Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Murugasenapathi NK, Ghosh R, Ramanathan S, Ghosh S, Chinnappan A, Mohamed SAJ, et al.
    Crit Rev Anal Chem, 2023;53(5):1044-1065.
    PMID: 34788167 DOI: 10.1080/10408347.2021.2002133
    Transistor-based sensors have been widely recognized to be highly sensitive and reliable for point-of-care/bed-side diagnosis. In this line, a range of cutting-edge technologies has been generated to elevate the role of transistors for biomolecule detection. Detection of a wide range of clinical biomarkers has been reported using various configurations of transistors. The inordinate sensitivity of transistors to the field-effect imparts high sensitivity toward wide range of biomolecules. This overview has gleaned the present achievements with the technological advancements using high performance transistor-based sensors. This review encloses transistors incorporated with a variety of functional nanomaterials and organic elements for their excellence in selectivity and sensitivity. In addition, the technological advancements in fabrication of these microdevices or nanodevices and functionalization of the sensing elements have also been discussed. The technological gap in the realization of sensors in transistor platforms and the resulted scope for research has been discussed. Finally, foreseen technological advancements and future research perspectives are described.
  2. Nadzirah S, Gopinath SCB, Parmin NA, Hamzah AA, Mohamed MA, Chang EY, et al.
    Crit Rev Anal Chem, 2020 Sep 30.
    PMID: 32997522 DOI: 10.1080/10408347.2020.1816447
    Biosensors operating based on electrical methods are being accelerated toward rapid and efficient detection that improve the performance of the device. Continuous study in nano- and material-sciences has led to the inflection with properties of nanomaterials that fit the trend parallel to the biosensor evolution. Advancements in technology that focuses on nano-hybrid are being used to develop biosensors with better detection strategies. In this sense, titanium dioxide (TiO2) nanomaterials have attracted extensive interest in the construction of electrical biosensors. The formation of TiO2 nano-hybrid as an electrical transducing material has revealed good results with high performance. The modification of the sensing portion with a combination (nano-hybrid form) of nanomaterials has produced excellent sensors in terms of stability, reproducibility, and enhanced sensitivity. This review highlights recent research advancements with functional TiO2 nano-hybrid materials, and their victorious story in the construction of electrical biosensors are discussed. Future research directions with commercialization of these devices and their extensive utilizations are also discussed.
  3. Mohamed AH, Noorhisham NA, Yahaya N, Mohamad S, Kamaruzzaman S, Osman H, et al.
    Crit Rev Anal Chem, 2023;53(4):906-927.
    PMID: 34693833 DOI: 10.1080/10408347.2021.1992262
    Despite organophosphorus pesticides (OPPs) benefits in controlling vector-borne diseases and noxious insects, the bioaccumulation and persistence in the soil system may metamorphose into new substances which could pose a serious threat to the ecosystems and human health. The generally low levels of OPPs residues and often the complexity of the soil matrix are the issues that researcher must deal with. Thus, it is essential to isolate and preconcentrate the OPPs from the matrix to reduce interference effects to obtain a reliable detection. Researchers have reported sample preparation techniques as a promising approach to improve analytical measurement of merits including recovery, precision, linearity, limit of detection, and limit of quantification. Under the selected conditions, limits of detection range between 0.001 and 143 ng/mL, and extraction recovery range between 5 and 154% were obtained. This review evaluates the challenges and opportunities, emphasizes the prospects of sampling techniques and various (micro)extraction coupled with chromatographic methods in different soil samples. Based on the finding, the extraction efficiency depended largely on the interaction between OPPs and extraction media. The fate, migration, toxicity impact, sampling procedure, and storage which influenced the sample preparation were comprehensively discussed.
  4. Tan SY, Acquah C, Sidhu A, Ongkudon CM, Yon LS, Danquah MK
    Crit Rev Anal Chem, 2016 Nov;46(6):521-37.
    PMID: 26980177 DOI: 10.1080/10408347.2016.1157014
    The quest to improve the detection of biomolecules and cells in health and life sciences has led to the discovery and characterization of various affinity bioprobes. Libraries of synthetic oligonucleotides (ssDNA/ssRNA) with randomized sequences are employed during Systematic Evolution of Ligands by Exponential Enrichment (SELEX) to select highly specific affinity probes called aptamers. With much focus on the generation of aptamers for a variety of target molecules, conventional SELEX protocols have been modified to develop new and improved SELEX protocols yielding highly specific and stable aptamers. Various techniques have been used to analyze the binding interactions between aptamers and their cognate molecules with associated merits and limitations. This article comprehensively reviews research advancements in the generation of aptamers, analyses physicochemical conditions affecting their binding characteristics to cellular and biomolecular targets, and discusses various field applications of aptameric binding. Biophysical techniques employed in the characterization of the molecular and binding features of aptamers to their cognate targets are also discussed.
  5. Rama R, Meenakshi S, Pandian K, Gopinath SCB
    Crit Rev Anal Chem, 2021 Feb 23.
    PMID: 33622098 DOI: 10.1080/10408347.2021.1882834
    Paracetamol (PAR) is an effective antipyretic and analgesic drug utilized worldwide, safer at therapeutic levels but over-dosing and the chronic usage of PAR results in accumulation of toxic metabolites, which leads to kidney and liver damages. Hence, a simple, rapid, cost-effective, and sensitive analytical technique is needed for the accurate determination of PAR in pharmaceutical and biological samples. Though numerous techniques have been reported for PAR detection, electrochemical methods are being receiving more interest due to their advantages. Moreover, in the past few decades, room temperature ionic liquids (RTILs) have been utilized in electrochemical sensors due to their attractive properties. In this present review, authors gathered research findings available for the determination of PAR using RTIL-based electrochemical sensors and discussed. The advantages and limitations in these systems as well as the future research directions are summarized.
  6. Tay KSJ, See HH
    Crit Rev Anal Chem, 2024 Jan 02.
    PMID: 38165816 DOI: 10.1080/10408347.2023.2299280
    Sample clean-up and pre-concentration are critical components of pharmaceutical analysis. The dispersive liquid-liquid microextraction (DLLME) technique is widely recognized as the most effective approach for enhancing overall detection sensitivity. While various DLLME modes have been advanced in pharmaceutical analysis, there need to be more discussions on pre-concentration techniques specifically developed for this field. This review presents a comprehensive overview of the different DLLME modes used in pharmaceutical analysis from 2017 to May 2023. The review covers the principles of DLLME, the factors affecting microextraction, the selected applications of different DLLME modes, and their advantages and disadvantages. Additionally, it focuses on multi-extraction strategies employed for pharmaceutical analysis.
  7. Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K
    Crit Rev Anal Chem, 2023;53(2):253-288.
    PMID: 34565248 DOI: 10.1080/10408347.2021.1950521
    Heavy metal pollution has gained global attention due to its high toxicity and non-biodegradability, even at a low level of exposure. Therefore, the development of a disposable electrode that is sensitive, simple, portable, rapid, and cost-effective as the sensor platform in electrochemical heavy metal detection is vital. Disposable electrodes have been modified with nanomaterials so that excellent electrochemical properties can be obtained. This review highlights the recent progress in the development of numerous types of disposable electrodes modified with nanomaterials for electrochemical heavy metal detection. The disposable electrodes made from carbon-based, glass-based, and paper-based electrodes are reviewed. In particular, the analytical performance, fabrication technique, and integration design of disposable electrodes modified with metal (such as gold, tin and bismuth), carbon (such as carbon nanotube and graphene), and metal oxide (such as iron oxide and zinc oxide) nanomaterials are summarized. In addition, the role of the nanomaterials in improving the electrochemical performance of the modified disposable electrodes is discussed. Finally, the current challenges and future prospect of the disposable electrode modified with nanomaterials are summarized.
  8. Tang LW, Alias Y, Zakaria R, Woi PM
    Crit Rev Anal Chem, 2023;53(4):869-886.
    PMID: 34672838 DOI: 10.1080/10408347.2021.1989657
    A detailed overview toward the advancement of amino acid-based electrochemical sensors on the detection of heavy metals is presented. Discussion is focused on the unique properties of various amino acids (AAs) and its composites which allow them being employed in a diverse range of sensing platforms. Formation of metal-ligand complexes in between metal ions and different AAs has been discussed. The essential insights on the interaction between amino acid-based sensors and target heavy metal ions (HMIs) are provided, along with the discussion on their pros and cons. Voltammetry analysis of metal ions based on various interfaces of electrochemical sensors has been highlighted, together with the incorporation of AAs with organic, inorganic and bio-materials. In all these cases, the amino acid modified electrodes have demonstrated large active surface area with abundant adsorption sites for HMIs. The developed sensors are promising for environmental applications, as evidenced by the high selectivity, high sensitivity, high catalytic activity, and low detection limits. The materials involved, fabrication techniques and its sensing mechanism were comprehensively discussed, and the future outlooks of electrochemical sensing platforms are emphasized in this review.
  9. Parmin NA, Hashim U, Gopinath SCB, Nadzirah S, Salimi MN, Voon CH, et al.
    Crit Rev Anal Chem, 2021 Jun 07.
    PMID: 34092138 DOI: 10.1080/10408347.2021.1890543
    The importance of nanotechnology in medical applications especially with biomedical sensing devices is undoubted. Several medical diagnostics have been developed by taking the advantage of nanomaterials, especially with electrical biosensors. Biosensors have been predominantly used for the quantification of different clinical biomarkers toward detection, screening, and follow-up the treatment. At present, ovarian cancer is one of the severe complications that cannot be identified until it becomes most dangerous as the advanced stage. Based on the American Cancer Society, 20% of cases involved in the detection of ovarian cancer are diagnosed at an early stage and 80% diagnosed at the later stages. The patient just has a common digestive problem and stomach ache as early symptoms and people used to ignore these symptoms. Micro ribonucleic acid (miRNA) is classified as small non-coding RNAs, their expressions change due to the association of cancer development and progression. This article reviews and discusses on the currently available strategies for the early detection of ovarian cancers using miRNA as a biomarker associated with electrical biosensors. A unique miRNA-based biomarker detections are specially highlighted with biosensor platforms to diagnose ovarian cancer.
  10. Zainal PNS, Alang Ahmad SA, Abdul Aziz SFN, Rosly NZ
    Crit Rev Anal Chem, 2020 Nov 06.
    PMID: 33155481 DOI: 10.1080/10408347.2020.1839736
    The past several decades have seen increasing concern regarding the wide distribution of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices. Primary toxicological data show PAHs' persistent characteristics and possible toxicity effects. Because of this pressing global issue, electroanalytical methods have been introduced. These methods are effective for PAH determination in environmental waters, even outclassing sophisticated analytical techniques such as chromatography, conventional spectrophotometry, fluorescence, and capillary electrophoresis. Herein, the literature published on PAHs is reviewed and discussed with special regard to PAH occurrence. Moreover, the recent developments in electrochemical sensors for PAH determination and the challenges and future outlooks in this field, are also presented.
  11. Subramani IG, Perumal V, Gopinath SCB, Fhan KS, Mohamed NM
    Crit Rev Anal Chem, 2021 Mar 11.
    PMID: 33691533 DOI: 10.1080/10408347.2021.1889962
    Over the past decade, science has experienced a growing rise in nanotechnology with ground-breaking contributions. Through various laborious technologies, nanomaterials with different architectures from 0 D to 3 D have been synthesized. However, the 3 D flower-like organic-inorganic hybrid nanomaterial with the most direct one-pot green synthesis method has attracted widespread attention and instantly become research hotspot since its first allusion in 2012. Mild synthesis procedure, high surface-to-volume ratio, enhanced enzymatic activity and stability are the main factor for its rapid development. However, its lower mechanical strength, difficulties in recovery from the reaction system, lower loading capacity, poor reusability and accessibility of enzymes are fatal, which hinders its wide application in industry. This review first discusses the selection of non-enzymatic biomolecules for the synthesis of hybrid nanoflowers followed by the innovative advancements made in organic-inorganic hybrid nanoflowers to overcome aforementioned issues and to enhance their extensive downstream applications in transduction technologies. Besides, the role of hybrid nanoflower has been successfully utilized in many fields including, water remediation, biocatalyst, pollutant adsorption and decolourization, nanoreactor, biosensing, cellular uptake and others, accompanied with several quantification technologies, such as ELISA, electrochemical, surface plasmon resonance (SPR), colorimetric, and fluorescence were comprehensively reviewed.
  12. Adam T, Dhahi TS, Gopinath SCB, Hashim U
    Crit Rev Anal Chem, 2022;52(8):1913-1929.
    PMID: 34254863 DOI: 10.1080/10408347.2021.1925523
    Nanowires have been utilized widely in the generation of high-performance nanosensors. Laser ablation, chemical vapor, thermal evaporation and alternating current electrodeposition are in use in developing nanowires. Nanowires are in a great attention because of their submicron feature and their potentials in the front of nanoelectronics, accelerated field effect transistors, chemical- and bio-sensors, and low power consuming light-emitting devices. With the control of nanowire size and concentration of dopant, the electrical sensitivity and other properties of nanowires can be tuned for the reproducibility. Nanowires comprise of arrays of electrodes that form a nanometer electrical circuit. One of advantages of nanowires is that they can be fabricated in nanometer-size for various applications in different approaches. Several studies have been conducted on nanowires and researchers discovered that nanowires have the potential in the applications with material properties at the nanometer scale. The unique electrical properties of nanowires have made them to be promising for numerous applications. Nowadays, for example, MOS field-effect transistors are largely used as fundamental building elements in electronic circuits. Also, the dimension of MOS transistors is gradually decreasing to the nanoscale based on the prediction made by Moor's law. However, their fabrication is challenging. This review summarized different techniques in the fabrication of nanowires, global nanowire prospect, testing of nanowires to understand the real electrical behavior using higher resolution microscopes, and brief applications in the detection of biomolecules, disease such as corona viral pandemic, heavy metal in water, and applications of nanowires in agriculture.
  13. Aun TT, Salleh NM, Ali UFM, Manan NSA
    Crit Rev Anal Chem, 2021 Sep 03.
    PMID: 34477020
    Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
  14. Junaid HM, Batool M, Harun FW, Akhter MS, Shabbir N
    Crit Rev Anal Chem, 2020 Sep 08.
    PMID: 32897731 DOI: 10.1080/10408347.2020.1806703
    Spectacular color change during a chemical reaction is always fascinating. A variety of chemosensors including Schiff bases have been reported for selective as well as sensitive recognition of ions. This review explains the use of Schiff bases as color changing agents in the detection of anions. This magic of colors is attributed to change in the electronic structure of the system during reaction. Schiff base chemosensors are easy to synthesize, inexpensive and can be used for visual sensing of different ions. Development of Schiff base chemosensors is commonly based on the interactions between polar groups of Schiff bases and ionic species and the process of charge transfer, electron transfer and hydrogen bonding between Schiff bases and ionic species cause the color of the resultant to be changed. Therefore, designing of simple Schiff base chemosensors which are capable of selective sensing of different anions has attracted considerable interest. In particular, naked eye sensing through color change is important and useful since it allows sensing of ions through color changes without using any instrumental technique.HighlightsNaked eye sensors are of much interest these days due to their visual detection properties rather employing complex instrumentation.Optical sensors are sensitive, selective, cost effective and robust.The magic of color change is fascinating factor in detection by these sensors.The color change may be attributed by interaction between anion and Schiff base by different mechanism i.e. electron transfer, charge transfer, hydrogen bonding, ICT etc.LOD data is an evidence of their great efficiency.
  15. Qureshi MS, Yusoff AR, Wirzal MD, Sirajuddin, Barek J, Afridi HI, et al.
    Crit Rev Anal Chem, 2016;46(2):146-59.
    PMID: 25831046 DOI: 10.1080/10408347.2015.1004157
    Phthalates are endocrine disruptors frequently occurring in the general and industrial environment and in many industrial products. Moreover, they are also suspected of being carcinogenic, teratogenic, and mutagenic, and they show diverse toxicity profiles depending on their structures. The European Union and the United States Environmental Protection Agency (US EPA) have included many phthalates in the list of priority substances with potential endocrine-disrupting action. They are: dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), diethylhexyl phthalate (DEHP), di-iso-nonyl phthalate (DINP), di-iso-decyl phthalate (DIDP), di-n-decyl phthalate (DnDP), and dioctyl phthalate (DOP). There is an ever-increasing demand for new analytical methods suitable for monitoring different phthalates in various environmental, biological, and other matrices. Separation and spectrometric methods are most frequently used. However, modern electroanalytical methods can also play a useful role in this field because of their high sensitivity, reasonable selectivity, easy automation, and miniaturization, and especially low investment and running costs, which makes them suitable for large-scale monitoring. Therefore, this review outlines possibilities and limitations of various analytical methods for determination of endocrine-disruptor phthalate esters in various matrices, including somewhat neglected electroanalytical methods.
  16. Wan Ibrahim WA, Nodeh HR, Aboul-Enein HY, Sanagi MM
    Crit Rev Anal Chem, 2015;45(3):270-87.
    PMID: 25849825 DOI: 10.1080/10408347.2014.938148
    Recently, a simple, rapid, high-efficiency, selective, and sensitive method for isolation, preconcentration, and enrichment of analytes has been developed. This new method of sample handling is based on ferum oxides as magnetic nanoparticles (MNPs) and has been used for magnetic solid-phase extraction (MSPE) of various analytes from various matrices. This review focuses on the applications of modified ferum oxides, especially modified Fe3O4 MNPs, as MSPE adsorbent for pesticide isolation from various matrices. Further perspectives on MSPE based on modified Fe3O4 for inorganic metal ions, organic compounds, and biological species from water samples are also presented. Ferum(III) oxide MNPs (Fe2O3) are also highlighted.
  17. Ali I, Suhail M, Sanagi MM, Aboul-Enein HY
    Crit Rev Anal Chem, 2017 Feb 14.
    PMID: 28266865 DOI: 10.1080/10408347.2017.1294047
    The ionic liquids (ILs) are salts with melting points below 100°C. These are called as ionic fluids, ionic melts, liquid electrolytes, fused salts, liquid salts, ionic glasses, designer solvents, green solvents and solvents of the future. These have a wide range of applications, including medical, pharmaceutical and chemical sciences. Nowadays, their use is increasing greatly in separation science, especially in chromatography and capillary electrophoresis due to their remarkable properties. The present article describes the importance of ILs in high-performance liquid chromatography and capillary electrophoresis. Efforts were also made to highlight the future expectations of ILs.
  18. Ibrahim WA, Nodeh HR, Sanagi MM
    Crit Rev Anal Chem, 2016 Jul 03;46(4):267-83.
    PMID: 26186420 DOI: 10.1080/10408347.2015.1034354
    Graphene is a new carbon-based material that is of interest in separation science. Graphene has extraordinary properties including nano size, high surface area, thermal and chemical stability, and excellent adsorption affinity to pollutants. Its adsorption mechanisms are through non-covalent interactions (π-π stacking, electrostatic interactions, and H-bonding) for organic compounds and covalent interactions for metal ions. These properties have led to graphene-based material becoming a desirable adsorbent in a popular sample preparation technique known as solid phase extraction (SPE). Numerous studies have been published on graphene applications in recent years, but few review papers have focused on its applications in analytical chemistry. This article focuses on recent preconcentration of trace elements, organic compounds, and biological species using SPE-based graphene, graphene oxide, and their modified forms. Solid phase microextraction and micro SPE (µSPE) methods based on graphene are discussed.
  19. Letchumanan I, Gopinath SCB, Md Arshad MK, Mohamed Saheed MS, Perumal V, Voon CH, et al.
    Crit Rev Anal Chem, 2020 Sep 08.
    PMID: 32897761 DOI: 10.1080/10408347.2020.1812373
    Mortality level is worsening the situation worldwide thru blood diseases and greatly jeopardizes the human health with poor diagnostics. Due to the lack of successful generation of early diagnosis, the survival rate is currently lower. To overcome the present hurdle, new diagnostic methods have been choreographed for blood disease biomarkers analyses with the conjunction of ultra-small ideal gold nanohybrids. Gold-hybrids hold varieties of unique features, such as high biocompatibility, increased surface-to-volume ratio, less-toxicity, ease in electron transfer and have a greater localized surface plasmon resonance. Gold-nanocomposites can be physically hybrid on the sensor surface and functionalize with the biomolecules using appropriate chemical conjugations. Revolutionizing biosensor platform can be prominently linked for the nanocomposite applications in the current research on medical diagnosis. This review encloses the new developments in diagnosing blood biomarkers by utilizing the gold-nanohybrids. Further, the current state-of-the-art and the future envision with digital monitoring for facile telediagnosis were narrated.
  20. Nadzirah S, Mohamad Zin N, Khalid A, Abu Bakar NF, Kamarudin SS, Zulfakar SS, et al.
    Crit Rev Anal Chem, 2023 Jun 26.
    PMID: 37358486 DOI: 10.1080/10408347.2023.2224433
    Since diagnostic laboratories handle large COVID-19 samples, researchers have established laboratory-based assays and developed biosensor prototypes. Both share the same purpose; to ascertain the occurrence of air and surface contaminations by the SARS-CoV-2 virus. However, the biosensors further utilize internet-of-things (IoT) technology to monitor COVID-19 virus contamination, specifically in the diagnostic laboratory setting. The IoT-capable biosensors have great potential to monitor for possible virus contamination. Numerous studies have been done on COVID-19 virus air and surface contamination in the hospital setting. Through reviews, there are abundant reports on the viral transmission of SARS-CoV-2 through droplet infections, person-to-person close contact and fecal-oral transmission. However, studies on environmental conditions need to be better reported. Therefore, this review covers the detection of SARS-CoV-2 in airborne and wastewater samples using biosensors with comprehensive studies in methods and techniques of sampling and sensing (2020 until 2023). Furthermore, the review exposes sensing cases in public health settings. Then, the integration of data management together with biosensors is well explained. Last, the review ended with challenges to having a practical COVID-19 biosensor applied for environmental surveillance samples.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links