Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M, Georgiev MI, et al.
    Crit Rev Biotechnol, 2018 Nov 15.
    PMID: 30431379 DOI: 10.1080/07388551.2018.1489778
    Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.
  2. Rahman MA, Abdullah N, Aminudin N
    Crit Rev Biotechnol, 2016 Dec;36(6):1131-1142.
    PMID: 26514091
    Alzheimer's disease (AD) and cardiovascular diseases (CVD) share common etiology and preventive strategies. As the population of old-aged people is increasing worldwide, AD complications tend to afflict global healthcare budget and economy heavily. CVD is the prime cause of global mortality and remains a grave threat to both the developed and the developing nations. Mushroom bio-components may be promising in controlling both diseases. Based mainly on in vitro, ex vivo, cell line and animal studies, this review interprets the polypharmaceutic role of mushrooms treating AD and CVD.
  3. Huong KH, Sevakumaran V, Amirul AA
    Crit Rev Biotechnol, 2021 Jun;41(4):474-490.
    PMID: 33726581 DOI: 10.1080/07388551.2020.1869685
    Polyhydroxyalkanoate (PHA) is a biogenic polymer that has the potential to substitute synthetic plastic in numerous applications. This is due to its unique attribute of being a biodegradable and biocompatible thermoplastic, achievable through microbial fermentation from a broad utilizable range of renewable resources. Among all the PHAs discovered, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] stands out as a next generation healthcare biomaterial for having high biopharmaceutical and medical value since it is highly compatible to mammalian tissue. This review provides a critical assessment and complete overview of the development and trend of P(3HB-co-4HB) research over the last few decades, highlighting aspects from the microbial strain discovery to metabolic engineering and bioprocess cultivation strategies. The article also outlines the relevance of P(3HB-co-4HB) as a material for high value-added products in numerous healthcare-related applications.
  4. Sy Mohamad SF, Mohd Said F, Abdul Munaim MS, Mohamad S, Azizi Wan Sulaiman WM
    Crit Rev Biotechnol, 2020 May;40(3):341-356.
    PMID: 31931631 DOI: 10.1080/07388551.2020.1712321
    Reverse micellar extraction (RME) has emerged as a versatile and efficient tool for downstream processing (DSP) of various biomolecules, including structural proteins and enzymes, due to the substantial advantages over conventional DSP methods. However, the RME system is a complex dependency of several parameters that influences the overall selectivity and performance of the RME system, hence this justifies the need for optimization to obtain higher possible extraction results. For the last two decades, many experimental design strategies for screening and optimization of RME have been described in literature. The objective of this article is to review the use of different experimental designs and response surface methodologies that are currently used to screen and optimize the RME system for various types of biomolecules. Overall, this review provides the rationale for the selection of appropriate screening or optimization techniques for the parameters associated with both forward and backward extraction during the RME of biomolecules.
  5. Pal P, Hasan SW, Abu Haija M, Sillanpää M, Banat F
    Crit Rev Biotechnol, 2023 Dec;43(7):971-981.
    PMID: 35968911 DOI: 10.1080/07388551.2022.2092716
    Colloidal gas aphrons (CGAs) are highly stable, spherical, micrometer-sized bubbles encapsulated by surfactant multilayers. They have several intriguing properties, including: high stability, large interfacial area, and the ability to maintain the same charge as their parent molecules. The physical properties of CGAs make them ideal for biotechnological applications such as the recovery of a variety of: biomolecules, particularly proteins, yeast, enzymes, and microalgae. In this review, the bio-application of CGAs for the recovery of natural components is presented, as well as: experimental results, technical challenges, and critical research directions for the future. Experimental results from the literature showed that the recovery of biomolecules was mainly determined by electrostatic or hydrophobic interactions between polyphenols and proteins (lysozyme, β-casein, β-lactoglobulin, etc.), yeast, biological molecules (gallic acid and norbixin), and microalgae with CGAs. Knowledge transfer is essential for commercializing CGA-based bio-product recovery, which will be recognized as a viable technology in the future.
  6. Imam MU, Ismail M, Ooi DJ, Azmi NH, Sarega N, Chan KW, et al.
    Crit Rev Biotechnol, 2016 Aug;36(4):585-93.
    PMID: 25641328 DOI: 10.3109/07388551.2014.995586
    Plant bioresources are relied upon as natural, inexpensive, and sustainable remedies for the management of several chronic diseases worldwide. Plants have historically been consumed for medicinal purposes based on traditional belief, but this trend is currently changing. The growing interest in the medicinal properties of plant bioresources stems from concerns of side effects and other adverse effects caused by synthetic drugs. This interest has yielded a better understanding of the roles of plant bioactive compounds in health promotion and disease prevention, including the underlying mechanisms involved in such functional effects. The desire to maximize the potential of phytochemicals has led to the development of "rich fractions," in which extracts contain bioactive compounds in addition to elevated levels of the primary compound. Although a rich fraction effectively increases the bioactivity of the extract, the standardization and quality assurance process can be challenging. However, the supercritical fluid extraction (SFE) system is a promising green technology in this regard. Future clinical and pharmacological studies are needed to fully elucidate the implications of these preparations in the management of human diseases, thereby fostering a move toward evidence-based medicine.
  7. Nejat N, Rookes J, Mantri NL, Cahill DM
    Crit Rev Biotechnol, 2017 Mar;37(2):229-237.
    PMID: 26796880 DOI: 10.3109/07388551.2015.1134437
    Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.
  8. Crystal Thew XE, Lo SC, Ramanan RN, Tey BT, Huy ND, Chien Wei O
    Crit Rev Biotechnol, 2023 Feb 14.
    PMID: 36788704 DOI: 10.1080/07388551.2023.2170861
    Plastic biodegradation has emerged as a sustainable approach and green alternative in handling the ever-increasing accumulation of plastic wastes in the environment. The complete biodegradation of polyethylene terephthalate is one of the most recent breakthroughs in the field of plastic biodegradation. Despite the success, the effective and complete biodegradation of a wide variety of plastics is still far from the practical implementation, and an on-going effort has been mainly devoted to the exploration of novel microorganisms and enzymes for plastic biodegradation. However, alternative strategies which enhance the existing biodegradation process should not be neglected in the continuous advancement of this field. Thus, this review highlights various strategies which have shown to improve the biodegradation of plastics, which include the pretreatment of plastics using UV irradiation, thermal, or chemical treatments to increase the susceptibility of plastics toward microbial action. Alternative pretreatment strategies are also suggested and compared with the existing techniques. Besides, the effects of additives such as pro-oxidants, natural polymers, and surfactants on plastic biodegradation are discussed. In addition, considerations governing the biodegradation performance, such as the formulation of biodegradation medium, cell-free biocatalysis, and physico-chemical properties of plastics, are addressed. Lastly, the challenges and future prospects for the advancement of plastic biodegradation are also highlighted.
  9. Mudali D, Jeevanandam J, Danquah MK
    Crit Rev Biotechnol, 2020 Nov;40(7):951-977.
    PMID: 32633615 DOI: 10.1080/07388551.2020.1789062
    Drug-induced transformations in disease characteristics at the cellular and molecular level offers the opportunity to predict and evaluate the efficacy of pharmaceutical ingredients whilst enabling the optimal design of new and improved drugs with enhanced pharmacokinetics and pharmacodynamics. Machine learning is a promising in-silico tool used to simulate cells with specific disease properties and to determine their response toward drug uptake. Differences in the properties of normal and infected cells, including biophysical, biochemical and physiological characteristics, plays a key role in developing fundamental cellular probing platforms for machine learning applications. Cellular features can be extracted periodically from both the drug treated, infected, and normal cells via image segmentations in order to probe dynamic differences in cell behavior. Cellular segmentation can be evaluated to reflect the levels of drug effect on a distinct cell or group of cells via probability scoring. This article provides an account for the use of machine learning methods to probe differences in the biophysical, biochemical and physiological characteristics of infected cells in response to pharmacokinetics uptake of drug ingredients for application in cancer, diabetes and neurodegenerative disease therapies.
  10. Ahmad A, Ghufran R
    Crit Rev Biotechnol, 2023 Dec;43(8):1236-1256.
    PMID: 36130802 DOI: 10.1080/07388551.2022.2103641
    This critical review for anaerobic degradation of complex organic compounds like butyrate using reactors has been enormously applied for biogas production. Biogas production rate has a great impact on: reactor granulation methanogenesis, nutrient content, shear velocity, organic loading and loss of nutrients taking place in the reactor continuously. Various technologies have been applied to closed anaerobic reactors to improve biogas production and treatment efficiency. Recent reviews showed that the application of closed anaerobic reactors can accelerate the degradation of organics like volatile fatty acid-butyrate and affect microbial biofilm formation by increasing the number of methanogens and increase methane production 16.5 L-1 CH4 L-1 POME-1. The closed anaerobic reactors with stable microbial biofilm and established organic load were responsible for the improvement of the reactor and methane production. The technology mentioned in this review can be used to monitor biogas concentration, which directly correlates to organic concentrations. This review attempts to evaluate interactions among the: degradation of organics, closed anaerobic reactors system, and microbial granules. This article provides a useful picture for the improvement of the degradation of organic butyrate for COD removal, biogas and methane production in an anaerobic closed reactor.
  11. Mat Jalaluddin NS, Othman RY, Harikrishna JA
    Crit Rev Biotechnol, 2018 Sep 09.
    PMID: 30198341 DOI: 10.1080/07388551.2018.1496064
    It has only been about 20 years since the first Nobel Prize-winning work on RNA interference (RNAi) in Caenorhabditis elegans was published in the journal Nature. Fast forward to today, and the use of RNA molecules as gene-silencing elements in crops has helped scientists to unveil possible solutions to the global problems of agricultural losses due to pests, viruses, pathogens, and to other abiotic and biotic stresses. The recent proliferation of publications suggests that the technology has gained significant attention and received ample funding support. In this article, an attempt has been made to visualize recent trends in Research & Development (R&D) investment in this field by analyzing top cited scholarly articles, patent trends, and commercialization activity. The publication and citation analysis identified that the development of RNAi-based crops conferring resistance against viruses, fungi, and pests are at the forefront of RNAi research and that Chinese and US institutions are the leaders in this field. The patent landscape analysis for RNAi technology over all aspects related to RNAi-derived crops provides an overview of patenting activity from a geographical, organizational, and legal perspective. Such an exercise is pivotal to industry players and public institutions aiming at creating intellectual property that is commercially appealing. An upswing in commercial interests in this technology in recent years is reflected by a consistent number of patent filings in US, European, and Chinese patent offices, with multinational giant firms as the most prolific patent filers. The expanding RNAi commercialization landscape is supported by a series of strategic partnerships, licensing agreements, and acquisitions created between agribusinesses, public research institutions, and startup companies. From key observations, we would like to highlight that such investments have very positive impacts on the development of RNAi technology. Nonetheless, the success of this technology is dependent on several factors, such as financial requirements, the complexity, and timeframe of the entire development process, as well as stringent regulations imposed by the relevant authorities. In most countries, RNAi-based transgenic crops are still considered as a genetically modified (GM) product, which necessitates the crops to undergo rigorous evaluation before approval is granted. Recent advancements in exogenous RNAi-derived biopesticides have provided a nontransgenic alternative to GM crops. However, challenges still remain in the form of technical hurdles and regulatory ambiguities surrounding this emerging technology. Its full potential remains to be realized.
  12. Low JSY, Thevarajah TM, Chang SW, Goh BT, Khor SM
    Crit Rev Biotechnol, 2020 Dec;40(8):1191-1209.
    PMID: 32811205 DOI: 10.1080/07388551.2020.1808582
    Cardiovascular disease is a major global health issue. In particular, acute myocardial infarction (AMI) requires urgent attention and early diagnosis. The use of point-of-care diagnostics has resulted in the improved management of cardiovascular disease, but a major drawback is that the performance of POC devices does not rival that of central laboratory tests. Recently, many studies and advances have been made in the field of surface-enhanced Raman scattering (SERS), including the development of POC biosensors that utilize this detection method. Here, we present a review of the strengths and limitations of these emerging SERS-based biosensors for AMI diagnosis. The ability of SERS to multiplex sensing against existing POC detection methods are compared and discussed. Furthermore, SERS calibration-free methods that have recently been explored to minimize the inconvenience and eliminate the limitations caused by the limited linear range and interassay differences found in the calibration curves are outlined. In addition, the incorporation of artificial intelligence (AI) in SERS techniques to promote multivariate analysis and enhance diagnostic accuracy are discussed. The future prospects for SERS-based POC devices that include wearable POC SERS devices toward predictive, personalized medicine following the Fourth Industrial Revolution are proposed.
  13. Sivagurunathan P, Kuppam C, Mudhoo A, Saratale GD, Kadier A, Zhen G, et al.
    Crit Rev Biotechnol, 2018 Sep;38(6):868-882.
    PMID: 29264932 DOI: 10.1080/07388551.2017.1416578
    This review provides the alternative routes towards the valorization of dark H2 fermentation effluents that are mainly rich in volatile fatty acids such as acetate and butyrate. Various enhancement and alternative routes such as photo fermentation, anaerobic digestion, utilization of microbial electrochemical systems, and algal system towards the generation of bioenergy and electricity and also for efficient organic matter utilization are highlighted. What is more, various integration schemes and two-stage fermentation for the possible scale up are reviewed. Moreover, recent progress for enhanced performance towards waste stabilization and overall utilization of useful and higher COD present in the organic source into value-added products are extensively discussed.
  14. Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA
    Crit Rev Biotechnol, 2016;36(2):353-67.
    PMID: 25394538 DOI: 10.3109/07388551.2014.961403
    Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (∼500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ∼22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.
  15. Ejike UC, Chan CJ, Okechukwu PN, Lim RLH
    Crit Rev Biotechnol, 2020 Dec;40(8):1172-1190.
    PMID: 32854547 DOI: 10.1080/07388551.2020.1808581
    Fungal immunomodulatory proteins (FIPs) are fascinating small and heat-stable bioactive proteins in a distinct protein family due to similarities in their structures and sequences. They are found in fungi, including the fruiting bodies producing fungi comprised of culinary and medicinal mushrooms. Structurally, most FIPs exist as homodimers; each subunit consisting of an N-terminal α-helix dimerization and a C-terminal fibronectin III domain. Increasing numbers of identified FIPs from either different or same fungal species clearly indicates the growing research interests into its medicinal properties which include immunomodulatory, anti-inflammation, anti-allergy, and anticancer. Most FIPs increased IFN-γ production in peripheral blood mononuclear cells, potentially exerting immunomodulatory and anti-inflammatory effects by inhibiting overproduction of T helper-2 (Th2) cytokines common in an allergy reaction. Recently, FIP from Ganoderma microsporum (FIP-gmi) was shown to promote neurite outgrowth for potential therapeutic applications in neuro-disorders. This review discussed FIPs' structural and protein characteristics, their recombinant protein production for functional studies, and the recent advances in their development and applications as pharmaceutics and functional foods.
  16. Lai JY, Klatt S, Lim TS
    Crit Rev Biotechnol, 2019 May;39(3):380-394.
    PMID: 30720351 DOI: 10.1080/07388551.2019.1566206
    Through the discovery of monoclonal antibody (mAb) technology, profound successes in medical treatment against a wide range of diseases have been achieved. This has led antibodies to emerge as a new class of biodrugs. As the "rising star" in the pharmaceutical market, extensive research and development in antibody production has been carried out in various expression systems including bacteria, insects, plants, yeasts, and mammalian cell lines. The major benefit of eukaryotic expression systems is the ability to carry out posttranslational modifications of the antibody. Glycosylation of therapeutic antibodies is one of these important modifications, due to its influence on antibody structure, stability, serum half-life, and complement recruitment. In recent years, the protozoan parasite Leishmania tarentolae has been introduced as a new eukaryotic expression system. L. tarentolae is rich in glycoproteins with oligosaccharide structures that are very similar to humans. Therefore, it is touted as a potential alternative to mammalian expression systems for therapeutic antibody production. Here, we present a comparative review on the features of the L. tarentolae expression system with other expression platforms such as bacteria, insect cells, yeasts, transgenic plants, and mammalian cells with a focus on mAb production.
  17. Choi SB, Lew LC, Yeo SK, Nair Parvathy S, Liong MT
    Crit Rev Biotechnol, 2015;35(3):392-401.
    PMID: 24575869 DOI: 10.3109/07388551.2014.889077
    Probiotic microorganisms have been documented over the past two decades to play a role in cholesterol-lowering properties via various clinical trials. Several mechanisms have also been proposed and the ability of these microorganisms to deconjugate bile via production of bile salt hydrolase (BSH) has been widely associated with their cholesterol lowering potentials in prevention of hypercholesterolemia. Deconjugated bile salts are more hydrophobic than their conjugated counterparts, thus are less reabsorbed through the intestines resulting in higher excretion into the feces. Replacement of new bile salts from cholesterol as a precursor subsequently leads to decreased serum cholesterol levels. However, some controversies have risen attributed to the activities of deconjugated bile acids that repress the synthesis of bile acids from cholesterol. Deconjugated bile acids have higher binding affinity towards some orphan nuclear receptors namely the farsenoid X receptor (FXR), leading to a suppressed transcription of the enzyme cholesterol 7-alpha hydroxylase (7AH), which is responsible in bile acid synthesis from cholesterol. This notion was further corroborated by our current docking data, which indicated that deconjugated bile acids have higher propensities to bind with the FXR receptor as compared to conjugated bile acids. Bile acids-activated FXR also induces transcription of the IBABP gene, leading to enhanced recycling of bile acids from the intestine back to the liver, which subsequently reduces the need for new bile formation from cholesterol. Possible detrimental effects due to increased deconjugation of bile salts such as malabsorption of lipids, colon carcinogenesis, gallstones formation and altered gut microbial populations, which contribute to other varying gut diseases, were also included in this review. Our current findings and review substantiate the need to look beyond BSH deconjugation as a single factor/mechanism in strain selection for hypercholesterolemia, and/or as a sole mean to justify a cholesterol-lowering property of probiotic strains.
  18. Abdul Manas NH, Md Illias R, Mahadi NM
    Crit Rev Biotechnol, 2018 Mar;38(2):272-293.
    PMID: 28683572 DOI: 10.1080/07388551.2017.1339664
    BACKGROUND: The increasing market demand for oligosaccharides has intensified the need for efficient biocatalysts. Glycosyl hydrolases (GHs) are still gaining popularity as biocatalyst for oligosaccharides synthesis owing to its simple reaction and high selectivity.

    PURPOSE: Over the years, research has advanced mainly directing to one goal; to reduce hydrolysis activity of GHs for increased transglycosylation activity in achieving high production of oligosaccharides.

    DESIGN AND METHODS: This review concisely presents the strategies to increase transglycosylation activity of GHs for oligosaccharides synthesis, focusing on controlling the reaction equilibrium, and protein engineering. Various modifications of the subsites of GHs have been demonstrated to significantly modulate the hydrolysis and transglycosylation activity of the enzymes. The clear insight of the roles of each amino acid in these sites provides a platform for designing an enzyme that could synthesize a specific oligosaccharide product.

    CONCLUSIONS: The key strategies presented here are important for future improvement of GHs as a biocatalyst for oligosaccharide synthesis.

  19. Moshood TD, Nawanir G, Mahmud F
    Crit Rev Biotechnol, 2021 Sep 16.
    PMID: 34530658 DOI: 10.1080/07388551.2021.1973954
    In line with the recent economic growth, especially in developing countries, human concern for the environment has increased over time. This paradigm shift has influenced many developing countries to pay more attention to the issues related to the use of synthetic plastics. Both industry and consumers are intrigued to discover the: economic characteristics, environmental consequences, and social attitudes to the benefits of biodegradable plastics. Biodegradable plastics are useful in packaging, agriculture, gastronomy, consumer electronics, and the automotive industry. This paper seeks to explain the prospects of biodegradable plastics regarding social, economic, and environmental sustainability and recognizes the latest advances in enzyme-based biodegradation of plastics in order to reduce plastics' negative effects and to make the environment safe. A multi-disciplinary strategy is a unique approach, with studies carried out across the triple bottom line (TBL) approach on three distinct sustainability concepts (economic characteristics, environmental consequences, and social attitudes). These three subjects were carefully chosen for their respective targets. This paper has used ATLAS.ti 9 software tools to thoroughly analyze the literature to save, identify, and assess this study's data. Therefore, the research showed that the environmental component was the most critical factor with the economic second and social third. We review bio-based and biodegradable polymers and highlight the value of biodegradable end-of-life management.
  20. Kee PE, Ng TC, Lan JC, Ng HS
    Crit Rev Biotechnol, 2020 Jun;40(4):555-569.
    PMID: 32283954 DOI: 10.1080/07388551.2020.1747388
    Aqueous biphasic system (ABS) is widely used in the recovery, extraction, purification and separation of proteins, enzymes, nucleic acids and antibodies. The ABS with high water content and low interfacial tension offers a biocompatible environment for the recovery of labile biomolecules. Process integration can be achieved using ABS by incorporating multiple-steps of purification, concentration and purification of biomolecules in a single-step operation which often results in high product recovery yield and purity. Conventional ABS is usually formed by aqueous solutions of two polymers or a polymer and a salt above a critical concentration. The high viscosity of polymer-based ABS causes slow phase separation and hinders the mass transfer of biomolecules, whereas polymer/salt ABS is characterized by high ionic strength resulting in the loss of bioactivity of recovered biomolecules. These limitations have encouraged the development of novel ABS which is more cost-effective for various biotechnological applications. This review discusses the characteristics and mechanisms of several types of emerging unconventional ABS using phase-forming components such as hyperbranched polymers, special salts, surfactants, magnetic fields, the addition of nanoparticles and incorporation of various solvent. Moreover, several novel applications of ABS for different separation purposes such as microfluidic-based ABS, ABS bioreactors, application of ABS as an analytical tool, and ABS micropatterning are discussed in this review. In the last section of this review, a comprehensive summary of process integration using ABS for extractive fermentations, bioconversion, crystallization and precipitation is also supplemented for the comprehensive review of various types and applications of ABS in recent years.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links