids Surf B Biointerfaces, 2020 Apr;188:110713.
    PMID: 31884080 DOI: 10.1016/j.colsurfb.2019.110713
    Electrospinning is a common method to prepare nanofiber scaffolds for tissue engineering. One of the common cellulose esters, cellulose acetate butyrate (CAB), has been electrospun into nanofibers and studied. However, the intrinsic hydrophobicity of CAB limits its application in tissue engineering as it retards cell adhesion. In this study, the properties of CAB nanofibers were improved by fabricating the composite nanofibers made of CAB and hydrophilic polyethylene glycol (PEG). Different ratios of CAB to PEG were tested and only the ratio of 2:1 resulted in smooth and bead-free nanofibers. The tensile test results show that CAB/PEG composite nanofibers have 2-fold higher tensile strength than pure CAB nanofibers. The hydrophobicity of the composite nanofibers was also reduced based on the water contact angle analysis. As the hydrophilicity increases, the swelling ability of the composite nanofiber increases by 2-fold with more rapid biodegradation. The biocompatibility of the nanofibers was tested with normal human dermal fibroblasts (NHDF). The cell viability assay results revealed that the nanofibers are non-toxic. In addition to that, CAB/PEG nanofibers have better cell attachment compared to pure CAB nanofibers. Based on this study, CAB/PEG composite nanofibers could potentially be used as a nanofiber scaffold for applications in tissue engineering.
  13. Kamari A, Ngah WS
    Colloids Surf B Biointerfaces, 2009 Oct 15;73(2):257-66.
    PMID: 19556114 DOI: 10.1016/j.colsurfb.2009.05.024
    The kinetic and thermodynamic adsorption and adsorption isotherms of Pb(II) and Cu(II) ions onto H(2)SO(4) modified chitosan were studied in a batch adsorption system. The experimental results were fitted using Freundlich, Langmuir and Dubinin-Radushkevich isotherms; the Langmuir isotherm showed the best conformity to the equilibrium data. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were employed to analyze the kinetic data. The adsorption behavior of Pb(II) and Cu(II) was best described by the pseudo-second order model. Thermodynamic parameters such as free energy change (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were determined; the adsorption process was found to be both spontaneous and exothermic. No physical damage to the adsorbents was observed after three cycles of adsorption/desorption using EDTA and HCl as eluents. The mechanistic pathway of the Pb(II) and Cu(II) uptake was examined by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The equilibrium parameter (R(L)) indicated that chitosan-H(2)SO(4) was favorable for Pb(II) and Cu(II) adsorption.
  14. Tang SY, Sivakumar M, Nashiru B
    Colloids Surf B Biointerfaces, 2013 Feb 1;102:653-8.
    PMID: 23107943 DOI: 10.1016/j.colsurfb.2012.08.036
    The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future.
  15. Othman R, Vladisavljević GT, Thomas NL, Nagy ZK
    Colloids Surf B Biointerfaces, 2016 May 01;141:187-195.
    PMID: 26852102 DOI: 10.1016/j.colsurfb.2016.01.042
    Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy.
  16. Sonali, Singh RP, Sharma G, Kumari L, Koch B, Singh S, et al.
    Colloids Surf B Biointerfaces, 2016 Nov 01;147:129-141.
    PMID: 27497076 DOI: 10.1016/j.colsurfb.2016.07.058
    The aim of this work was to formulate RGD-TPGS decorated theranostic liposomes, which contain both docetaxel (DTX) and quantum dots (QDs) for brain cancer imaging and therapy. RGD conjugated TPGS (RGD-TPGS) was synthesized and conjugation was confirmed by Fourier transform infrared (FTIR) spectroscopy and electrospray ionisation (ESI) mass spectroscopy (ESI-MS). The theranostic liposomes were prepared by the solvent injection method and characterized for their particle size, polydispersity, zeta-potential, surface morphology, drug encapsulation efficiency, and in-vitro release study. Biocompatibility and safety of theranostic liposomes were studied by reactive oxygen species (ROS) generation study and histopathology of brain. In-vivo study was performed for determination of brain theranostic effects in comparison with marketed formulation (Docel™) and free QDs. The particle sizes of the non-targeted and targeted theranostic liposomes were found in between 100 and 200nm. About 70% of drug encapsulation efficiency was achieved with liposomes. The drug release from RGD-TPGS decorated liposomes was sustained for more than 72h with 80% of drug release. The in-vivo results demonstrated that RGD-TPGS decorated theranostic liposomes were 6.47- and 6.98-fold more effective than Docel™ after 2h and 4h treatments, respectively. Further, RGD-TPGS decorated theranostic liposomes has reduced ROS generation effectively, and did not show any signs of brain damage or edema in brain histopathology. The results of this study have indicated that RGD-TPGS decorated theranostic liposomes are promising carrier for brain theranostics.
  17. Tabatabaee Amid B, Mirhosseini H
    Colloids Surf B Biointerfaces, 2014 Jan 1;113:107-14.
    PMID: 24060935 DOI: 10.1016/j.colsurfb.2013.08.042
    The present work was conducted to investigate the effect of purification and conjugation processes on functional properties of durian seed gum (DSG) used for stabilization of water in oil in water (W/O/W) emulsion. Whey protein isolate (WPI) was conjugated to durian seed gum through the covalent linkage. In order to prepare WPI-DSG conjugate, covalent linkage of whey protein isolate to durian seed gum was obtained by Maillard reaction induced by heating at 60 °C and 80% (±1%) relative humidity. SDS-polyacrylamide gel electrophoresis was used to test the formation of the covalent linkage between whey protein isolate and durian seed gum after conjugation process. In this study, W/O/W stabilized by WPI-conjugated DSG A showed the highest interface activity and lowest creaming layer among all prepared emulsions. This indicated that the partial conjugation of WPI to DSG significantly improved its functional characteristics in W/O/W emulsion. The addition of WPI-conjugated DSG to W/O/W emulsion increased the viscosity more than non-conjugated durian seed gum (or control). This might be due to possible increment of the molecular weight after linking the protein fraction to the structure of durian seed gum through the conjugation process.
  18. Amid BT, Mirhosseini H
    Colloids Surf B Biointerfaces, 2013 Mar 1;103:430-40.
    PMID: 23261563 DOI: 10.1016/j.colsurfb.2012.11.015
    The main objective of the current work was to characterize the shear rheological flow behaviour and emulsifying properties of the natural biopolymer from durian seed. The present study revealed that the extraction condition significantly affected the physical and functional characteristics of the natural biopolymer from durian seed. The dynamic oscillatory test indicated that the biopolymer from durian seed showed more gel (or solid) like behaviour than the viscous (or liquid) like behaviour (G'>G″) at a relatively high concentration (20%) in the fixed frequency (0.1 Hz). This might be explained by the fact that the gum coils disentangle at low frequencies during the long period of oscillation, thus resulting in more gel like behaviour than the viscous like behaviour. The average droplet size of oil in water (O/W) emulsions stabilized by durian seed gum significantly varied from 0.42 to 7.48 μm. The results indicated that O/W emulsions showed significant different stability after 4 months storage. This might be interpreted by the considerable effect of the extraction condition on the chemical and molecular structure of the biopolymer, thus affecting its emulsifying capacity. The biopolymer extracted by using low water to seed (W/S) ratio at the low temperature under the alkaline condition showed a relatively high emulsifying activity in O/W emulsion.
  19. Hung LC, Basri M, Tejo BA, Ismail R, Nang HL, Abu Hassan H, et al.
    Colloids Surf B Biointerfaces, 2011 Oct 1;87(1):180-6.
    PMID: 21652183 DOI: 10.1016/j.colsurfb.2011.05.019
    Heat-sensitive bioactive compounds such as β-carotene and tocols, are widely used in the pharmaceutical and cosmetic fields. Their chemical stability in delivery systems is one of the major concerns in the production of nanostructured lipid carriers (NLCs). A previously established high-temperature high-pressure homogenisation technique involved in the preparation of NLCs can cause degradation of heat-sensitive compounds. Therefore, a novel preparation process needs to be developed to minimise the degradation of heat-sensitive active compounds during the preparation of NLCs. In this work, modified methods A and B were designed to minimise the degradation of β-carotene and tocols during the production of NLCs. These methods improved the chemical stability of heat-sensitive bioactive compounds (β-carotene and tocols) significantly compared to the previously established method. The physical stability of the formulation was maintained throughout study duration.
  20. Lee WH, Rohanizadeh R, Loo CY
    Colloids Surf B Biointerfaces, 2021 Oct;206:111938.
    PMID: 34198233 DOI: 10.1016/j.colsurfb.2021.111938
    This study developed a novel bioactive bone substitute (hydroxyapatite, HA) with improved anti-biofilm activity by functionalizing with curcumin (anti-biofilm compound) which provide sufficient flux of curcumin concentration for 14 days. The released curcumin acts to inhibit biofilm formation and control the number of viable planktonic cells simultaneously. To prepare curcumin-functionalized HA, different concentrations of curcumin (up to 3% w/v) were added simultaneously during the precipitation process of HA. The highest loading (50 mg/g HA) of curcumin onto HA was achieved with 2% w/v of curcumin. Physicochemical characterizations of curcumin-functionalized HA composites revealed that curcumin was successfully incorporated onto HA. Curcumin was sustainably released over 14 days, while higher curcumin release was observed in acidic condition (pH 4.4) compared to physiological (pH 7.4). The cytotoxicity assays revealed that no significant difference on bone cells growth on curcumin-functionalized HA and non-functionalized HA. Curcumin-functionalized HA was effective to inhibit bacterial cell attachment and subsequent biofilm maturation stages. The anti-biofilm effect was stronger against Staphylococcus aureus compared to Pseudomonas aeruginosa. The curcumin-functionalized HA composite significantly delayed the maturation of S. aureus compared to non-functionalized HA in which microcolonies of cells only begin to appear at 96 h. Up to 3.0 log reduction in colony forming unit (CFU)/mL of planktonic cells was noted at 24 h of incubation for both microorganisms. Thus, in this study we have suggested that curcumin loaded HA could be an alternative antimicrobial agent to control the risk of infections in post-surgical implants.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links