Displaying publications 1 - 20 of 133 in total

Abstract:
Sort:
  1. Al-Qdah M, Ramli AR, Mahmud R
    Comput Biol Med, 2005 Dec;35(10):905-14.
    PMID: 16310014
    This paper uses wavelets in the detection comparison of breast cancer among the three main races in Malaysia: Chinese, Malays, and Indians followed by a system that evaluates the radiologist's findings over a period of time to gauge the radiologist's skills in confirming breast cancer cases. The db4 wavelet has been utilized to detect microcalcifications in mammogram-digitized images obtained from Malaysian women sample. The wavelet filter's detection evaluation was done by visual inspection by an expert radiologist to confirm the detection results of those pixels that corresponded to microcalcifications. Detection was counted if the wavelet-detected pixels corresponded to the radiologist's identified microcalcification pixels. After the radiologist's detection confirmation a new client-server radiologist recording and evaluation system is designed to evaluate the findings of the radiologist over some period of cancer detection working time. It is a system that records the findings of the Malaysian radiologist for the presence of breast cancer in Malaysian patients and provides a way of registering the progress of detecting breast cancer of the radiologist by tracking certain metric values such as the sensitivity, specificity, and receiver operator curve (ROC). The initial findings suggest that no single race mammograms are easier for wavelets' detections of microcalcifications and for the radiologist confirmation even though for this study the Chinese race samples detection average were a few percentages less than the other two races, namely the Malay and Indian races.
  2. Najafabadi FS, Zahedi E, Mohd Ali MA
    Comput Biol Med, 2006 Mar;36(3):241-52.
    PMID: 16446158
    In this paper, an algorithm based on independent component analysis (ICA) for extracting the fetal heart rate (FHR) from maternal abdominal electrodes is presented. Three abdominal ECG channels are used to extract the FHR in three steps: first preprocessing procedures such as DC cancellation and low-pass filtering are applied to remove noise. Then the algorithm for multiple unknown source extraction (AMUSE) algorithm is fed to extract the sources from the observation signals include fetal ECG (FECG). Finally, FHR is extracted from FECG. The method is shown to be capable of completely revealing FECG R-peaks from observation leads even with a SNR=-200dB using semi-synthetic data.
  3. Shyam Sunder R, Eswaran C, Sriraam N
    Comput Biol Med, 2006 Sep;36(9):958-73.
    PMID: 16026779
    In this paper, 3-D discrete Hartley transform is applied for the compression of two medical modalities, namely, magnetic resonance images and X-ray angiograms and the performance results are compared with those of 3-D discrete cosine and Fourier transforms using the parameters such as PSNR and bit rate. It is shown that the 3-D discrete Hartley transform is better than the other two transforms for magnetic resonance brain images whereas for the X-ray angiograms, the 3-D discrete cosine transform is found to be superior.
  4. Ali A, Logeswaran R
    Comput Biol Med, 2007 Aug;37(8):1141-7.
    PMID: 17126314
    The 3D ultrasound systems produce much better reproductions than 2D ultrasound, but their prohibitively high cost deprives many less affluent organization this benefit. This paper proposes using the conventional 2D ultrasound equipment readily available in most hospitals, along with a single conventional digital camera, to construct 3D ultrasound images. The proposed system applies computer vision to extract position information of the ultrasound probe while the scanning takes place. The probe, calibrated in order to calculate the offset of the ultrasound scan from the position of the marker attached to it, is used to scan a number of geometrical objects. Using the proposed system, the 3D volumes of the objects were successfully reconstructed. The system was tested in clinical situations where human body parts were scanned. The results presented, and confirmed by medical staff, are very encouraging for cost-effective implementation of computer-aided 3D ultrasound using a simple setup with 2D ultrasound equipment and a conventional digital camera.
  5. Logeswaran R, Eswaran C
    Comput Biol Med, 2007 Aug;37(8):1084-91.
    PMID: 17112496
    Stones in the biliary tract are routinely identified using MRCP (magnetic resonance cholangiopancreatography). The noisy nature of the images, as well as varying intensity, size and location of the stones, defeat most automatic detection algorithms, making computer-aided diagnosis difficult. This paper proposes a multi-stage segment-based scheme for semi-automated detection of choledocholithiasis and cholelithiasis in the MRCP images, producing good performance in tests, differentiating them from "normal" MRCP images. With the high success rate of over 90%, refinement of the scheme could be applicable in the clinical environment as a tool in aiding diagnosis, with possible applications in telemedicine.
  6. Mustapha N, Amin N, Chakravarty S, Mandal PK
    Comput Biol Med, 2009 Oct;39(10):896-906.
    PMID: 19665698 DOI: 10.1016/j.compbiomed.2009.07.004
    Flow of an electrically conducting fluid characterizing blood through the arteries having irregular shaped multi-stenoses in the environment of a uniform transverse magnetic-field is analysed. The flow is considered to be axisymmetric with an outline of the irregular stenoses obtained from a three-dimensional casting of a mild stenosed artery, so that the physical problem becomes more realistic from the physiological point of view. The marker and cell (MAC) and successive-over-relaxation (SOR) methods are respectively used to solve the governing unsteady magnetohydrodynamic (MHD) equations and pressure-Poisson equation quantitatively and to observe the flow separation. The results obtained show that the flow separates mostly towards the downstream of the multi-stenoses. However, the flow separation region keeps on shrinking with the increasing intensity of the magnetic-field which completely disappears with sufficiently large value of the Hartmann number. The present observations certainly have some clinical implications relating to magnetotherapy which help reducing the complex flow separation zones causing flow disorder leading to the formation and progression of the arterial diseases.
  7. Kalsum HU, Shah ZA, Othman RM, Hassan R, Rahim SM, Asmuni H, et al.
    Comput Biol Med, 2009 Nov;39(11):1013-9.
    PMID: 19720371 DOI: 10.1016/j.compbiomed.2009.08.002
    Protein domains contain information about the prediction of protein structure, function, evolution and design since the protein sequence may contain several domains with different or the same copies of the protein domain. In this study, we proposed an algorithm named SplitSSI-SVM that works with the following steps. First, the training and testing datasets are generated to test the SplitSSI-SVM. Second, the protein sequence is split into subsequence based on order and disorder regions. The protein sequence that is more than 600 residues is split into subsequences to investigate the effectiveness of the protein domain prediction based on subsequence. Third, multiple sequence alignment is performed to predict the secondary structure using bidirectional recurrent neural networks (BRNN) where BRNN considers the interaction between amino acids. The information of about protein secondary structure is used to increase the protein domain boundaries signal. Lastly, support vector machines (SVM) are used to classify the protein domain into single-domain, two-domain and multiple-domain. The SplitSSI-SVM is developed to reduce misleading signal, lower protein domain signal caused by primary structure of protein sequence and to provide accurate classification of the protein domain. The performance of SplitSSI-SVM is evaluated using sensitivity and specificity on single-domain, two-domain and multiple-domain. The evaluation shows that the SplitSSI-SVM achieved better results compared with other protein domain predictors such as DOMpro, GlobPlot, Dompred-DPS, Mateo, Biozon, Armadillo, KemaDom, SBASE, HMMPfam and HMMSMART especially in two-domain and multiple-domain.
  8. Aibinu AM, Iqbal MI, Shafie AA, Salami MJ, Nilsson M
    Comput Biol Med, 2010 Jan;40(1):81-9.
    PMID: 20022595 DOI: 10.1016/j.compbiomed.2009.11.004
    The use of vascular intersection aberration as one of the signs when monitoring and diagnosing diabetic retinopathy from retina fundus images (FIs) has been widely reported in the literature. In this paper, a new hybrid approach called the combined cross-point number (CCN) method able to detect the vascular bifurcation and intersection points in FIs is proposed. The CCN method makes use of two vascular intersection detection techniques, namely the modified cross-point number (MCN) method and the simple cross-point number (SCN) method. Our proposed approach was tested on images obtained from two different and publicly available fundus image databases. The results show a very high precision, accuracy, sensitivity and low false rate in detecting both bifurcation and crossover points compared with both the MCN and the SCN methods.
  9. Meselhy Eltoukhy M, Faye I, Belhaouari Samir B
    Comput Biol Med, 2010 Apr;40(4):384-91.
    PMID: 20163793 DOI: 10.1016/j.compbiomed.2010.02.002
    This paper presents a comparative study between wavelet and curvelet transform for breast cancer diagnosis in digital mammogram. Using multiresolution analysis, mammogram images are decomposed into different resolution levels, which are sensitive to different frequency bands. A set of the biggest coefficients from each decomposition level is extracted. Then a supervised classifier system based on Euclidian distance is constructed. The performance of the classifier is evaluated using a 2 x 5-fold cross validation followed by a statistical analysis. The experimental results suggest that curvelet transform outperforms wavelet transform and the difference is statistically significant.
  10. Roslan R, Othman RM, Shah ZA, Kasim S, Asmuni H, Taliba J, et al.
    Comput Biol Med, 2010 Jun;40(6):555-64.
    PMID: 20417930 DOI: 10.1016/j.compbiomed.2010.03.009
    Protein-protein interactions (PPIs) play a significant role in many crucial cellular operations such as metabolism, signaling and regulations. The computational methods for predicting PPIs have shown tremendous growth in recent years, but problem such as huge false positive rates has contributed to the lack of solid PPI information. We aimed at enhancing the overlap between computational predictions and experimental results in an effort to partially remove PPIs falsely predicted. The use of protein function predictor named PFP() that are based on shared interacting domain patterns is introduced in this study with the purpose of aiding the Gene Ontology Annotations (GOA). We used GOA and PFP() as agents in a filtering process to reduce false positive pairs in the computationally predicted PPI datasets. The functions predicted by PFP() were extracted from cross-species PPI data in order to assign novel functional annotations for the uncharacterized proteins and also as additional functions for those that are already characterized by the GO (Gene Ontology). The implementation of PFP() managed to increase the chances of finding matching function annotation for the first rule in the filtration process as much as 20%. To assess the capability of the proposed framework in filtering false PPIs, we applied it on the available S. cerevisiae PPIs and measured the performance in two aspects, the improvement made indicated as Signal-to-Noise Ratio (SNR) and the strength of improvement, respectively. The proposed filtering framework significantly achieved better performance than without it in both metrics.
  11. Achuthan A, Rajeswari M, Ramachandram D, Aziz ME, Shuaib IL
    Comput Biol Med, 2010 Jul;40(7):608-20.
    PMID: 20541182 DOI: 10.1016/j.compbiomed.2010.04.005
    This paper introduces an approach to perform segmentation of regions in computed tomography (CT) images that exhibit intra-region intensity variations and at the same time have similar intensity distributions with surrounding/adjacent regions. In this work, we adapt a feature computed from wavelet transform called wavelet energy to represent the region information. The wavelet energy is embedded into a level set model to formulate the segmentation model called wavelet energy-guided level set-based active contour (WELSAC). The WELSAC model is evaluated using several synthetic and CT images focusing on tumour cases, which contain regions demonstrating the characteristics of intra-region intensity variations and having high similarity in intensity distributions with the adjacent regions. The obtained results show that the proposed WELSAC model is able to segment regions of interest in close correspondence with the manual delineation provided by the medical experts and to provide a solution for tumour detection.
  12. Ahmad Fadzil MH, Izhar LI, Nugroho HA
    Comput Biol Med, 2010 Jul;40(7):657-64.
    PMID: 20573343 DOI: 10.1016/j.compbiomed.2010.05.004
    Monitoring FAZ area enlargement enables physicians to monitor progression of the DR. At present, it is difficult to discern the FAZ area and to measure its enlargement in an objective manner using digital fundus images. A semi-automated approach for determination of FAZ using color images has been developed. Here, a binary map of retinal blood vessels is computer generated from the digital fundus image to determine vessel ends and pathologies surrounding FAZ for area analysis. The proposed method is found to achieve accuracies from 66.67% to 98.69% compared to accuracies of 18.13-95.07% obtained by manual segmentation of FAZ regions from digital fundus images.
  13. Muda HM, Saad P, Othman RM
    Comput Biol Med, 2011 Aug;41(8):687-99.
    PMID: 21704312 DOI: 10.1016/j.compbiomed.2011.06.004
    Remote protein homology detection and fold recognition refer to detection of structural homology in proteins where there are small or no similarities in the sequence. To detect protein structural classes from protein primary sequence information, homology-based methods have been developed, which can be divided to three types: discriminative classifiers, generative models for protein families and pairwise sequence comparisons. Support Vector Machines (SVM) and Neural Networks (NN) are two popular discriminative methods. Recent studies have shown that SVM has fast speed during training, more accurate and efficient compared to NN. We present a comprehensive method based on two-layer classifiers. The 1st layer is used to detect up to superfamily and family in SCOP hierarchy using optimized binary SVM classification rules. It used the kernel function known as the Bio-kernel, which incorporates the biological information in the classification process. The 2nd layer uses discriminative SVM algorithm with string kernel that will detect up to protein fold level in SCOP hierarchy. The results obtained were evaluated using mean ROC and mean MRFP and the significance of the result produced with pairwise t-test was tested. Experimental results show that our approaches significantly improve the performance of remote protein homology detection and fold recognition for all three different version SCOP datasets (1.53, 1.67 and 1.73). We achieved 4.19% improvements in term of mean ROC in SCOP 1.53, 4.75% in SCOP 1.67 and 4.03% in SCOP 1.73 datasets when compared to the result produced by well-known methods. The combination of first layer and second layer of BioSVM-2L performs well in remote homology detection and fold recognition even in three different versions of datasets.
  14. Chan BT, Lim E, Chee KH, Abu Osman NA
    Comput Biol Med, 2013 May;43(4):377-85.
    PMID: 23428371 DOI: 10.1016/j.compbiomed.2013.01.013
    The heart is a sophisticated functional organ that plays a crucial role in the blood circulatory system. Hemodynamics within the heart chamber can be indicative of exert cardiac health. Due to the limitations of current cardiac imaging modalities, computational fluid dynamics (CFD) have been widely used for the purposes of cardiac function assessment and heart disease diagnosis, as they provide detailed insights into the cardiac flow field. An understanding of ventricular hemodynamics and pathological severities can be gained through studies that employ the CFD method. In this research the hemodynamics of two common myocardial diseases, dilated cardiomyopathy (DCM) and myocardial infarction (MI) were investigated, during both the filling phase and the whole cardiac cycle, through a prescribed geometry and fluid structure interaction (FSI) approach. The results of the research indicated that early stage disease identification and the improvement of cardiac assisting devices and therapeutic procedures can be facilitated through the use of the CFD method.
  15. Kasim S, Deris S, Othman RM
    Comput Biol Med, 2013 Sep;43(9):1120-33.
    PMID: 23930805 DOI: 10.1016/j.compbiomed.2013.05.011
    A drastic improvement in the analysis of gene expression has lead to new discoveries in bioinformatics research. In order to analyse the gene expression data, fuzzy clustering algorithms are widely used. However, the resulting analyses from these specific types of algorithms may lead to confusion in hypotheses with regard to the suggestion of dominant function for genes of interest. Besides that, the current fuzzy clustering algorithms do not conduct a thorough analysis of genes with low membership values. Therefore, we present a novel computational framework called the "multi-stage filtering-Clustering Functional Annotation" (msf-CluFA) for clustering gene expression data. The framework consists of four components: fuzzy c-means clustering (msf-CluFA-0), achieving dominant cluster (msf-CluFA-1), improving confidence level (msf-CluFA-2) and combination of msf-CluFA-0, msf-CluFA-1 and msf-CluFA-2 (msf-CluFA-3). By employing double filtering in msf-CluFA-1 and apriori algorithms in msf-CluFA-2, our new framework is capable of determining the dominant clusters and improving the confidence level of genes with lower membership values by means of which the unknown genes can be predicted.
  16. Rajendra Acharya U, Faust O, Adib Kadri N, Suri JS, Yu W
    Comput Biol Med, 2013 Oct;43(10):1523-9.
    PMID: 24034744 DOI: 10.1016/j.compbiomed.2013.05.024
    Diabetes mellitus (DM) affects considerable number of people in the world and the number of cases is increasing every year. Due to a strong link to the genetic basis of the disease, it is extremely difficult to cure. However, it can be controlled to prevent severe consequences, such as organ damage. Therefore, diabetes diagnosis and monitoring of its treatment is very important. In this paper, we have proposed a non-invasive diagnosis support system for DM. The system determines whether or not diabetes is present by determining the cardiac health of a patient using heart rate variability (HRV) analysis. This analysis was based on nine nonlinear features namely: Approximate Entropy (ApEn), largest Lyapunov exponet (LLE), detrended fluctuation analysis (DFA) and recurrence quantification analysis (RQA). Clinically significant measures were used as input to classification algorithms, namely AdaBoost, decision tree (DT), fuzzy Sugeno classifier (FSC), k-nearest neighbor algorithm (k-NN), probabilistic neural network (PNN) and support vector machine (SVM). Ten-fold stratified cross-validation was used to select the best classifier. AdaBoost, with least squares (LS) as weak learner, performed better than the other classifiers, yielding an average accuracy of 90%, sensitivity of 92.5% and specificity of 88.7%.
  17. Safara F, Doraisamy S, Azman A, Jantan A, Abdullah Ramaiah AR
    Comput Biol Med, 2013 Oct;43(10):1407-14.
    PMID: 24034732 DOI: 10.1016/j.compbiomed.2013.06.016
    Wavelet packet transform decomposes a signal into a set of orthonormal bases (nodes) and provides opportunities to select an appropriate set of these bases for feature extraction. In this paper, multi-level basis selection (MLBS) is proposed to preserve the most informative bases of a wavelet packet decomposition tree through removing less informative bases by applying three exclusion criteria: frequency range, noise frequency, and energy threshold. MLBS achieved an accuracy of 97.56% for classifying normal heart sound, aortic stenosis, mitral regurgitation, and aortic regurgitation. MLBS is a promising basis selection to be suggested for signals with a small range of frequencies.
  18. Razmara J, Deris SB, Parvizpour S
    Comput Biol Med, 2013 Oct;43(10):1614-21.
    PMID: 24034753 DOI: 10.1016/j.compbiomed.2013.07.022
    The structural comparison of proteins is a vital step in structural biology that is used to predict and analyse a new unknown protein function. Although a number of different techniques have been explored, the study to develop new alternative methods is still an active research area. The present paper introduces a text modelling-based technique for the structural comparison of proteins. The method models the secondary and tertiary structure of proteins in two linear sequences and then applies them to the comparison of two structures. The technique used for pairwise comparison of the sequences has been adopted from computational linguistics and its well-known techniques for analysing and quantifying textual sequences. To this end, an n-gram modelling technique is used to capture regularities between sequences, and then, the cross-entropy concept is employed to measure their similarities. Several experiments are conducted to evaluate the performance of the method and compare it with other commonly used programs. The assessments for information retrieval evaluation demonstrate that the technique has a high running speed, which is similar to other linear encoding methods, such as 3D-BLAST, SARST, and TS-AMIR, whereas its accuracy is comparable to CE and TM-align, which are high accuracy comparison tools. Accordingly, the results demonstrate that the algorithm has high efficiency compared with other state-of-the-art methods.
  19. Ahmad Fadzil MH, Prakasa E, Asirvadam VS, Nugroho H, Affandi AM, Hussein SH
    Comput Biol Med, 2013 Nov;43(11):1987-2000.
    PMID: 24054912 DOI: 10.1016/j.compbiomed.2013.08.009
    Psoriasis is an incurable skin disorder affecting 2-3% of the world population. The scaliness of psoriasis is a key assessment parameter of the Psoriasis Area and Severity Index (PASI). Dermatologists typically use visual and tactile senses in PASI scaliness assessment. However, the assessment can be subjective resulting in inter- and intra-rater variability in the scores. This paper proposes an assessment method that incorporates 3D surface roughness with standard clustering techniques to objectively determine the PASI scaliness score for psoriasis lesions. A surface roughness algorithm using structured light projection has been applied to 1999 3D psoriasis lesion surfaces. The algorithm has been validated with an accuracy of 94.12%. Clustering algorithms were used to classify the surface roughness measured using the proposed assessment method for PASI scaliness scoring. The reliability of the developed PASI scaliness algorithm was high with kappa coefficients>0.84 (almost perfect agreement).
  20. Martis RJ, Acharya UR, Adeli H
    Comput Biol Med, 2014 May;48:133-49.
    PMID: 24681634 DOI: 10.1016/j.compbiomed.2014.02.012
    The Electrocardiogram (ECG) is the P-QRS-T wave depicting the cardiac activity of the heart. The subtle changes in the electric potential patterns of repolarization and depolarization are indicative of the disease afflicting the patient. These clinical time domain features of the ECG waveform can be used in cardiac health diagnosis. Due to the presence of noise and minute morphological parameter values, it is very difficult to identify the ECG classes accurately by the naked eye. Various computer aided cardiac diagnosis (CACD) systems, analysis methods, challenges addressed and the future of cardiovascular disease screening are reviewed in this paper. Methods developed for time domain, frequency transform domain, and time-frequency domain analysis, such as the wavelet transform, cannot by themselves represent the inherent distinguishing features accurately. Hence, nonlinear methods which can capture the small variations in the ECG signal and provide improved accuracy in the presence of noise are discussed in greater detail in this review. A CACD system exploiting these nonlinear features can help clinicians to diagnose cardiovascular disease more accurately.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links